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While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network compu-
tation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking imple-
mentations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach.
Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal
networks compute, with precise spike timing determined by each neuron’s contribution to producing the desired output (Boerlin and
Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network’s output, it was demonstrated
that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous syn-
apses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity
and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be
extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks
including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the
behavior of our model scales with network size or with the number of neurons “recorded” from a larger computing network. These results
significantly increase the biological plausibility of the spike-based approach to network computation.
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Introduction
Neural networks transform their inputs through a variety of
computations from the integration of stimulus information for
decision-making (Gold and Shadlen, 2007) to the persistent ac-
tivity observed in working memory tasks (Jonides et al., 2008).

How such transformations occur in biological networks has not
yet been understood. Such operations have been proposed to be
performed by the averaged firing rates of neurons in a network (a
“rate model”; Seung, 1996; Wang, 2002; Goldman et al., 2003;
Machens et al., 2005; Wong and Wang, 2006). For example, per-
sistent activity may be realized in a rate model by including re-
current connections that balance the intrinsic leak of the system
(Seung, 1996; Goldman, 2009). However, most real neural cir-
cuits consist of spiking neurons. Spiking network implementa-
tions of rate model operations can be constructed by assuming
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Significance Statement

We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes
based upon the principle that the precise timing of each spike is important for the computation. We then show that our network
reproduces a number of key features of cortical networks including irregular, Poisson-like spike times, and a tight balance between
excitation and inhibition. These results significantly increase the biological plausibility of the spike-based approach to network compu-
tation, and uncover how several components of biological networks may work together to efficiently carry out computation.
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that the computation is distributed among a large population of
functionally similar neurons, so that the averaged firing rate
matches that of the desired rate model (Renart et al., 2004; Wong
and Wang, 2006; Eckhoff et al., 2011).

Rate-based approaches have been used to model a variety of
behaviors including persistent activity in the oculomotor integra-
tor (Seung, 1996; Seung et al., 2000; Goldman et al., 2003),
decision-making (Usher and McClelland, 2001; Bogacz et al.,
2006; Wong and Wang, 2006; Eckhoff et al., 2011; Cain and Shea-
Brown, 2012), and working memory (Brody et al., 2003; Renart et
al., 2004). Although rate models capture features of both psycho-
physical and electrophysiological data, such approaches have a
few potential limitations. First, any rate-based approach disre-
gards the timing of individual spikes, and hence any capacity to
compute that precise timing may confer. Second, the perfor-
mance of rate models is typically quite sensitive to the choice of
connection weights between neural populations (Seung et al.,
2000). If the recurrent connections are either too strong or too
weak, the activity of the network can either quickly increase to
saturation or decrease to a baseline level. Further, spiking net-
work implementations of rate-based networks typically (though
not always; Lim and Goldman, 2013) require strong added noise
to match the irregular firing observed in cortical networks
(Wang, 2002; Machens et al., 2005; Wong and Wang, 2006). This
injected noise often dominates the feedforward or intrinsic cur-
rents generated in the network, diminishing the accuracy with
which inputs can be integrated or maintained over time.

Recently, Boerlin et al. (2013) have proposed a distinct alter-
native by assuming that a computation is performed directly by
the spike times of individual neurons. Based upon the premise
that the membrane potentials of neurons in the network track a
prediction error between a desired output and the network esti-
mate, and that neurons spike only if that error exceeds a certain
value, Boerlin et al. (2013) derived a spiking neural network that
can perform any linear computation. In this predictive coding
approach, the computation error is mapped to the voltage of
integrate-and-fire (IF) neurons, whereas a bound on this error is
mapped to the neuron’s threshold. This leads to a recurrent net-
work of IF neurons with a mixture of instantaneous and expo-
nential synapses that is able to reproduce many features of
cortical circuits while performing a variety of linear computa-
tions including pure and leaky integration, differentiation, and
transforming inputs into damped oscillations. Furthermore, as
the computation is efficiently distributed among the participat-
ing neurons, the network is robust to perturbations such as le-
sions and synaptic failure.

Nevertheless, two components of this work potentially limit
its implementation in biological networks: neurons communi-
cate instantaneously, whereas true synaptic dynamics occur with
a finite timescale; and the threshold of IF neurons is set arbi-
trarily, rather than being established by intrinsic nonlinear spike-
generating kinetics.

Here, starting from the same spike-based framework (Boerlin
et al., 2013), we derive a computing network of neurons with
standard spike-generating currents (Hodgkin and Huxley, 1952)
and synapses with realistic timescales. Like in many cortical net-
works, the spike times of the model network are irregular and
there is a tight balance between excitation and inhibition
(Shadlen and Newsome, 1998; Okun and Lampl, 2008; Renart et
al., 2010). Moreover, the precise timing of spikes is important for
accurate decoding: the network actively produces correlations in
the spike times of different neurons, which act to reduce the
decoding variance. Together, the results uncover how several

components of biological networks may work together to effi-
ciently carry out computation.

Materials and Methods
Optimal spike-based computation with finite time-scale synapses. Here, we
follow Boerlin et al. (2013) to construct a spiking network that imple-
ments the computation of a J-dimensional linear dynamical system. We
define the target system as follows:

ẋ � Ax � c��t�, (1)

where x(t) is a J-dimensional vector of functions of time, c�(t) is a
J-dimensional vector of stimulus inputs, and A is a J � J matrix (with
units of s � 1) that determines the linear computation. For example, if A is
the zero matrix, then the computation would be pure integration with
x(t) being the integral of the stimulus inputs c�(t). The dynamic variables
x are unitless, whereas time has units of seconds. We want to build a
network of N neurons such that an estimate of the dynamic variable x̂ �
x can be read out from the network’s spike trains �k�t� � �

j
��t � tj

k�,

where k indexes the N neurons. We assume that the dynamics of the
network estimate x̂ are given by the following:

ẋ̂ � �adx̂ � �� � hr�t�, (2)

where hr�t� � �ar � ad�/�
�H�t�e�art, H(t) is the Heaviside function, ar,

ad, and �� are constants that are defined below, and � is a J � N dimen-
sional decoding matrix. In the original leaky-integrate-and-fire (LIF)
network (Boerlin et al., 2013), hr(t) � �(t). The solution of Equation 2,
assuming that x̂(0) � 0, is given by the convolution of the network’s spike
trains with a double-exponential function as follows:

x̂�t� � �� � ��t� ��
0

t

���s���t� s�ds, (3)

where

��t� � H�t�
1

��� e
�adt

�e
�art� , (4)

and � � is a constant so that the maximum of the double-exponential
function is 1, ar (ad) is the rate of rise (decay) of the double-exponential
function. Note that the normalization term (ar � ad)/� � in the definition
of hr(t) comes from the fact that we wanted �(t) to have the form given
above. In what follows, we will show that this alteration to the decoder
dynamics will result in a neuronal network with finite timescale
synapses.

We now derive network dynamics such that neurons spike to reduce
the error between the signal x(t) and the estimate x̂(t). Defining the error
function E(t) as follows:

E�t� � �
0

t� �
j�1

J

� xj�u� � x̂j�u��2�du, (5)

our goal is to derive conditions under which cell k spikes only if the error
is reduced by doing so: E�t�cell k spikes) � E�t�cell k doesn	t spike).
When cell k spikes at time t, this changes x̂j�u�¡x̂j�u� � �jk��u � t�.
Thus, we need to find conditions such that:

�
0

t� �
j�1

J

� xj�u� � x̂j�u� � � jk��u � t��2�du

� �
0

t� �
j�1

J

� xj�u� � x̂j�u��2�du. (6)

Up to this point, our derivation is nearly identical to that of Boerlin et al.
(2013), except for the use of the double-exponential function synapse.
However, we must now alter the above condition to account for the fact
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that the double-exponential function synapse has a finite rise time. More
specifically, because �(t) is equal to zero at the time of the spike, the terms
on either side of the above inequality are equal (because �(u � t) � 0 for
u 	 t). In contrast, Boerlin et al. (2013) used exponential synapses which
have an infinitely fast rise time and thus yield a non-zero contribution at
the time of a spike. Thus, to account for the effects of the spike at time t on
the error, we need to extend the integration a short time t � into the future
as follows:

�
0

t
t�� �
j�1

J

� xj�u� � x̂j�u� � � jk��u � t��2�du

� �
0

t
t�� �
j�1

J

� xj�u� � x̂j�u��2�du. (7)

After some algebra, and using the fact that �(u � t) � 0 for u 	 t, this
leads to:

�
t

t
t�� �
j�1

J

2� jk��u � t�� xj�u� � x̂j�u���du


 �
t

t
t�� �
j�1

J

� jk
2 �2�u � t��du. (8)

Because t � is assumed to be small, we approximate the above integral
using the trapezoidal rule:

1

2� �j�1

J

2� jk���0�� xj�t� � x̂j�t�� � ��t��� xj�t � t�� � x̂j�t � t����� t�



1

2� �j�1

J

� jk
2 ��2�0� � �2�t���� t�. (9)

Other integral approximations lead to similar results. Using the fact that
t � is small, we can Taylor expand xj(t 
 t �) and x̂j�t � t�� to first order:

1

2� �j�1

J

2� jk��t��� xj�t� � x̂j�t� � � x	j�t� � x̂	j�t��t��� t�



1

2� �j�1

J

� jk
2 �2�t��� t�, (10)

where we used the fact that �(0) � 0. Dividing both sides of the above
equation by �(t �)t � we arrive at:

�
j�1

J

� jk� xj�t� � x̂j�t�� � �
j�1

J

� jk� xj	�t� � x̂j	�t��t� 
 �
j�1

J � jk
2

2
��t��.

(11)

Lastly, we drop terms of order t � and define:

Ṽk � �
j�1

J

� jk� xj�t��x̂j�t��, (12)

with the condition that neuron k spikes when it reaches threshold:

Tk � �
j�1

J � jk
2

2
��t��. (13)

The network dynamics are given by differentiating Equation 12:

V̇̃k � �k
T�ẋ � ẋ̂)

� �k
T(Ax�t� � c��t� � ẋ̂�t��. (14)

To close the problem using only information available to the network, we
replace the desired signal with the spike-based estimate of the signal,
x(t) � x̂�t�:

V̇̃k � �k
T� Ax̂�t� � c��t� � ẋ̂�t��

� �k
T�A � ad�J�J��� � ��t� � �k

Tc��t� � �k
T�� � hr�t�, (15)

�J�J is the J-dimensional identity matrix. The above form highlights the
fact that there are now two different kinds of synapses in our network:
double-exponential “slow” synapses and exponential “fast” synapses.
The reason why these two types of synapses arise is because both x̂�t� and
its temporal derivative appear in the equation for the voltage dynamics. If
we had chosen to decode the spike trains using an exponential kernel as in
Boerlin et al. (2013), we would end up with exponential slow synapses
and �-function fast synapses.

In previous approaches, the neurons’ voltage “reset” following spikes
arose from autaptic (i.e., from a neuron to itself) input currents via the
delta-function synapses just discussed. Such fast synapses do not occur in
our derivation. To obtain an analogous reset condition, we would need to
include an additional, explicit reset current in our voltage equation. This
would result in the following:

V̇̃k � �k
T� A � ad�J�J��� � ��t� � �k

Tc��t� � �k
T�� � hr�t� � 2Tk�k�t�,

(16)

where the term �2Tk�k(t) resets neuron k to �Tk once it reaches
threshold Tk. We illustrate this particular reset rule because it matches
that of Boerlin et al., (2013). However, in the next section we will
remove this reset term and replace it with more biologically realistic
ionic currents.

Next, we rescale the voltage to be in terms of millivolts (recall that
time is in units of seconds). To do so, we introduce the scaling
Ṽk � Tk Vk/g (where g has units of millivolts) which leads to the following:

V̇k � �2g�k�t� �
g

Tk
��k

T� A � ad�J�J��� � ��t� � �k
Tc��t�

� �k
T�� � hr�t��, (17)

where the threshold voltage is g and the reset voltage is �g. The param-
eter g also modifies the gain of the synaptic input. However, it is also
linked to the value of the voltage threshold and reset potential. Finally, to
frame the network equations in terms of current, we multiply both sides
by the membrane capacitance Cm (in units of mF/cm 2).

CmV̇k � �2Cmg�k�t� �
Cmg

Tk
��k

T� A � ad�J�J��� � ��t� � �k
Tc��t�

� �k
T�� � hr�t��. (18)

Addition of biophysical currents. We began by deriving a network of
neurons that do not contain any intrinsic biophysical currents and solely
integrate their synaptic input before spiking. To incorporate the nonlin-
ear dynamics of spike-generating ion channels, we now replace the reset
currents �2Cmg�k(t) with generic Hodgkin–Huxley-type (HH-type)
ionic currents Iion(Vk, w� k) (see Models and parameters for a specific
example):

CmV̇k � Iion�Vk,w� k� �
Cmg

Tk
��k

T� A � ad�J�J��� � ��t� � �k
Tc��t�

� �k
T�� � hr�t��, (19)

where the w� k in Iion(Vk, w� k) represent the gating variables for standard
HH currents. For example, w� k � [mk, hk, nk] for the HH-type model we
consider here (see Models and parameters). For simplicity, we assume
that every neuron in the network has the same type of spike-generating
currents Iion(Vk, w� k). Note that if we wanted to use a leaky-integrate-and-
fire neuron, we would set Iion�Vk, w� k� � � gL�Vk � EL� � 2gCm �k�t�,
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where gL is the conductance of the leak channel (in mS/cm 2), EL is the
leak channel reversal potential, and we used the same reset current we
previously described. As stated above, for standard HH-type model cur-
rents there is no longer a need for a reset current as the spiking process is
performed by the intrinsic currents.

Next, we add a white noise current to our voltage equations. This is
meant to roughly model a combination of background synaptic input,
randomness in vesicle release, and stochastic fluctuations in ion channel
states (channel noise), but also contributes to computation in our net-
works by helping to prevent synchrony (see Results, Sensitivity to varia-
tion in synaptic strength and noise levels). The result is as follows:

CmV̇k � Iion�Vk, w� k� �
Cmg

Tk
��k

T� A � ad�J�J��� � ��t� � �k
Tc��t�

� �k
T�� � hr�t�� � �V�k�t�, (20)

where �(t) is white noise 
��t�� � 0 and 
��t���t	�� � ��t � t	� and �V

has units of 
A/cm2 �	s. Last, to emphasize the fact that the input to the
system c�(t) has the physical interpretation of current, we introduce the
scaling c�(t) � c(t)/(Cmc0) where c(t) has units of 
A/cm 2, and c0 has
units of millivolts and scales the stimulus input into neurons in our
network. Thus, we rewrite Equation 20 as follows:

CmV̇k � Iion�Vk, w� k� �
Cmg

Tk
��k

T� A � ad�J�J��� � ��t�

� �k
T�� � hr�t�� �

�k
T

Tk

g

c0
c�t� � �V�k�t�. (21)

Switching to vector notation, the population dynamics are given by the
following:

CmV̇ � Iion(V, w� ) � CmgT̃ �1��T�A � ad�J�J��� � ��t�

� �T�� � hr�t�� � T̃ �1�T
g

c0
c�t� � �V��t�, (22)

where T̃ is an N � N diagonal matrix with Tk on the diagonal.
In the integrate-and-fire network, spiking occurs due to an explicit

threshold crossing and reset condition. With the addition of ionic cur-
rents, action potentials are now intrinsically generated, but it is still nec-
essary to identify a voltage threshold for spike times. We treat this
detection threshold as a separate parameter. In the simulations pre-
sented, we chose to use Vth � �48 mV, which is sufficiently high on
the upswing of the action potential to allow reliable spike detection.
However, different choices for Vth can lead to different behaviors for
the network. In particular, our simulations show that to use a larger
value for Vth, one must also increase the voltage noise to prevent the
network from synchronizing.

Compensating for spike-generating currents. In the previous section, we
incorporated spike-generating currents into the voltage dynamics of each
cell in our network. The point of this is to add biological realism, but the
immediate consequence is that the voltages no longer evolve to precisely
track error signals for the intended computation. This degrades the ac-
curacy with which the network can perform. However, in this section we
show that it is possible to effectively “compensate” the network for the
effects of the spike-generating currents.

To begin, we note that, assuming no noise, a network optimized for the
underlying computation maintains the relationship:

V � gT̃ �1�T�x � x̂), (23)

i.e., the voltage of each cell represents a projection of the error signal.
However, the addition of the spike-generating currents disrupts the re-
lationship (Eq. 23). Thus, we seek to derive alterations to both the net-
work and decoder dynamics to make Equation 23 valid. That is, we take
the dynamics of V and x̂ to be given by the following:

V̇ �
Iion(V, w� )

Cm
� I�t�, (24)

ẋ̂ � � adx̂ � �� � hr�t� � G(V), (25)

where I(t) and G(V) are functions to be determined to restore the rela-
tionship between voltage and error, Equation 23. Taking the derivative of
Equation 23 and using Equation 25, we find the following:

V̇ � gT̃ �1�T�ẋ � ẋ̂�

� gT̃ �1�T�Ax �
c�t�

Cmc0
� adx̂ � �� � hr�t� � G(V)�

� gT̃ �1
�T�A � ad�J�J�x̂ � �T
c�t�

Cmc0
� �T�� � hr�t��

� gT̃ �1�TG(V), (26)

where above we again used the fact that x � x̂. Equating this definition of
the derivative of V to Equation 24, we find the following:

I�t� � gT̃ �1
�T�A � ad�J�J�x̂ � �T
c�t�

Cmc0
� �T�� � hr�t��

G(V) � ��
Iion(V, w� )

Cmg
,

(27)

where � � ��T�†T̃ and (�T) † � (��T) �1� is the Moore-Penrose pseu-
doinverse of the rectangular matrix �T. Thus, the new dynamics would
be as follows:

V̇ �
Iion(V, w� )

Cm
� gT̃ �1��T�A � ad�J�J�x̂

� �T�� � hr�t�� � T̃ �1�T
g

c0

c�t�

Cm

ẋ̂ � � adx̂ � �� � hr�t� � �
Iion(V, w� )

Cmg
,

(28)

which implies that V and x̂ are coupled, as the solution of x̂ is as follows
(ignoring initial conditions):

x̂�t� ��
0

t

���s���t � s�ds ��
0

t

�
Iion(V(s; x̂�s�), w� �s�)

Cmg
e

�ad�t�s�
ds.

(29)

This coupling implies that the decoder x̂ requires instantaneous knowl-
edge of the voltages of each cell. Clearly, a more realistic, and simpler,
implementation would be if the decoder had access only to the spike
times of the cells. We next show how this can be achieved. We begin with
the assumption that the primary cause of the disruption of Equation 23
occurs only during an action potential. We then find an approximation
of the intrinsic current Iion�V, w� �/Cm that follows a spike. That is, we seek
a kernel �(t) such that:

Iion�Vk�t�, w� �

Cm
� �

tj
k

tj
k
ts

�k�s���t � s�ds, (30)

where tj
k is the time of the jth spike of cell k and ts is the width of the kernel

�(t). More details on obtaining the kernel �(t) are provided in the next
section. Inserting the above approximation into the last term in Equation
29, we obtain the following:
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x̂�t� ��
0

t

���s���t � s�ds �
1

g
�� � 
�

0

t

��s�e
�ad�t�s�

ds�
� �� � ��t� �

1

g
�� � �̃�t�, (31)

where �̃�t� � �
0

t
��s�e

�ad�t�s�
ds. Note that �(t) has units of millivolts per

second, whereas �̃�t) has units of millivolts. We can then rewrite the
network dynamics as follows:

V̇ �
Iion(V, w� )

Cm
� gT̃ �1��T�A � ad�J�J��� � ��t� � �T�� � hr�t��

� T̃ �1�T�A � ad�J�J��� � �̃(t) � T̃ �1�T
g

c0

c�t�

Cm
�

�V

Cm
��t�

ẋ̂ � � adx̂ � �� � hr�t� �
1

g
�� � ��t�,

(32)

where the voltage noise term has again been included. Finally, we intro-
duce the following more compact notation:

V̇ �
Iion(V, w� )

Cm
� g�s� � ��t� � g�f� � hr�t� � �c� � �̃�t�

�
g

c0

1

Cm
Dc�t� �

�V

Cm
��t�, (33)

x̂�t� � W � ��t�, (34)

where

�s � T̃ �1�T� A � ad�J�J��
�f � T̃ �1�T�

�c � T̃ �1�T�A � ad�J�J��
D � T̃ �1�T

W�t� � ��t�� �
�̃�t�

g
�.

(35)

We reiterate that the compensation affects both the network dynamics
and the readout. Note also that the parameter g scales the strength of the
slow and fast synaptic input.

Obtaining the compensation kernels. The compensation kernel �(t) was
obtained by stimulating a single model neuron with a Gaussian noise current
(specifically, an Ornstein–Uhlenbeck process; Uhlenbeck and Ornstein,
1930), and keeping track of the times tj that the voltage crossed a threshold
from below. This threshold was the same as that used for detecting spikes in
the network simulations. For each spike, we then obtain an action potential
waveform VAP

j �t� for tj 	 t � tj 
 ts, where ts sets the width of the �(t) kernel.
We then sum these traces to obtain the average waveform of the action
potential VAP(t). That is, if K spikes were recorded, then:

VAP�t� �
1

K�j�1

K

VAP
j �t � tj�, 0 	 t � ts. (36)

Thus, an approximation to the change in voltage during the spike is given
by the following:

Iion�V, w� �

Cm
�

d

dt
VAP�t�, 0 	 t � ts. (37)

The kernel �(t) is then defined as follows:

��t� � � d

dt
VAP�t� 0 	 t � ts

0 otherwise
. (38)

Figure 2 provides an illustration of this procedure. For our simula-
tions, we set ts � 4 ms. Using a larger value of ts did not significantly

affect the results, but too small a value does, as the voltage trace
during the entire time course of the action potential will not be ac-
counted for.

Decoding variance and approximations. In this section, we assume that
the network tracks a one-dimensional signal; that is, J � 1. The decoder is
given by the following:

x̂ � ��� �
1

g
���̃, (39)

where �Y � � � Y�t�, Y � ��, �̃�. The variance of the decoder is then
given by the following:

var� x̂� 
 �x̂ � �C��T �
1

g2�C�̃�T �
2

g
�C��̃�T, (40)

where Cij
� � cov��i

�, �j
��, Cij

�̃ � cov��i
�̃, �j

�̃�, and Cij
��̃ � cov��i

�, �j
�̃�.

Similarly, the variance of a decoder that assumes that all neurons are
independent is given by the following:

� x̂
ind � �D��T �

1

g2�D�̃�T �
2

g
�D��̃�T, (41)

where DX shares the same diagonal elements with CX but is zero on the
off-diagonals and X � ��, �̃, ��̃�.

In the main text we quantify the relative decoding variance of the
independent versus “full” (i.e., correlated) network via the fraction
� x̂

ind/� x̂. Values of this fraction greater than one indicate that the net-
work produces correlated spike times that reduce decoding variance
versus the “shuffled,” independent case; we refer to it as the “reduc-
tion in decoding variance.” To compute this quantity, we performed
eight-hundred 2 s runs of the network, with a new noise realization on
each trial, calculated the covariance matrices for each trial, averaged
the covariance matrices across all trials and used the averaged matri-
ces in Equations 40 and 41.

For the homogeneous network considered below, we can obtain a
simple estimate for the reduction in decoding variance. Suppose that
�k � a for k � 1,.., N/2 (stimulus-activated population; see main text)
and �k � �a for k � N/2 
 1, …, N (stimulus-depressed population;
see main text) for some constant a. Then �k � b for k � 1,.., N/2 and
�k � �b for k � N/2 
 1,…, N for some constant b related to a.
Assume that the variance of each neuron is very close to the average
variance over the population, i.e., that the diagonals of each of the
above covariance matrices are constant. Dividing each of the above
covariance matrices by this average variance �X yields a matrix with
ones on the diagonal and the various pairwise correlation coefficients
on the off-diagonals. Assuming that the pairwise correlation coeffi-
cients are close to their average values, the above matrices have a very
simple form:

CX � �X�
1 aX aX . . . cX cX . . . cX

aX 1 aX . . . cX cX . . . cX

. . .

. . .
cX cX . . . cX 1 dX . . . dX

. . .

. .
cX cX . . . cX dX . . . dX 1

� ,

(42)

where aX (dX) is the mean correlation coefficient for the stimulus-
activated (stimulus-depressed) population computed using kernel X,
and cX is the mean correlation coefficient between the two different pop-
ulations using kernel X. With this approximation, the elements of the
above variance calculations take a simple form:
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�C��T � ��a2
N �
N2 � 2N

4
�a� � d�� �

N2

2
c��

�C�̃�T � ��̃b2
N �
N2 � 2N

4
�a�̃ � d�̃� �

N2

2
c�̃�

�C��̃�T � ���̃a2
N �
N2 � 2N

4
�a��̃ � d��̃� �

N2

2
c��̃�

,

(43)

and

�D��T � ��a2N
�D�̃�T � ��̃b2N
�D��̃�T � ���̃abN

. (44)

Thus, an approximation to the reduction in decoding variance obtained
by recording from only a subset of the full network is given by using the
above formulae in �x̂

ind/�x̂, because the correlation coefficients do not vary
with N. However, if we assume that the dominant contribution to the
variance calculation is given by those terms involving the C� matrix
(which is what we find numerically, compare Fig. 11a), then an even
simpler formula can be obtained:

� x̂
ind

�x̂
�

1

1 �
a� � d�

2
� N

a� � d� � 2c�

4

. (45)

Computing correlation coefficients. The reported correlation coeffi-
cients between cells i and j are computed by convolving spike trains with
a double-exponential function, so that �� � � � ��t�:

CCij �
�
n�1

T

��i
��tn� � �� i

���� j
��tn� � �� j

��

	�
n�1

T

��i
��tn� � �� i

��2 	�
n�1

T

�� j
��tn� � �� j

��2

, (46)

where T is the total number of time points taken for a given simulation, tn

is the nth time point, and ��� � T �1�
n�1
T ���tn� is the sample mean. To

remove the covariance in firing rates of the cells, the correlation coeffi-
cients were corrected by subtracting off the correlation coefficient ob-
tained from shift-predictor data (shifted by one trial). Since our networks
consist of two populations of neurons, i.e., those with a positive value for
� and those with a negative value for �, the correlation coefficients re-
ported in the histograms are the population-averaged correlation coeffi-
cients for each trial simulation of the network. To generate the
histograms, we ran 800 two-second simulations of the network with the
same box function input. The only thing that varied between the simu-
lations was the realization of the white background noise.

Computing Fano factors. The Fano factors for each neuron were com-
puted by binning the spike times into 20 ms windows and computing the
mean 
w and variance �w

2 of the spike count in a particular window over
800 repeated trials of the box function input stimulus. The Fano factor in
a particular window is then given by �w

2 /
w. For each neuron, the time
averaged Fano factor was computed by taking the mean over all windows.
We then averaged these values over all neurons in a given population and
report them in Figure 5.

Error metrics. Two measures of error quantify the network perfor-
mance. The first is the relative error between the signal and the estimate:

�x � x̂�2

�x�2
, (47)

where �f�2 � 	� 0
T�f�s��2ds and T is the simulation time. Relative error

is useful for comparing errors across signals that vary in magnitude. The
second error measure is the integrated squared error:

�
0

T

�x�s� � x̂�s��2ds. (48)

Voltage cross-correlograms and power spectra. To analyze the sub-
threshold voltages of cells in our network, we first truncated the mem-
brane potentials at �60 mV to remove the spikes and subtracted out the
temporal mean, i.e., V� m�t� � Vm�t� � N�1�

t�1
N Vm�t�, where N is the

total number of data points. Voltage power spectra for individual neu-
rons were then computed using MATLAB’s fft function. Cross-
correlations between two cells V� m1 and V� m2 were also calculated using
MATLAB’s xcorr function:

R12��� �
�
t�1

N��

V� m1�t � ��V� m2�t�

	�
t�1

N

V� m1
2 �t��

t�1

N

V� m2
2 �t�

, � � 0;

R12��� � R21� � ��, � � 0,

(49)

where � is the time lag (Lampl et al., 1999; Yu and Ferster, 2010). We then
subtracted off the cross-correlation for shift-predictor data (shifted by
one trial). Both the power spectra and cross-correlograms were then
averaged over one-thousand 800 ms simulations of the homogeneous
integrator network with the box function input.

Computing the spike-triggered error signal. The spike-triggered error of
Figure 5 was computed from eight-hundred 2 s simulations of the net-
work with a box function input (see below). For each simulation, we
computed the following:

e�t� � �T�x�t� � x̂�t��, (50)

where e � �N is the non-dimensional error each neuron is supposed to
be representing in its voltage traces. The error ek(t) was aligned to the
spike times for cell k and these traces averaged over all neurons in the
network. The shuffled spike-triggered error, computed by aligning ek(t)
to the spike times of cell k on a different trial, was then subtracted. This
removed the slow bias present in the original spike-triggered error. Last,
the shuffle-corrected spike-triggered errors were averaged over all trials.

Measuring population synchrony. The level of synchrony in the simu-
lated network was evaluated using a measure introduced by Golomb
(2007). With fk(t) as the instantaneous firing rate of neuron k, synchrony
is given by the following:

�2�N� �

�
 1

N�
k�1

N

fk�t�� 2�
t

� 
� 1

N�
k�1

N

fk�t��
t

� 2

1

N�
k�1

N


� fk�t��2�t � �
fk�t��t�
2

, (51)

where �…�t denotes time-averaging over the length of the simulation. To
estimate instantaneous firing rates, the spike trains were convolved with
a Gaussian kernel with SD 10 ms.

Scaling when varying the simulated network size. When varying the
simulated network size as in Figure 12, we scaled the connection
strengths of the network so that the total input to any cell in the network
remains constant as the network size is increased. In particular, for the
homogeneous integrator (A � 0) network tracking a one-dimensional
dynamical system where �k � a for k � 1, 2, …, N/2 and �k � �a for k �
N/2 
 1,…, N, we used the scaling:

a �
40

N
, (52)

g � c0

400

N
. (53)

Thus, both the connection weights and the synaptic gain parameter g
scale with 1/N. The factors of 40 and 400 above were chosen so that at
N � 400, �k � � 0.1 and c0 � g, which matches our earlier simulations of
our network when we fixed N at 400. With this scaling, the connection
strengths all scale the same way with N and the input c(t) remains con-
stant. To see this, recall that when A � 0 our network equations are given
by the following:
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V̇k �
Iion�Vk, w� k�

Cm
�

g

Tk

ad�k

T�� � ��t� � �k
T�� � hr�t� � �k

T
c�t�

Cmco
�

� ad

1

Tk
�k

T�� � �̃�t� �
�V

Cm
�k�t�, (54)

where Tk � �k
2/2, � � ��T�†T̃, and T̃ is a diagonal matrix with Tk on

the diagonal. Thus, we need to determine the scaling of the following:

Slow Connections : ad

g

Tk
�k

T�,

Fast Connections :
g

Tk
�k

T�,

Compensating Connections : ad

1

Tk
�k

T�,

Feedforward Weights : g
�k

T

Tk
,

Noise (external input) : �V.

First, we explore the term � which involves the pseudoinverse of the �T

matrix. In the case of the homogeneous integrator network, the pseudo-
inverse is simply given by ��T�k

† � � (Na)�1, because (�T) † �T � 1.

Thus, if we let a � 1/N as listed above, ��T�k
† � 1. �k � ���T�†T̃�k then

scales like 1/N 2. Using this fact, and recalling that g � 1/N, we can now
compute the scalings for all the connections in the network:

Slow Connections : ad

g

Tk
�k

T� � �1��N2/N��1/N��1/N� �
1

N
,

Fast Connections :
g

Tk
�k

T� � �1/N��N2/N��1/N� �
1

N
,

Compensating Connections : ad

1

Tk
�k

T� � �1��N2��1/N��1/N2� �
1

N
,

Feedforward Weights : g
�k

T

Tk
� �1/N��N2/N� � 1,

Noise (external input) : �V � 1,

where we used the fact that since ad and �V are constants, they scale like
1. Thus, the connection weights scale like 1/N. However, because each
cell in the network receives input from all N other cells, this scaling means
that the total input each cell receives remains constant as the network size
is varied.

Models and parameters. We use a neuron model due to Traub and
Miles (1995) and Hoppensteadt and Peskin (2001):

Cm

dv

dt
� �gNam3h�v�t� � ENa� � gKn4�v�t� � EK� � gL�v�t� � EL�

dm

dt
� 103��m�v��1 � m� � �m�v�m�

dh

dt
� 103��h�v��1 � h� � �h�v�h�

dn

dt
� 103��n�v��1 � n� � �n�v�n�,

where

�m�v� � 1.28
�v � 54�/4

1 � exp���v � 54�/4�
�m�v�� 1.4

�v � 27�/5

exp���v � 27�/5� � 1

�h�v� � 0.128 exp���v � 50�/18� �h�v� � 4.0
1

1 � exp���v � 27�/5�

�n�v� � 0.16
�v � 52�/5

1 � exp���v � 52�/5�
�n�v� � 0.5 exp���v � 57�/40�,

and

Cm � 10�3 mF/cm2 gNa � 100 mS/cm2 gK � 80 mS/cm2

gL � 0.2 mS/cm2 ENa � 50 mV EK � � 100 mV
EL � � 67 mV.

The factor of 10 3 in the gating variable equations comes from conversion
of time units from milliseconds to seconds. Other neuron models, in-
cluding an exponential integrate-and-fire model, were used with similar
results.

Other parameters held constant in our simulation are as follows:

ar � 200 Hz ad � 50 Hz
Vth � � 48 mV.

The decay rate of ad � 50 Hz yields a decay time constant of 20 ms for the
slow, double-exponential function synapses in our network. This decay
time constant is in the range of those observed in inhibitory and excit-
atory postsynaptic currents (Xiang et al., 1998; Rotaru et al., 2011). The
rise rate ar � 200 Hz sets the decay time scale for the fast, exponential
synapses. These synapses have a decay time constant of 5 ms, as observed
in inhibitory cells in rat somatosensory cortex (Salin and Prince, 1996).

Simulations. Simulations were written in MATLAB. The Euler–
Maruyama method was used to integrate the stochastic differential equa-
tions using a time step of 0.01 ms. Simulations with time steps of 0.005
and 0.02 ms yielded similar results. Spikes were counted as voltage cross-
ings of a threshold of �48 mV from below. The initial voltages for the
network were chosen randomly, whereas the channel variables were set to
their steady-state values given the fixed initial voltage. In particular, the
initial voltages were chosen from a Gaussian distribution with a mean of
EL and a SD of 9 mV. The initial state for the signal and the decoded
estimate were both set to zero, i.e., x�0� � x̂�0� � 0.

Though we have provided the most general form for the network
tracking any linear dynamical system, throughout the majority of the
paper, we focus on the case of a homogeneous network integrating a
one-dimensional signal. That is, we set J � 1, A � 0, and �j � a for j �
1,…, N/2 and �j � �a for j � N/2 
 1,…, N, where a is a constant. The
only exception to this is in the examples in Figure 1, where we set A �
�ad to remove the slow synapses in the network dynamics. We also set
c0 � g for all figures except Figure 12.

We focus on the network integrating one of two different signals. The
first varies between two constant values (“box” input):

c�t� � � 0.08 
A/cm2 for t0 	 t � t0 � 50
0 
A/cm2 otherwise ,

where t0 � 100 ms for Figure 4 and t0 � 0 ms for all subsequent figures.
The second is a frozen Ornstein–Uhlenbeck (Uhlenbeck and Ornstein,
1930) signal given by the following:

dc

dt
� �

c

�
�

�

�
��t�, (55)

where �(t) is a frozen white noise realization with zero mean and unit
variance, � � 10 ms, and � � 0.008 
A/cm � s 3/2.

Results
Spike-based computation with conductance-based neurons
Our goal in this work is to design a network to carry out an
arbitrary linear computation on an input over time, and to do so
with neurons that generate spikes via realistic ionic currents and
synaptic timescales. Writing the computation as a linear dynam-
ical system, ẋ � Ax 
 input, where A is a constant matrix and x is
the signal we desire to compute; Boerlin et al. (2013) were able to
construct a recurrent spiking network to accomplish this goal.
The strategy was to arrange connections so that the voltage of
each neuron would be proportional to a difference between the
currently decoded network output and the ideal computation,
trigger spikes when this error exceeds a threshold, and commu-
nicate these spikes (and hence the error) to other neurons in the
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network. Thus, every action potential occurs at a precise time that
serves to reduce the “global” computational error across the net-
work. We refer to this framework as spike-based computation.

In this previous work, the authors successfully mapped the
requirement of each spike reducing output error onto a network
of recurrently connected linear integrate-and-fire neurons with
instantaneous synaptic dynamics. However, biological networks
have slower synaptic kinetics, and have ionic currents with non-
linear dynamics that determine spike generation. Here, we will
show how these two aspects of neurophysiology in fact can fit
naturally with spike-based computation.

In particular, we want to design a network of neurons such
that an estimate x̂(t) of a J � 1 vector of signal variables x(t) can
be linearly read out from the spike times of the network. As above,
we assume the signal variables obey a general linear differential
equation ẋ � Ax 
 input. Thus, A is a J � J dimensional matrix
and the input is J-dimensional. The entries of the matrix A deter-
mine the type of computation the network is asked to perform on
the J-dimensional inputs, which we will denote as c(t). For exam-
ple, if A is the zero matrix, then the network integrates each
component of the input over time. Our network will consist
of N neurons with output given by the N spike trains, written as
�k�t� � �

j
��t � tj

k� k � 1,…, N.

Our first goal is to incorporate synapses that have finite tem-
poral dynamics. The synaptic dynamics enter through the defini-
tion of a decoder that provides an estimate for the variable x.
This decoder includes a linear transformation of the network
spike trains �(t) via a J � N linear decoding matrix �. The
spike trains �k are first convolved with the synaptic filter �(t)
(� � ��t� � ���s���t � s�ds), which we take to be a standard
double-exponential function. With these synaptic dynamics in
this decoding, an estimate of the computed variable is given by
x̂�t� � �� � ��t�. The � matrix will determine the connectivity
structure of the network (see Materials and Methods, Optimal
spike-based computation with finite time-scale synapses).

Given this decoder, we now follow (Boerlin et al., 2013) to
derive the network dynamics and connectivity. The key step is
requiring that neurons in the network only spike to reduce the

integrated squared error between the signal and its decoded esti-
mate. As shown in Materials and Methods, this has the conse-
quence that each neuron in the network has a voltage that is
equivalent to a weighted error signal, i.e., the voltage of the kth

neuron is given by Vk�t���k
T�x�t� � x̂�t�� (�k

T is the kth column of
the N � J matrix �T). Each neuron then fires when its own inter-
nal copy of the error signal exceeds a set threshold value. The
optimal network that carries out this spike-based computation is
given by a network of “pure integrate-and-fire” neuron models
that directly integrate synaptic inputs without any leak or intrin-
sic membrane currents; however, a linear leakage current can be
added to the voltage dynamics for each neuron with minimal
disruption of the network dynamics (Boerlin et al., 2013). In this
case, the voltage dynamics are given by the following:

CmV̇ � �gL�V � EL� � gCm�f� � hr�t� � Dc�t�, (56)

where �gL (V � EL) represents the leakage current. Each neuron
receives synaptic input from other cells in the computing net-
work as well as external input. The external input is given by
Dc(t), where D is a N � J matrix of input weights, and c(t) is the
J � 1 vector of inputs introduced above. The synaptic input is
given by gCm�f� � hr�t�, where �f is the network connectivity
matrix, gCm scales the strength of the synaptic input, and hr(t) is
a single exponential synapse (see Materials and Methods, Opti-
mal spike-based computation with finite time-scale synapses for
details).

Figure 1a illustrates the resulting network structure in the
simplest possible case. This is a network consisting of a single
neuron that receives stimulus input, as well as input from recur-
rent (here, autaptic) connections, and a decoder x̂ that reads out
the computation from the single neuron’s spike train. Figure 1b
shows the resulting network behavior. For the examples in this
figure, the network performs leaky integration on a single-
variable, square wave input (i.e., the matrix A is simply �ad). The
upper plots show the decoded signal x̂�t� from the spiking output
of a single neuron (red traces) plotted against the actual desired
signal x(t) (dashed black lines) along with the neurons’ voltage

Figure 1. Leaky integration with a single biophysical neuron. a, Diagram illustrating the connectivity of a “network” consisting of a single neuron (N � 1). The diagram shows that the neuron
receives stimulus input as well as input from synaptic connections to itself, and the decoder x̂�t� “reads-out” the computation from the spike trains of the network. b, Schematic of how the network
is derived in the case of a single neuron. The upper plots show the decoded signal x̂�t� (red traces) plotted against the actual signal x(t) (dashed black lines) along with the neurons’ voltage trace
(bottom). For the examples in this figure, the network is performing leaky integration on a box function input. In the first column, we illustrate the output of a single neuron from the LIF framework
of Boerlin et al. (2013). In the second column, we alter how the stimulus information is read-out from the spike-times of the network (first arrow) which results in an LIF network without
instantaneous (�-function) synaptic dynamics. Going from the second to third columns, we add spike-generating, HH-type ionic currents to the voltage dynamics. The fourth column illustrates how
the addition of the compensating synaptic kernel affects the output of the decoder.
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trace (bottom). In the first column, we illustrate the output of a
single neuron from the LIF network of (Boerlin et al., 2013).
Comparing the red decoded signal and the actual desired signal
x(t) demonstrates the principle of spike-based computation in
action: when the decoded signal deviates too far from the desired
signal, an additional spike is triggered, and the process repeats.

In the next column, we replace the exponential kernel used for
decoding the network spike trains with a double-exponential
function (first arrow), as described above, which results in an LIF
network without instantaneous (�-function) synaptic dynamics.
Next, as real neurons contain a variety of intrinsic currents, we
replace the linear leakage current with generic HH-type ionic
currents:

CmV̇ � Iion(V) � gCm�f� � hr�t� � Dc�t�, (57)

where Iion(V) represents the sum of all ionic currents and also
depends on the corresponding dynamical gating variables. The
third column in Figure 1b illustrates how the network behaves
with this change to the intrinsic voltage dynamics (labeled as
adding “spike currents”).

In general, the addition of such ionic currents to voltage dy-
namics will disrupt the ability of the network to accurately per-
form a given computation. This is because the large excursions of
the membrane potential during the action potential will cause the
voltage of the individual neurons to deviate from their derived

optimal relationship with the error. However, in Materials and
Methods, Compensating for spike-generating currents, we show
that incorporating a new synaptic kernel in both the voltage and
decoder dynamics allows the network to effectively compensate
for the inclusion of ionic currents, so that it can perform the
required computation with improved accuracy compared with
the network where these compensation currents are not in-
cluded. This new synaptic kernel, which we denote by �̃(t), is
constructed to counteract the total change in voltage that occurs
during a spike. We provide details on how this kernel is derived,
as well as how it is obtained for our simulations in Materials and
Methods, Compensating for spike-generating currents and Ob-
taining the compensation kernels, and in Figure 2. The resulting
voltage dynamics and decoder are as follows:

CmV̇ � Iion(V) � gCm�f� � hr�t� � Cm�c� � �̃�t� � Dc�t�,

(58)

x̂ � W � ��t�, (59)

where �c is the connectivity matrix for the compensating synap-
tic connections and W(t) is the new decoding kernel (given in
Materials and Method, Compensating for spike-generating cur-
rents). The final column of Figure 1b shows how the addition of
this compensation current affects the output of a single neuron.

Figure 2. Obtaining the compensating synaptic kernels. The compensation kernel �(t) was obtained by stimulating a single model neuron with a fluctuating (OU) current and keeping track of
the times tj that the voltage crossed a threshold from below (black dashed line in first panel). For each spike, we then obtain an action potential waveform VAP

j �t� for tj 	 t � tj 
 ts, where ts will
set the width of the �(t) kernel (we take ts � 4 ms). We then sum these traces to obtain the average waveform of the action potential VAP(t) (black dashed line in the second panel). The kernel �(t)
is then the temporal derivative of this averaged action potential waveform (third panel). �(t) represents an approximation to the total change in voltage of the neuron during an action potential.
Last, �(t) is convolved with an exponential function to obtain the synaptic kernel �̃(t) (last panel). Note that �̃(t) changes sign but also very rapidly goes to zero as time goes on. Inset in the last panel
shows the �̃ kernel over a shorter period of time.
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For the single neuron case, this adds large fluctuations in the
decoder output. Thus, compared with the original effects of add-
ing the spike-generating currents, it appears that the compensa-
tion current can decrease accuracy. However, our simulations
show that this effect only occurs for very small (�4 neurons)
networks. For larger networks, compensation allows the network
to perform the computation with a high degree of accuracy, as we
will show.

To show how the framework generalizes to larger networks,
we plot the output of an example network of N � 4 neurons. For
this network, we take �1,2 � a, whereas �3,4 � �a, where a is a
constant. The output weights � also determine the connectivity
structure of the network. This particular choice of � will lead to a
network with all-to-all connectivity. The matrix D that scales the
stimulus input also depends on �: the network structure that
allows the system to perform accurate spike-based computations
requires that D � �T (see Materials and Methods, Optimal spike-
based computation with finite time-scale synapses and Compen-
sating for spike-generating currents). This implies that neurons 1
and 2 (3 and 4) will be depolarized (hyperpolarized) when c(t) is
positive. The diagram in Figure 3a shows the structure of this
network.

We next explore the output of our example four-cell network.
Here, the input to the network is a simple square-wave function
of time, taking a fixed positive value from 100 to 200 ms and a
fixed negative value from 200 to 300 ms. Figure 3b shows the
resulting spike rasters. The individual spike times are highly ir-
regular, and the upper (lower) two cells appear to be more active
when the input is positive (negative). In Figure 3c, we again plot
the network estimate x̂�t� (red) against the actual signal x(t)
(black dashed). In addition, we also plot what the network esti-

mate would be had the compensating synapses not been included
(gray trace). This shows that compensation indeed corrects for
systematic biases. Last, Figure 3d plots the voltage trace for an
example neuron. There are two key points to take away from this
final panel. The first is that the synaptic input is not overwhelm-
ing the intrinsic spike-generating currents. Indeed, one way to
force the network to behave like an IF network would be to in-
crease the synaptic gain so that the synaptic input is much larger
than the intrinsic currents; this is clearly not the case here. The
second point to take away from the plot is that the membrane
potentials and spike times of individual neurons appear highly
irregular.

The above examples, in implementing Equations 58 and 59,
used a special choice for the matrix A that defines the linear
computation implemented by the network; here, we set A � �ad

so that the connectivity matrix for the double-exponential func-
tion synapses is zero (see below and Materials and Methods,
Compensating for spike-generating currents). For an arbitrary
choice of A, the network dynamics are given by the following:

CmV̇ � Iion(V) � gCm��s� � ��t� � �f� � hr�t��

� Cm�c� � �̃�t� � Dc�t� � 	V��t�, (60)

where �s represents the slow (compared with the exponential fast
synapses) synaptic connectivity matrix. This effectively corre-
sponds to the decoded estimate x̂�t� being fed back into the net-
work, which allows the network to perform more general
computations on inputs. The parameter g scales the strength of
both the slow and fast synapses in the network.

Lastly, in Equation 60 we also added a white noise current
(�V ��t�), drawn independently for each cell, to our voltage evo-

Figure 3. Leaky integration with a network of biophysical neurons. a, Diagram of an example network of N � 4 cells performing leaky integration. In the network, the upper two cells (magenta)
are excited by positive stimulus input (indicated by the red lines), whereas the bottom two cells (green) are depressed (indicated by the blue lines). Each neuron receives the stimulus input as well
as synaptic input from every other neuron in the network. The spike trains of all four neurons are used in generating the network estimate x̂�t�. b, Raster plot from the example network of four
neurons. The input to the network in this case is a simple box function, with a fixed positive value from 100 to 200 ms and a fixed negative value from 200 to 300 ms. c, Network estimate x̂�t� (red
trace) plotted against the actual signal x(t) (black dashed trace). The gray trace shows the estimate obtained if the compensating kernel was not included in the network dynamics. d, Voltage trace
for the topmost neuron in the example network (top row of the raster plot in b).
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lution equations. This represents random synaptic and channel
fluctuations, as well as noisy background inputs, but as we will
see below, also serves a functional role in decreasing network
synchrony.

Homogeneous integrating network
For the remainder of the paper, we focus on the case of a network
of neurons with spike-generating currents based on the Miles–
Traub model (Traub and Miles, 1995; Hoppensteadt and Peskin,
2001; Materials and Methods, Models and parameters) which
contains HH-type sodium, potassium, and leakage ionic cur-
rents. Although we use a specific model, similar results were
obtained with different neuron models, e.g., a fast-spiking in-
terneuron model (Erisir et al., 1999) and different sodium, potas-
sium, and leakage current kinetic and biophysical parameters
taken from Mainen et al. (1995). We will initially show how such
a spiking network can integrate a one-dimensional stimulus
input. In terms of the notation previously introduced, this corre-
sponds to the case where the number of inputs, or dimensional-
ity, J � 1 and the matrix A � 0. We choose the input connections
such that �k � a for one-half of the cells in the network, k � 1,…,
N/2, and �k � �a for the remaining one-half, k � N/2 
 1,…, N.
Thus, the network has all-to-all connectivity (recall that the net-
work connectivity matrices depend on �, for example,
�f � �T�); the input to individual neurons within the “first” or
“second” half of the network differs only via their (independent)
background noise terms. With this configuration, one-half of the
network will be depolarized when the stimulus input c(t) is pos-
itive, whereas the other one-half will be hyperpolarized. We will
refer to the depolarized half as the “stimulus-activated” popula-
tion and the hyperpolarized half as the “stimulus-depressed”
population. Note that this distinction does not refer in any way to
excitatory versus inhibitory neurons, as in our formulation neu-
rons can both excite and inhibit one another, a point that we will
return to later. The addition of voltage noise in this case is critical
as the network is very homogenous and will synchronize in the
absence of noise. We systematically explore the dependence of
network performance on the noise level (as well as other param-
eters) in a later section.

For purposes of illustration, the network was driven with two
different types of inputs c(t), a box function and a frozen random
trace generated from an Ornstein–Uhlenbeck (OU) process
(Uhlenbeck and Ornstein, 1930; Fig. 4a; see Materials Methods
for details). The remainder of Figure 4 shows the resulting output
for a 400 neuron network, integrating a box input in a–e and
integrating the frozen random trace in f–j. Figure 4a and f plot the
different inputs, whereas b and g show the raster plots for all 400
neurons. The neurons spike fairly sparsely and highly irregularly.
The network estimates, x̂�t� (red trace), along with the true signal
x(t) (blue trace) are shown in Figure 4c and h. The network is able
to track both the box and OU inputs with a high degree of accu-
racy: the relative error (Eq. 47), between the estimate and the
actual signal is 0.07 for Figure 4c and 0.07 for h. To illustrate the
improvement in accuracy due to the synaptic inputs that com-
pensate for spike-generating currents (see Materials and Meth-
ods, Compensating for spike-generating currents), we also plot
signal estimates from a network where this compensation was not
included (gray traces). For these estimates, the relative error is
0.60 in Figure 4c and 0.40 in h; thus, our compensating synapses
yield an almost 10-fold increase in accuracy.

Next, we show the population-averaged firing rates for the
stimulus-activated (magenta) and stimulus-depressed popula-
tions (green) in Figure 4d and i. Figure 4d shows that in the

absence of input, the populations maintain persistent activity for
�500 ms. This is consistent with observations of neural activity
during working memory tasks (Jonides et al., 2008). However in
Figure 4i, the firing rates of the populations fluctuate depending
upon the input. Last, Figure 4e and j plot the average autocorre-
lation functions for the spiking activity of neurons in the different
populations. These display a clear refractory effect, and small
tendency to fire in the window that follows. Differences be-
tween the stimulus-activated and stimulus-depressed popula-
tions, especially for the box function input, are likely due to
the different firing rates and inputs that the two populations
receive. We explore these spiking statistics further in the sec-
tion that follows.

Dynamics underlying network computation
We next show that our network displays two key features of cor-
tical networks: the spike times of the network are irregular and
Poisson-like, and there is a tight balance between excitation and
inhibition for each neuron in the network. Figure 5 shows re-
sponses from the homogeneous integrator network introduced
in the previous section with a box function input stimulus. The
irregularity of spike times is illustrated by the voltage trace of an
example neuron in the network, in Figure 5a. To quantify this
irregularity, we generated a histogram of the interspike intervals
(ISIs) during the period of zero input where the firing rates are
nearly constant (Fig. 5b). To generate the histogram, we sim-
ulated the response of the network during 800 repetitions of
the box function input. The only thing that varied between
trials was the realization of the additive background noise
current. The ISIs follow an almost exponential distribution,
see inset, and the coefficient-of-variation (CV) is 0.86. Thus,
the spiking in our network is, by this measure, less variable but
not far from what we would expect for Poisson spiking (which
would yield a CV � 1) or levels of variability that have been
observed in cortical networks (Shadlen and Newsome, 1998;
Faisal et al., 2008).

We also explore the trial-to-trial variability of individual neu-
rons in the network. Figure 5c shows a raster plot with the spike
times of two example neurons over 20 different trials. The upper
(lower) dots correspond to the spike times of a neuron from the
stimulus-activated (stimulus-depressed) population. One can
see that the spike times of individual neurons vary considerably
between trials. To quantify this, we computed the time-averaged
Fano factors for each neuron in the network (Materials and
Methods, Computing Fano factors). The Fano factor gives a mea-
sure of the trial-to-trial variability of individual neurons. For the
stimulus-activated population, the time averaged Fano factor,
averaged across the population, is 0.515 � 0.003, whereas for the
stimulus-depressed population, it is 0.761 � 0.002. For a time
homogeneous Poisson process, one would expect a Fano factor of
1. Thus, by this measure, neurons in both populations display
variable spiking from trial-to-trial, but less variable than what
would be expected from a Poisson process.

By examining the total excitatory and inhibitory current that
each neuron receives, we can check whether the network is in the
balanced state (van Vreeswijk and Sompolinsky, 1996; Haider et
al., 2006; Okun and Lampl, 2008). To do this, we compute the
total positive (negative) input a cell receives. A complication here
is that the �̃(t) kernel changes sign; to deal with this, we rewrote
the kernel as a difference of two separate, positive kernels, i.e.,
�̃(t) � �̃p(t) � �̃n(t), and computed the resulting current from
each kernel. We also ignore the noisy background current for
visualization purposes as similar results were obtained when the
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noise is included. Figure 6a shows the total excitatory (red) and
inhibitory (blue) current for an example neuron in the network.
Note that although the balance is imperfect (as shown by the
inset), the two currents do appear to track each other fairly well.

Figure 6b shows the total excitatory (red) and inhibitory (blue)
current averaged over all neurons in the network. This shows that
the currents are tightly balanced at the level of the entire network,
which is typically what one finds when deriving so-called bal-

Figure 4. Homogeneous integrator network. We show the output of a network of N � 400 cells where �k � 0.1 for k � 1,…,N/2 (stimulus activated population) and �k ��0.1 for k � N/2

 1,…, N (stimulus depressed population), g � 0.4 mV, �V � 0.08 
A/cm2 �	s, and c0 � g. All other parameters are given in Materials and Methods, Models and parameters. The output
of the network with the box function input stimulus are shown in a–e, whereas f–j show the output with the OU stimulus input. a, f, Plot of the stimulus input c(t) into the network. b, g, The raster
plots of the 400 cells in the network. The top 200 rows are the stimulus-activated population, whereas the bottom 200 rows are the stimulus-depressed population. c, h, Plot of the network estimate
(red) against the actual signal (blue) along with the estimate obtained if compensation was not included (gray). d, i, Plot of the average firing rates for the stimulus activated (magenta) and stimulus
depressed (green) populations. e, j, The population averaged autocorrelograms.
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Figure 5. Neurons in the network display irregular spiking. a, Example voltage trace from a single neuron from the homogeneous integrator network with the box function input as in Figure 4.
The dashed line represents the threshold used for spike detection. b, Histogram of the interspike intervals of the network during the period of zero stimulus. The inset shows the same data replotted
with the y-axis on a log scale. The coefficient of variation in this case is 0.86. c, Raster plot of the spike times of two example neurons (one from each population) on 20 different simulated trials. The
magenta (green) dots correspond to the spike times of a neuron from the stimulus activated (stimulus depressed) population. To quantify the trial-to-trial variability, the time averaged Fano factor
was computed for each neuron in the network, and then averaged over all cells in each population. This gave 0.515 � 0.003 for the stimulus-activated population and 0.761 � 0.002 for the
stimulus-depressed population.

Figure 6. Neurons in the network display a tight balance between excitation and inhibition, and spike only when the error between the estimated and actual signal is large. a, Total excitatory
(red) and inhibitory (blue dashed) currents (ignoring background noise) into an example neuron from the homogeneous integrator network with the box function input as in Figure 4. Inset, A
blow-up of a particular time period to show that currents track each other fairly well. b, Total excitatory (red) and inhibitory (blue dashed) currents averaged over all 400 neurons in the network. Inset
shows that, on average, the currents are nearly identical, and thus balanced. c, Average projected error signal aligned to the spike times of each neuron in the network, i.e., the spike-triggered error
signal (see Materials and Methods, Computing the spike-triggered error signal). The error is largest around the time of a spike indicating that, on average, neurons spike when this projected error
signal is large.
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anced networks (van Vreeswijk and Sompolinsky, 1996; Brunel,
2000; Lim and Goldman, 2013; Ostojic, 2014).

Next, we demonstrate that, even after altering the synaptic
time scales and including spike-generating currents, neurons in
the network still perform predictive coding by firing when their
projected error signal is large. We computed the spike-triggered
error (STE) for the network by aligning the projected error signal
for each neuron k (�k�x�t� � x̂�t�� to that neuron’s spike times,
averaging across all spike times and then averaging over all neu-
rons (Materials and Methods, Computing the spike-triggered er-
ror signal; Fig. 6c). The STE is indeed largest at the time of the
spike and rapidly decreases right after the spike, indicating that
spikes do in fact decrease the error. The oscillatory behavior of the
STE is indicative of the fact that there is some amount of syn-
chrony in the spike times of the network.

Signatures of spike-based computation are also present in
the subthreshold membrane potentials of cells in our network.
First, Figure 7a shows the trial-averaged cross-correlogram
(see Materials and Methods, Voltage cross-correlograms and
power spectra) between the subthreshold voltages of two ex-
ample cells in the stimulus-depressed population (blue solid
trace) and two example cells in different populations (red
dashed trace). The voltage traces of cells within the same pop-
ulation appear to be correlated over short time lags, as we
expect from the fact that neurons in the same population re-
ceive highly similar synaptic input. Meanwhile, voltages of
cells in different populations are anti-correlated. Thus, cells in
different populations can be differentiated via correlations in
their subthreshold voltages. Next, we explore the voltage sta-
tistics of single cells. Figure 7b shows the voltage power spec-
trum of an example cell in the stimulus-depressed population
(solid trace). For comparison, the power spectrum of an iso-
lated neuron that only receives background noise input is
shown in the dashed trace. It appears that noise input drives

the peak in the power spectrum �40 Hz, whereas the fast
predictive coding implemented by the feedforward input and
lateral connections is responsible for the remaining peak �150
Hz (Fig. 7c gives a closer view of this second peak). The pres-
ence of this second peak is therefore another prediction of the
spike-based predictive coding framework.

Network creates “good” correlations that reduce
decoding variance
We now explore the structure of correlations that emerge among
the spikes of different cells in the network, and whether these
correlations are beneficial or harmful to the network’s encoding
of an input that has been integrated over time. Specifically, we ask
whether these coordinated spike times increase or decrease the
variance of the decoded signal around its mean value. As shown
in Materials and Methods, Decoding variance and approxima-
tions, the variance of the decoded signal is given by the following:

var� x̂� 
 �x̂ � �C��T �
1

g2�C�̃�T �
2

g
�C��̃�T,

where Cij
� � cov��i

�, �j
��, Cij

�̃ � cov��i
�̃, �j

�̃�, and Cij
��̃ � cov��i

�, �j
�̃�

are the average covariance matrices of the spike trains convolved
with the two synaptic kernels, i.e., �Y � � � Y�t�, Y � ��, �̃�.
This quantity measures the variability of the network estimate
around its average value; lower values of this variance correspond
to highly repeatable network estimates from one trial to the next.
If the neurons in our network were independent, then the off-
diagonal terms in these covariance matrices would all be zero.
Thus, the variance of an independent decoder �x̂

ind would have the
same form as the above equation, except that the off-diagonal
terms of the covariance matrices would be set to zero. The ratio
�x̂

ind/�x̂ measures the reduction in decoding variance caused by the
structure of pairwise interactions between neurons in the net-

Figure 7. Error signal affects the correlation of the subthreshold voltage activity in the homogeneous integrator network with the box function input. a, Trial averaged cross-correlation between
the subthreshold voltage activity of two cells in the stimulus-depressed population (blue solid trace) and two cells in different populations (red dashed trace). Cells in the same population (different
populations) show correlated (anticorrelated) voltage activity over short time lags. b, Trial averaged voltage power spectrum for an example neuron in the stimulus-depressed population (blue solid
trace) and for an isolated cell with only background noise input (dashed trace). c, Change in power (expressed in decibels) that occurs when synaptic connections are included (logarithm base 10 of
the solid trace in b divided by the dashed trace). Recurrent inputs contribute to the peak in power �150 Hz.
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work. The larger this ratio is, the greater the benefit of pairwise
correlations between cells. If the neurons in our network were
indeed independent, then this ratio would be 1.

How do correlations affect decoding variance in the homoge-
neous integrator network? For both of the different inputs, the
structure of pairwise interactions between neurons causes an ap-
proximately fivefold decrease in the variability of the network
estimate: for the box function input, the reduction in decoding
variance is 5.0, whereas for the OU input, it is 5.8. To gain insight
into how the correlation structure of the network causes this,
Figure 8 plots the population-averaged correlation coefficients
and cross-correlograms for the homogeneous integrator net-
work. We first focus on the case of the box input function. In
Figure 8a we show a histogram of the population-averaged pair-
wise correlation coefficients for both the stimulus-activated (ma-
genta) and stimulus-depressed (green) populations. Neurons in
both populations appear to have weak (and slightly negative)
pairwise interactions with one another on average: the mean
correlation coefficient for the stimulus-activated (stimulus-
depressed) population is �1.3 � 10�3 (�0.3 � 10�3). On the
other hand, Figure 8b shows that the pairwise correlation coeffi-
cients between cells in the two different populations are small but
positive, with a mean of 3.3 � 10�3. Thus, the network reduces
decoding variance by creating negative correlations between neu-
rons that represent the same aspect of the stimulus, and positive
correlations between neurons that represent different aspects of the
stimulus. From a coding perspective, these represent good correla-
tions as the negative correlations between cells in the same popula-
tion act to reduce redundancy, while the positive correlations across
populations allow for some of the background noise to be cancelled
out when the estimates from two populations are subtracted (Aver-
beck et al., 2006; Hu et al., 2014). This can also be seen in the cross-
correlograms of the different populations, Figure 8, c and d.

The situation is very similar for the OU stimulus input as
shown in Figure 8e–h. There are slight differences in that the

correlation coefficients are more broadly distributed, Figure 8e,
and the correlation structure of the stimulus-activated and
stimulus-depressed populations are more similar than for the
box function stimulus. This is likely due to the fact that, with the
OU stimulus, the two populations receive a more similar range of
inputs over time.

We have shown that the structure of pairwise interactions
between neurons in the network acts to greatly reduce the vari-
ability of the network estimate of the underlying computation on
a stimulus input. This already reveals a difference between this
framework and the underlying assumptions of a rate model, in
which neurons in the network are assumed to be statistically
independent. As such, one could shuffle the spiking output of
individual neurons from different trials and the rate-based com-
putation would suffer no loss in accuracy. However, for the pre-
dictive coding network, it was shown that the structure of
interactions between spike trains for individual neurons from
trial to trial is important to the accuracy of the desired com-
putation (Boerlin et al., 2013). To give a more direct illustra-
tion of this effect with our current network, we explored how
the relative error between the decoded network estimate and
the actual signal varied as we replaced an increasing number of
spike trains with variations recorded from separate trials
(“shuffled” trains).

Figure 9a plots the average relative error between desired (x)
and network-decoded (x̂�t�) signals (see Materials and Methods,
Error metrics) as a function of the number of shuffled spike
trains, for the box function input. As expected, the error increases
with the number of shuffled trains and reaches its maximum
when all spike trains are taken from separate trials. To see how the
shuffling affects the network estimate, we show an example de-
coded estimate (red) plotted against the true signal (blue) in Fig-
ure 9b when all spike trains are taken from the same trial. In
Figure 9c, we plot the estimate decoded from entirely shuffled
spike trains, where all are taken from different trials. As also

Figure 8. Structure of spike time correlations for the homogeneous integrator network. The structure of spike time correlations for the network with the box function input are shown in a–d,
whereas e–h show the structure of the network with the OU input. a, e, A histogram of the population averaged pairwise correlation coefficient between cells in the stimulus activated population
(magenta) and between cells in the stimulus-depressed population (green). In a, the mean correlation coefficient across trials for the stimulus-activated (stimulus-depressed) population is �1.3 �
10 �3 (�0.3 � 10 �3), whereas in e it is �1.0 � 10 �3 (�0.7 � 10 �3). b, f, A histogram of the average correlation coefficient between cells in the two different populations. In b, the mean
correlation coefficient across trials is 3.3 � 10 �3, whereas in f it is 5.0 � 10 �3. c, g, Plot of the population and trial averaged shift-predictor-corrected cross correlograms for the raw spike trains
of neurons within the stimulus activated (magenta) and stimulus-depressed (green) populations. d, h, Plot of the population and trial averaged shift-predictor-corrected cross correlograms for the
raw spike trains of neurons in the two different populations.
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expected from the previous section, the effect of shuffling spike
trains appears to increase the magnitude of the fluctuations of the
decoded estimate around its mean value. Figure 9d–f show that
the situation is similar with the OU stimulus, although it is more
difficult to see the effects on the decoded signal due to the fluc-
tuations in the OU signal itself.

Sensitivity to variation in synaptic strength and noise levels
Our previous examples of the behavior of the homogeneous in-
tegrator system made use of a particular choice of network pa-
rameters. We now explore the sensitivity of its performance to
changes in these parameters. In particular, we vary the strength of
the fast and slow synaptic input, g, and the strength of the added
voltage noise, �V. For the homogeneous integrator network,
these two parameters have the largest effect on performance as g
effectively scales the strength of synaptic connectivity between

neurons in the network and �V creates a level of heterogeneity in
the individual voltage dynamics that prevents cells from synchro-
nizing. We will show that the performance of our network is fairly
robust to changes in these parameters.

We quantify network behavior using several measures. As be-
fore, the accuracy of the computation is evaluated using the rel-
ative error between the network estimate and the true signal. To
assess the firing properties of the network, we compute a popu-
lation synchrony index introduced by (Golomb, 2007; see Mate-
rials and Methods, Measuring population synchrony), and the
coefficient of variation of the interspike intervals during periods
of zero stimulus input (for the box function input). We also track
the maximum population-averaged firing rate, to ensure that the
populations are not firing at unrealistically high levels. Because
similar results were obtained with the OU stimulus, we only re-
port these metrics for the box function stimulus.

Figure 9. Shuffling spike trains across trials distinguishes the network from a rate model. We explore how the decoding error varies as we decode the spiking output of the network where we
replace an increasing number of individual neuron spike trains with those from different trial simulations. The parameters are the same as those used in Figure 4. a, Plots of the relative error (Eq. 47)
as a function of the number of replaced spike trains for the network with the box function input. As the number of replaced spike trains is increased, so does the error. b, Plots an example network
estimate (red) against the actual signal (blue) when no spike trains have been replaced. c, Plots the network estimate (red) against the actual signal (blue) when all 400 spike trains are taken from
separate trials. Notice how replacing spike trains increases the variability of the estimate around its mean. For comparison, the relative error in b is 0.05, whereas in c it is 0.09. d–f, The same as a–c
except that the OU stimulus is used. The relative error in e is 0.09, whereas in f it is 0.18.
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We first investigate how the level of population synchrony
interacts with the accuracy of the network and neuronal firing
rates. Figure 10a plots the population synchrony index as a func-
tion of the synaptic gain g for three different values of the noise
strength. The population synchrony has a U-shaped dependence
on g; this is easiest to see at the smallest noise level. When the
population synchrony is high, the relative error is large (Fig. 10b)
and firing rates approach unrealistic levels (Fig. 10c). Thus, de-
synchronizing the firing dynamics of individual neurons in the
network by increasing the noise to moderate levels improves
network accuracy. Our interpretation is that moderate noise dis-
tributes the computation more efficiently among individual neu-
rons. If the noise is too small, then individual neurons behave too
similarly and eventually synchronize, effectively reducing the di-
mensionality of the network and also the computational power.
When the noise is too large, the computation is overpowered by
the noise.

Figure 10b plots the relative error between the network esti-
mate and the true signal as a function of g for three different noise
levels. As in Figure 10a, for the first two noise levels (blue and
magenta traces), the error appears to display an almost U-shaped
dependence on g, indicating that there is an optimal choice for g
that minimizes the error for each noise level. This value of g also
corresponds to the lowest value of the population synchrony in-
dex. However, for the largest noise level (red trace), the error
monotonically decreases as g is increased. This could be indicative
of the fact that, for this noise level, the population remains fairly
desynchronized for a wide range of g values. The effects of increasing
the noise also depend on the value of g. For small g, increasing the
noise level first acts to decrease the error (compare blue to magenta),
but then drives it to its highest level (red trace). However, when g is
larger, noise appears to always cause the error to decrease. For refer-

ence, the black circle on the magenta trace shows the values of g and
�V that were used in the previous sections.

How do these parameter choices affect the networks’ firing
rates? Like the relative error traces in Figure 10b, the maximum
population-averaged firing rates (Fig. 10c) also display a
U-shaped dependence on g, and the shallowness of the U in-
creases as the noise level is increased. This indicates that with
increasing noise, there is a larger range of g values that lead to low
firing rates. Last, Figure 10d plots the CV of the ISIs of the net-
work during the period of zero stimulus input. For moderate
noise and moderate g, the network maintains CV on the order
of 0.8.

In conclusion, network performance is not highly sensitive to
changes in synaptic strength g or to the level of added voltage
noise, as there exist many combinations of choices that lead to
similar network performance.

Recording from a subset of neurons
Until now, we have assumed that the decoder has access to all
neurons in the network that is performing the computation on
the input; that is, we have fixed our network size at N � 400 cells
and have examined its performance using the spiking output of
all 400 cells. However, when recording from real neural circuits, it
is more likely that one would be measuring from a subset of cells
involved in a given computation. The same is possible for differ-
ent circuits “downstream” of a computing network. We explore
how the reduction in decoding variance and the decoding error
scales with the number of simultaneously recorded neurons.

Figure 11a plots the reduction in decoding variance �x̂
ind/�x̂ as

a function of the number of simultaneously recorded neurons M
for the homogeneous integrator network with the box function
input stimulus. The simulated network size was fixed at N � 400.

Figure 10. Dependence of network statistics on noise and synaptic gain parameters. We explore how the network output changes as we vary the synaptic gain parameter g and the strength of
the voltage noise �V. We set the parameter c0 which scales the strength of the input to c0 � g for every value of g used. Because the results were similar for the frozen noise (OU) case, we only plot
the results for the network with the box function input. b– d, We indicate the parameter values used in the previous figures with a black circle. Error bars represent SDs over 300 trials. a, Population
synchrony index (see Materials and Methods, Measuring population synchrony) as a function of g for three different noise levels �V �0.04
A/cm2 �	s (blue trace), �V �0.08
A/cm2 �	s
(magenta trace), and �V �0.12 
A/cm2 �	s (red trace). b, Relative error between the estimate and the actual signal as a function of g. c, Maximum population averaged firing rate as a function
of g. d, Coefficient of variation of the ISIs during the period of zero stimulus input as a function of g.
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To compute the reduction in decoding variance for a smaller
network of size M, a random subset of M spike trains was chosen
from a single simulated trial of the full network. We then com-
puted the necessary covariance matrices using these spike trains,
and averaged these matrices over all 800 trials. These averaged
covariance matrices were used to compute the ratio �x̂

ind/�x̂ ac-
cording to the formulae given in Materials and Methods, Decod-
ing variance and approximations. The solid trace in Figure 11a
plots the result of these numerical simulations whereas the
dashed trace plots the approximation given in Equation 45,
which uses the correlation coefficients that were computed using
all N cells in the simulated network.

Figure 11b plots the square root of the decoding error (Eq. 48) as
a function of the number of simultaneously recorded neurons. As
the number of recorded neurons increases, the decoding error ini-
tially decreases as 1/	Number of Recorded Neurons (black
dashed line), similar to what one would expect for independent
Poisson spiking, as implicitly assumed in many rate models.
However, as the number of recorded neurons is increased fur-
ther, the error from the spiking network decreases faster than
1/	Number of Recorded Neurons.

The predictions of our network about how the reduction in
decoding variance and the decoding error both scale with the
number of simultaneously recorded neurons could in principle
be tested with dense multielectrode arrays or optical imaging.
However, these predictions would have to be modified to incor-
porate the effects of shared sensory noise or noise in the output of
the decoder.

Varying network size
We now explore how the total number of neurons in the network,
N, affects the fidelity of the computation. We limit our analysis to
integration of the box function stimulus. As derived in Materials
and Methods, Scaling when varying the simulated network size,
we scale both the entries of the matrix � and the synaptic gain
parameter g with 1/N. Using this scaling allows the total input to
each neuron in the network to remain constant as the network
size is varied.

Figure 12 shows the results of these simulations. In particular,
we explore how the population synchrony index, the relative er-
ror, the time- and population-averaged firing rate, and the inte-
grated error vary as the network size is increased. In all plots, the

cyan trace at N � 400 corresponds to the parameters used in our
previous network simulations. Figure 12a plots the inverse of the
synchrony index as a function of N for four different values of the
parameter c0, which scales the synaptic gain �that is, g � c0/N�.
This highlights the differences between the curves corresponding
to the different values of c0. It is clear that synchrony tends to
always decrease as the network size is increased, though the max-
imum level of synchrony reached as well as the rate at which it
decreases with N are both affected by c0. Thus, as we have seen
previously in Figure 10, increasing the synaptic gain can lead to
increased population synchrony (compare the cyan and magenta
traces). Figure 12b plots the relative error as a function of N. For
small values of c0, the error initially increases with N, but quickly
reaches an asymptote and remains constant with further in-
creases in network size (blue trace). As c0 is increased, we quickly
see a transition in the curves as the relative error now begins to
decrease with N. Increasing c0 initially causes the error to drop off
faster with N (compare the red and cyan traces), but too large
of a value for c0 cause the error to drop off more slowly with N
(compare the cyan and magenta traces). Figure 12c plots the
inverse time- and population-averaged firing rate during the
period of zero stimulus input as a function of N. As with the
population synchrony index, the firing rates tend to decrease
as N is increased.

In sum, Figure 12a–c illustrate that the computational error
produced by the network, as well as its firing rates and synchrony,
all tend to decrease for larger networks. We next compare the
trend in error against what would be naively expected in a simple
“rate network”; that is, one in which each neuron fires according
to a prescribed firing rate in a population, and does so with inde-
pendent Poisson statistics. In this case, we expect that the square
root of the mean integrated squared error will scale like 1/	N. To
compare the error in our spiking network, we plot the square root
of the mean integrated squared error as a function of N in Figure
12d. For c0 � 0.4 (cyan trace), the error decreases as 1/	N (black
dashed line) just as for the Poisson rate network. However, for
such rate networks, the firing rates of individual units are fixed
and do not vary with the network size. In our network, we clearly
see a dramatic decrease in firing rates as network size grows, up to
�N � 400 cells (Fig. 12c). Further increases in network size past
this point lead to minimal decreases in the firing rates. The fact
that the firing rates for our network change with network size is a

Figure 11. Reduction in decoding variance and error scale with the number of recorded neurons. We explore how the network output varies if we only have access to a subset of neurons in the
full-simulated network. The parameters are the same as in Figure 4 and we only show results for the box function input. a, Plots the reduction in decoding variance (see Materials and Methods,
Decoding variance and approximations) as a function of the number of simultaneously recorded neurons M. The solid trace shows the results from the numerical simulations while the dashed trace
plots the analytical approximation that uses the mean correlation coefficients of the full N � 400 network. b, Plots the square root of the integrated squared error between the estimate and the
actual signal as a function of the number of simultaneously recorded neurons on a log-log plot. The dashed trace is the line 1/	Number of Recorded Neurons, which would be the
prediction of a network of independent Poisson processes. Notice that the error in our network initially decreases like 1/	M, but eventually begins to decrease at a much faster rate.

Schwemmer et al. • Computing with Biophysical Spiking Neurons J. Neurosci., July 15, 2015 • 35(28):10112–10134 • 10129



strong difference from a Poisson rate network. Thus, even though
our network produces a similar error scaling with N as predicted
under basic assumptions for firing rate networks, for network
sizes between 100 and 400 neurons, it manages to do so in a more
efficient manner; it produces the same error with a lower average
firing rate (i.e., fewer spikes).

Beyond pure integration: leaky integration and damped
harmonic oscillations
In this section, we highlight the generality of our approach by
showing the output of the spike-based predictive coding net-
works that are performing computations other than “pure” inte-
gration of its inputs over time. First, we study leaky integration,
obtained in Equation 1 by choosing A to be negative (and con-
tinuing to take J � 1 dimension for the signal x(t)). Figure 13
shows an example of the network performing leaky integration
(A � �10) on the same box function input from Figure 4a. All
other network parameters are the same as in Figure 4. The
raster plot in Figure 13a shows that the network still displays
sparse irregular spiking when performing leaky integration.
Figure 13b shows the network estimate (red) plotted along
with the actual signal (blue), demonstrating that the leaky
integration computation is performed with a high degree of
accuracy (the relative error is 0.08). Last, Figure 13c shows the
firing rates of both the stimulus-activated and stimulus-
depressed populations; note that these eventually return to
their baseline (pre-input) levels because the computation is
leaky.

Next, we consider the computation of processing inputs
through a two dimensional dynamical system that displays
damped harmonic oscillations. Here, the matrix A is chosen as

A � 

 � �
� 
 � .

In this case, the eigenvalues of the matrix A are 
 � i�, and the
solutions x(t) of the linear system (Eq. 1) will display damped
oscillations as long as 
 � 0 (we use 
 � �5 and � � 20). We
take � to be a 2 � N matrix whose elements are chosen randomly.
Last, we use as our input c(t) a vector with c1(t) being the box
function input from Figure 4a and c2(t) � 0.

Figure 14 plots the resulting network behavior. We again see
sparse irregular spiking with firing rates that eventually return to
their baseline level (Fig. 14a and b. As the signal x(t) is two di-
mensional, the network estimate x̂�t� is also two dimensional, and
we plot both of the network estimates (red) along with the actual
signals (blue) in Figure 14c and d. Once again, the network is able
to perform the required computation with a high degree of accu-
racy (the relative error in Fig, 14c is 0.14 and d is 0.12).

Discussion
Synaptic kinetics that support spike-based computation
We have shown that networks of neurons with voltage-
dependent spike-generating currents and realistic synaptic
timescales can perform accurate spike-based computations.
These networks are derived based upon the premise that the volt-

Figure 12. Varying the simulated network size. We explore how the network output varies when we change the total number of simulated neurons. We again use the homogeneous network with
�k � a for k � 1, 2,…, N/2 and �k � �a for k � N/2 
 1,…, N, �V � 0.08 
A/cm2 �	s, and the box function input. As derived in the Material and Methods, Scaling when varying the
simulated network size, we use the scaling a � 40/N, g � c0�400/N�, and the different colored lines correspond to different values for c0. Error bars represent SDs over 900 repeated trials.
a, We plot the inverse of the population synchrony index as a function of the simulated network size for different values of the parameter c0 which scales the gain of the synaptic input. b, Relative
error between the estimate and the actual signal as a function of N. c, The inverse of the time and population averaged firing rate during the period of zero stimulus input as a function of N. d, Square
root of the mean integrated error as a function of N on a log–log plot. The two dashed black lines plot 1/	N starting from the first cyan data point and the first magenta data point.
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age traces of individual neurons represent an error signal between
the network estimate and the actual signal, and that spikes occur
whenever the error becomes too large. The key innovation we
present that allows the network to accurately perform these com-
putations is the inclusion of synapses with appropriate kinetics.
Two factors determine these kinetics. We begin by assuming that
signals are “decoded” from the network with synapses that have
finite timescales of rise and decay (“double-exponential” syn-
apses). Next, we account for the nonlinear dynamics of spike
generating currents with “compensating” synapses, which allow
the system to represent the projected error signal in the voltage
traces of individual neurons. It is important to note two limita-
tions of these additional factors. The first is that if the rate of rise
of the double-exponential synapse is slower than the rate of
change of the signal, then the accuracy of the computation will be
affected. This is the case because the network simply cannot re-
spond quickly enough to accurately track the signal. Second, the
“compensating” synapses we introduce were designed to com-
pensate for currents acting on the timescale of a single action
potential. Thus, slow adaptation currents are not accounted for
by our approach. This will make it difficult for the network to
maintain the persistent activity that is required when the desired
computation is pure integration. Interestingly, however, we find
that when the desired computation is leaky, simulations suggest
that adaptation may have a minimal effect on the performance of
the network. Thus, a network with strong adaptive currents is
perhaps better suited to implement leaky integration or fast dy-
namics rather than perfect integration.

Our results prove the principle that mechanisms of spike-
based computation previously derived for networks of idealized
neurons and synapses (Boerlin and Denéve, 2011; Boerlin et al.,

2013) can be extended to settings closer to the underlying bio-
physics. However, there is still distance to travel before we arrive
at a “realistic” biologically based system. The compensating syn-
apses are somewhat complicated functions of time. Moreover,
these and other synaptic connections provide both positive and
negative currents following a spike, a clear violation of Dale’s rule
(although recently neurons that release both GABA and gluta-
mate have been found in rodents; Root et al., 2014). More com-
plex synaptic waveforms, and ones that change sign, could be
implemented via intermediate synapses with different kinetics
(for example, a pathway with delayed feedforward inhibition will
produce first positive, then negative, synaptic current). Further-
more, recent advances in learning temporal connections between
neurons (Kennedy et al., 2014), together with learning algo-
rithms for the present spike-based computation framework
(Bourdoukan et al., 2012), provide a basis to potentially derive a
learning rule for the compensation filters. However, a question
for future work is whether there are other network configurations
that perform spike-based computation without the need for in-
termediate connections (as for simpler settings by Boerlin et al.,
2013), and additionally with simpler synaptic waveforms than the
compensating ones derived here.

Computing with spikes and computing with rates
As shown by Boerlin and Denéve (2011) and Boerlin et al. (2013),
our network approaches the notion of computations in neural
circuits from the standpoint that a computation is distributed
among the spike times of individual neurons. This stands in con-
trast to many studies in which the computation is assumed to be
carried at the level of averaged firing rates (Brunel, 2000; Compte
et al., 2000; Goldman et al., 2003; Renart et al., 2004; Wong and

Figure 13. Leaky integration in the homogeneous network. We show the results of the network performing leaky integration on the box function input. All parameters are the same as in Figure
4 except that A ��10; c(t) is the same box function from Figure 4a. a, The raster plot of the 400 cells in the network. The top 200 rows are the stimulus-activated population, whereas the bottom
200 rows are the stimulus-depressed population. b, Plots the network estimate (red) against the actual signal (blue). c, Plots the average firing rates for the stimulus-activated (magenta) and
stimulus-depressed (green) populations.
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Wang, 2006; Ostojic, 2014), and to other related studies that
derive network dynamics that minimize squared error in signal
representation (Rozell et al., 2008). Demonstrating the impor-
tance of spike timing in our network, we compared the accuracy
of the underlying computation before and after shuffling these
times but preserving trial-averaged firing rates (Fig. 9). Shuffling
indeed reduced the accuracy, a fact we related to the structure of
spike-time correlations produced by the network.

What are the advantages of using such a precise temporal
representation? It could be that distributing a computation
among the spike times of individual cells endows the network
with robustness to perturbations such as synaptic failure and
lesions (as was demonstrated by Boerlin et al., 2013). Moreover, a
computation performed on the level of spike times opens the
possibility that the underlying network structure could be
learned via spike-based plasticity rules, as suggested by recent
work (Bourdoukan et al., 2012).

Finally, a precise temporal code may leverage the computa-
tional power of individual spiking neurons in a more efficient
manner than rate-based approaches. Traditional spiking network
implementations of rate-based networks employ large amounts
of added voltage noise to avoid synchrony, and large cell popula-
tions, so that the resulting population output is well described by
“mean field” rate equations (Brunel, 2000; Compte et al., 2000;
Renart et al., 2004; Machens et al., 2005; Wong and Wang, 2006;
Ostojic, 2014). Thus, large populations of cells with noise-driven
spiking represent signals in traditional rate-based approaches.
The possibility that spike-based computation might give rise to a
significantly lower total error for a given population size. This
seems likely, given the results by Boerlin et al. (2013), and in our

Results, Recording from a subset of neurons. That is, the error in
our networks can decrease faster than expected for a population
of cells with independent spike times. Making a more direct com-
parison to rate-based networks is an interesting area for future
work.

This said, this spike-based approach to computation is not
immune to problems with synchrony, and the need for additive
noise to combat it. We showed that there is an optimal level of this
noise at which the network retains characteristics of spike-based
computation. Moreover, in the current work, we have used a very
homogeneous population in which all neurons have the same
spike-generating currents and magnitude of synaptic connectiv-
ity. Preliminary simulations suggest that more heterogeneous
networks better avoid synchrony, and hence may be able to per-
form computations with higher accuracy.

Balanced networks and irregular spiking behavior
Cortical neurons are known to display irregular Poisson-like fir-
ing (Softky and Koch, 1993; Shadlen and Newsome, 1998). What
might be the basis of the observed irregularity? Various authors
have proposed that the variability is a result of a tight balance
between the total excitatory and inhibitory current each neuron
in the network receives (van Vreeswijk and Sompolinsky, 1996;
Renart et al., 2010). Indeed cortical networks have been shown to
display such a balance between excitation and inhibition (Wehr
and Zador, 2003; Haider et al., 2006; Okun and Lampl, 2008).

Although successful in reproducing the Poisson-like firing of
cortical neurons, it has only very recently been shown that bal-
anced networks can be used to perform particular computations,
including integration of inputs over time (Boerlin et al., 2013;

Figure 14. Damped harmonic oscillations. We show the results of the network processing the box function input via damped harmonic oscillations. All parameters are the same as in Figure 4
except that � is now a 2 � N matrix and c(t) is a vector with c1(t) being the same box function from Figure 4a and c2(t) � 0. The elements of � are chosen randomly with �ij � Unif(0.002, 1)
for i�1, 2 and j�1,2,…,N/2 and�ij � Unif(�1, � 0.002) for i�1, 2 and j�N/2
1,…,N. Also, the columns of�are normalized so that���j � 	�1j

2 � �2j
2 � 0.06. a, The raster

plot of the 400 cells in the network. The top 200 rows are the stimulus-activated population, whereas the bottom 200 rows are the stimulus-depressed population. b, Plots the average firing rates
for the stimulus-activated (magenta) and stimulus-depressed (green) populations. c, d, Plots of the network estimates (red) against the actual signals (blue).
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Lim and Goldman, 2013). Our work contributes further results in
this direction. In contrast to much previous modeling work on
balanced networks, the specific condition for balancing excita-
tion and inhibition is not built into the derivation of spike-based
computation. Rather, the balanced state arises naturally as a con-
sequence of optimizing the computation at the level of single
cells; that is, assuming that neurons represent a projected error
signal in their voltage traces and spike when this error becomes
too large (Boerlin et al., 2013). Furthermore, our network main-
tains this balanced state with a relatively small number of cells
(Figs. 4, 5). Thus, our work suggests that a computational unit in
the brain may require dramatically fewer neurons than predicted
by rate-based approaches (Brunel, 2000; Lim and Goldman,
2013; Ostojic, 2014).

Finally, nearly all modeling work on balanced networks makes
use of simplified integrate-and-fire neuronal spiking dynamics.
Thus, it has remained unclear whether or not the balanced state
can be maintained by a network of neurons with more complex
spike-generating dynamics. We have shown here that it is indeed
possible for a network of such neurons to display a tight balance
between excitation and inhibition, and thus display irregular
spiking.

Even during a single trial, the neurons in our network display
variable spiking behavior. This can be seen from the population
firing rates in Figure 4d. Even though the network maintains a
constant decoded signal, the average firing rates fluctuate, indi-
cating that not all neurons are displaying the same firing rate.
This phenomenon of variable neuronal activity underlying stable
network stimulus representation is known to occur (Buzsáki and
Draguhn, 2004; Haider and McCormick, 2009; Tchumatchenko
et al., 2011) and has recently been shown in a rate model network
with a specific architecture (Druckmann and Chklovskii, 2012).
Here, we show that stable stimulus representation with variable
neuronal responses arises as a natural feature of networks that
perform spike-based computation.

Sensitivity and tuning
The performance of network models that integrate inputs over
time is typically quite sensitive to the choice of connection
weights between neural populations (Seung et al., 2000). If the
recurrent connections are either too strong or too weak, the ac-
tivity of the network can either quickly increase to saturation or
decrease to a baseline level. Recent work by Lim and Goldman
(2013, 2014) has shown that this sensitivity issue can be resolved
in a rate-based network where inhibition and excitation are bal-
anced. In particular, Lim and Goldman show that a balanced
rate-based network of LIF neurons can robustly maintain infor-
mation for working memory with irregular spiking. Further work
will be needed to assess whether the spike-based networks derived
here have similar robustness to changes in network connection
strengths; our preliminary studies suggest that they may not, as
perturbing the network structure away from the optimally de-
rived connectivity will lead to decreased network accuracy. How-
ever, there is evidence to suggest that the optimal connectivity
structure could potentially be learned, and maintained, by plas-
ticity rules (Bourdoukan et al., 2012; Kennedy et al., 2014).
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