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Rewards obtained from specific behaviors can and do change across time. To adapt to such conditions, humans need to represent and
update associations between behaviors and their outcomes. Much previous work focused on how rewards affect the processing of specific
tasks. However, abstract associations between multiple potential behaviors and multiple rewards are an important basis for adaptation
as well. In this experiment, we directly investigated which brain areas represent associations between multiple tasks and rewards, using
time-resolved multivariate pattern analysis of functional magnetic resonance imaging data. Importantly, we were able to dissociate
neural signals reflecting task–reward associations from those related to task preparation and reward expectation processes, variables
that were often correlated in previous research. We hypothesized that brain regions involved in processing tasks and/or rewards will be
involved in processing associations between them. Candidate areas included the dorsal anterior cingulate cortex, which is involved in
associating simple actions and rewards, and the parietal cortex, which has been shown to represent task rules and action values. Our
results indicate that local spatial activation patterns in the inferior parietal cortex indeed represent task–reward associations. Interest-
ingly, the parietal cortex flexibly changes its content of representation within trials. It first represents task–reward associations, later
switching to process tasks and rewards directly. These findings highlight the importance of the inferior parietal cortex in associating
behaviors with their outcomes and further show that it can flexibly reconfigure its function within single trials.
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Introduction
The payoff obtained from a specific behavior often changes over
time, and our cognitive system needs to adapt to such changing

environmental conditions. We often have several options to
choose from, with different potential outcomes. Associating
complex activities and rewards, even if this association remains
counter-factual, is a key function for decision-making, motiva-
tional, and cognitive control (Ridderinkhof et al., 2004), and
there is a large literature on its neural basis in both humans
(O’Doherty et al., 2003; Alexander and Brown, 2011; Kovach et
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Significance Statement

Rewards obtained from specific behaviors rarely remain constant over time. To adapt to changing conditions, humans need to
continuously update and represent the current association between behavior and its outcomes. However, little is known about the
neural representation of behavior– outcome associations. Here, we used multivariate pattern analysis of functional magnetic
resonance imaging data to investigate the neural correlates of such associations. Our results demonstrate that the parietal cortex
plays a central role in representing associations between multiple behaviors and their outcomes. They further highlight the
flexibility of the parietal cortex, because we find it to adapt its function to changing task demands within trials on relatively short
timescales.
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al., 2012) and nonhuman primates (Hadland et al., 2003, Platt
and Glimcher, 1999; Sugrue et al., 2004; Chudasama et al., 2013).

Previous work focused on how reward expectations affect task
processing and execution in the brain (Knutson et al., 2000; Daw
et al., 2006; Hampton and O’Doherty, 2007; Etzel et al., 2015),
not directly investigating task–reward associations. Such associ-
ations are context-dependent rules linking multiple potential be-
haviors and rewards (“If I complete task A, I will receive reward
RA. But if I complete task B, I will receive reward RB.”). Knowing
the outcomes of different behaviors is a critical basis for success-
ful adaptation to changing environments, yet it is difficult to
distinguish knowledge about these associations from preparatory
processes. If the reward outcome for a specific task is known, we
associate the task and the reward, but we also prepare for task
execution and expect to gain the reward.

Furthermore, past experiments focused mainly on associa-
tions of low-level actions on rewards (Ridderinkhof et al., 2004;
Rushworth et al., 2004; Hayden et al., 2011), yet more complex
behaviors, such as abstract task sets, can also be associated with
reward values. Compared with low-level stimulus–response
mappings, task sets are more generalizable and abstract (Sakai,
2008; Holroyd and Yeung, 2012), arguably making them more
robust against changes in the environment to which we adapt.

Previous work using multivariate pattern analysis (MVPA)
has shown that reward values are represented in striatal and or-
bitofrontal brain regions (Kahnt et al., 2010), whereas task sets
are represented in a frontoparietal network (Sigala et al., 2008;
Woolgar et al., 2011; Momennejad and Haynes, 2012; Reverberi
et al., 2012a; Wisniewski et al., 2014). The parietal cortex has
further been shown to represent relative action values (Sugrue et
al., 2004; Kahnt et al., 2014). Based on previous findings, we
hypothesized that task–reward associations might either be rep-
resented in these task and/or reward-related brain regions.

In this experiment, we modified a delayed intention paradigm
(Momennejad and Haynes, 2013) to investigate task–reward as-
sociations. Subjects underwent functional magnetic resonance
imaging (fMRI) while performing the task. We used time-
resolved MVPA (Soon et al., 2008) to determine which brain
areas contain information about task–reward associations and to
assess the evolution of information across time in these brain
areas. Importantly, we were able to independently assess the neu-
ral signals of task–reward associations from those related to task
preparation and reward expectation processes.

Materials and Methods
Participants
Nineteen participants took part in the experiment (10 females). All sub-
jects volunteered to participate and had normal or corrected-to-normal
vision. Subjects gave written informed consent and received between 35€

and 65€ for participation, depending on their performance. The experi-
ment was approved by the local ethics committee. No subject had a
history of neurological or psychiatric disorders. Data from two subjects
were discarded because of exceedingly high error rates (50% and 45%;
mean error rate across all subjects, 14%). One additional subject selec-
tively committed errors in low-reward trials so that we could not estimate
the neural signal associated with low-reward trials in each run. This
subject was excluded from the reward fMRI analysis.

Experimental paradigm
The experiment was implemented using MATLAB version 8.1.0 (Math-
Works) and the Cogent Toolbox (http://www.vislab.ucl.ac.uk/cogent.
php). In each trial, subjects were asked to judge either the parity or the
magnitude of a number presented on screen. Before executing the task,
subjects were presented with two cues, separated by a long delay. The first
cue (reward mapping cue) consisted of two different symbols (Reverberi
et al., 2012a; Fig. 1A) that did not indicate the task itself but determined
which reward was associated with the parity and which reward was asso-
ciated with the magnitude task. In half of the trials, the first cue indicated
“If you are later instructed to perform the parity task, you can earn a high
reward. If you are later instructed to perform the magnitude task, you can
earn a low reward” (task–reward mapping 1). In the other half of the
trials, the first cue indicated “If you are later instructed to perform the
parity task, you can earn a low reward. If you are later instructed to
perform the magnitude task, you can earn a high reward” (task–reward
mapping 2). Each of the two symbols informed the subjects about the
reward value associated with one of the two tasks, e.g., one symbol indi-
cated “If parity, then low reward,” whereas the other symbol indicated “If
magnitude, then high reward.” This information was not fully redun-
dant, because we also introduced catch trials (20% of the trials) in which
both tasks were associated with the same reward value or only one task
was associated with a reward value. This was introduced to encourage
subjects to represent the full task–reward association in each trial. One
symbol was presented above and the other below the fixation point.
Symbol position was pseudorandomized in each trial. Subjects likely
processed the upper cue first, with the upper cue indicating the high-
reward task in some trials and the low-reward task in other trials. This
procedure discouraged subjects from retrieving task–reward associations
with a fixed order (e.g., retrieving the highly rewarded task first). Fur-
thermore, the same task–reward mapping could be cued by two visually
different but semantically identical cues to later dissociate the neural
signal of the mappings from the neural signal of the visual identity of the
cues (for details, see below). Task–reward mapping cues were presented
for 2000 ms, followed by a delay of 6000 ms (delay 1), during which a
blank screen was shown. The delay duration was set to 1000 ms in some
of the catch trials to encourage subjects to encode the task–reward asso-
ciations early in the delay phase (for a similar approach, see Reverberi et
al., 2012b). Catch trials were discarded from all analyses.

After the delay, a task cue was presented for 1500 ms, instructing
subjects whether to judge the parity or the magnitude of the digit subse-
quently presented on screen. Again, two different abstract cues were
associated with each task to decorrelate task signals from the visual iden-
tity of the cues. Half of the trials in which subjects were presented with
task–reward mapping 1 were followed by parity cues, whereas the other
half were followed by magnitude cues. The same was true for trials in
which subjects were presented with task–reward mapping 2. This en-
sured that task–reward mappings, tasks, and reward values were inde-
pendent in the experiment. Importantly, to know how much reward
could be obtained in the current trial, subjects had to combine the infor-
mation provided by the task–reward mapping and task cues, because the
current reward condition was never explicitly or separately cued. Before
the onset of the task cue, subjects could neither prepare the execution of
the instructed task nor could they expect a high or a low reward, leaving
only the mapping information to be represented before the task cue
onset. Using time-resolved MVPA methods, we were able to test this
hypothesis (for details, see below).

The task cue was followed by another delay of 1500 ms (delay 2), after
which the task stimuli were presented. A single digit (one to nine, exclud-
ing five) was presented centrally on screen. Subjects performed the in-
structed task on each numerical stimulus, judging either whether the
digit was odd or even (parity task) or whether it was larger or smaller than
five (magnitude task). Four response symbols (Momennejad and
Haynes, 2013) were presented together with the digit, and subjects were
instructed to respond as accurately and quickly as possible. The response
mapping was pseudorandomized in each trial to avoid motor prepara-
tion of responses before the onset of the task screen. Each stimulus was
presented for 2000 ms, regardless of the reaction time (RT), and was
followed by a brief delay (300 ms) and a reward feedback (500 ms). The
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reward feedback informed the subjects about the actual reward outcome
of the trial (no reward, low reward, or high reward; for additional details,
see below). The next trial started after a variable intertrial interval of
2000 –7000 ms (mean, 3000 ms). Each participant performed a total of
280 trials across seven runs inside the scanner.

Subjects performed a separate training session a few days before the
fMRI session. They were given 1.5 h to learn the meaning of all cues and
familiarize themselves with the two tasks and the task screen. At the end
of the training session, they performed two runs of the task to minimize
learning effects during the fMRI session.

Reward manipulation and feedback
In each trial, subjects could either earn a high reward (10€) or a low
reward (0.1€). To receive a reward, they had to perform the task quickly
and accurately. We used an adaptive RT threshold to keep subjects con-
stantly motivated. Specifically, we took the RTs from the last 25 trials,
extracted the RT distribution, and used the 60th percentile of this distri-
bution as the RT threshold in each trial. This would lead to subjects being
too slow to earn a reward in �40% of the trials, even if they pressed the
correct button. For the first 25 trials of the fMRI session, we used the last
training run to determine the RT threshold. Subjects were instructed that

Figure 1. A, Experimental paradigm. One example trial is shown. First, subjects were presented with a mapping cue (2000 ms) that indicated the current association of tasks and rewards. In this
trial, parity is associated with a low reward and magnitude is associated with a high reward. After a long delay (delay 1, 6000 ms) subjects were presented with a task cue (1500 ms) indicating which
task is to be performed this trial. Note that only by combining information from both cues could subjects determine the current reward condition, in this case a high reward. Before the onset of the
task cue, subjects could neither prepare the execution of the instructed task nor could they expect a high or a low reward, leaving only the mapping information to be represented before the task cue
onset. After a second delay (delay 2, 1500 ms) the task screen was presented (2000 ms). A single digit was shown together with four response symbols (from left to right: odd, even, larger than 5,
and smaller than 5), and subjects were instructed to press the correct button as quickly and accurately as possible. After a third short delay (delay 3, 300 ms), subjects received a reward feedback (500
ms), indicating whether they were correct and fast enough to receive a reward (green for high reward, yellow for low reward), were correct but too slow to receive a reward (magenta), were wrong
(red), or did not press any button (red). After a variable intertrial interval (ITI, 2000 –7000 ms), the next trial started. B, Analysis overview. Depicted are the three main MVPAs performed in this
experiment. In the task–reward mapping analysis (left), task–reward mapping 1 (light gray) was contrasted with task–reward mapping 2 (dark gray). In the reward analysis (middle), the
high-reward (light gray) and low-reward (dark gray) conditions were contrasted. In the task analysis (right), the parity task (light gray) was contrasted with the magnitude task (dark gray). In all
analyses, we used cross-classification across visual cues to decorrelate the conditions of interest from the visual identity of the cues presented to the subjects.
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they would have to react correctly and quickly to receive rewards, al-
though they did not know the details of the thresholding procedure. They
were also instructed that six random trials will be picked at the end of the
experiment and that the rewards earned in these trials will be paid to
them additionally to a performance-independent reimbursement. Sub-
jects received a detailed reward feedback at the end of each trial using a
color code, indicating whether their response was correct and fast
enough (green in high-reward trials and yellow in low-reward trials),
correct but too slow (magenta), wrong (red), or a miss (red).

Image acquisition
Functional imaging was conducted on a 3 tesla Siemens Trio scanner
with a 12-channel head coil. For each run, 322 T2*-weighted echo-planar
images were acquired (TR, 2000 ms; TE, 30 ms; flip angle, 90°). Each
volume consisted of 33 slices, separated by a gap of 0.6 mm. Matrix size
was 64 � 64, and field of view was 192 mm, which resulted in a voxel size
of 3 � 3 � 3 mm 3. The first three images of each run were discarded.

Data analysis: behavior
For each subject, task performance was assessed by calculating the mean
RT and mean error rate across all runs. Errors were subdivided into the
following: correct button but too slow, wrong button, or miss. We then
refined the analysis by investigating RTs and error rates separately for
different mappings, tasks, reward values, and visual cues using paired-
sample t tests. We expected rewards to have a strong effect on both
measures but did not expect the other variables to affect them.

It has been reported previously that switching between trials leads to
an increase in RTs, which is partly attributable to task-set reconfiguration
processes (Monsell, 2003). The so-called switch costs have also been
shown to interact with the reward condition of the preceding trial
(Braem et al., 2012). Therefore, we compared the average RTs of task
switch and repeat trials and further tested whether these switch costs
interacted with the reward manipulation in our task. To do so, we per-
formed a three-factorial repeated-measures ANOVA on RTs and error
rates, entering switch/repeat, the reward condition of the current trial,
and the reward condition of the previous trial as factors.

Data analysis: fMRI
Functional data analysis was performed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm), unless stated otherwise. We first unwarped, realigned,
and slice-time corrected all volumes. Preprocessed data were then en-
tered into a general linear model (GLM; Friston et al., 1994). Using
MVPA methods (Cox and Savoy, 2003; Haynes and Rees, 2006; Krieges-
korte et al., 2006; Haxby, 2012; Tong and Pratte, 2012), we performed
three independent analyses to investigate the neural encoding of task–
reward associations, reward effects, and tasks, respectively.

Analysis I: MVPA of task–reward mappings. To examine the neural
encoding of mappings, first a GLM was estimated for each subject. The
following regressors were estimated in each run: (1) mapping 1 cued by
visual cue 1; (2) mapping 1 cued by visual cue 2; (3) mapping 2 cued by
visual cue 3; and (4) mapping 2 cued by visual cue 4. Movement param-
eters were added to the GLM to account for potential head movement
during scanning. We also added RTs as a parametric modulation to the
model. This was done to ensure that potential differences in difficulty (as
measured by RTs) between the mappings were modeled explicitly and
regressed out of the data (Todd et al., 2013; but see Woolgar et al., 2014).
We used the finite impulse response (FIR) function as the basis function
to get time-resolved estimates of the neural activity underlying task–
reward mappings. Each regressor was modeled using 11 time bins with a
duration of 2 s each. The first time bin was locked to the onset of the
reward mapping cue in each trial. This allowed us to cover the whole trial
and still be able to correct for the hemodynamic lag by shifting the anal-
ysis by two bins (or 4 s).

In the next step, a decoding analysis was performed on the parameter
estimates of the GLM. One support vector classifier (SVC) was applied to
each time bin separately. This approach allowed us to investigate the time
course of information in each voxel (Soon et al., 2008; Bode and Haynes,
2009). The SVC applied a linear kernel using a fixed regularization pa-
rameter (C � 1) on the parameter estimates of the GLM of the time bin
(Cox and Savoy, 2003; Mitchell et al., 2004; Kamitani and Tong, 2005;

Haynes and Rees, 2006), as implemented in LIBSVM (Chang and Lin,
2011; http://www.csie.ntu.edu.tw/�cjlin/libsvm). We applied a search-
light decoding approach (Kriegeskorte et al., 2006; Haynes et al., 2007),
which makes no a priori assumptions about informative regions. We first
defined a sphere with a radius of three voxels around each measured
voxel in the acquired volumes. For each condition (task–reward map-
ping 1 cued by visual cue 1, task–reward mapping 1 cued by visual cue 2,
task–reward mapping 2 cued by visual cue 3, task–reward mapping 2
cued by visual cue 4), we created a pattern vector by extracting parameter
estimates for each voxel in the sphere. This was done for each run
independently. The SVC was trained to discriminate between the two
task–reward mappings, cued by visual cues 1 and 2 (Fig. 1B). Classifica-
tion performance was tested on the independent contrast between
task–reward mappings cued by visual cue 3 and 4. A second SVC was
trained to discriminate between the two task–reward mappings cued by
visual cues 3 and 4 and tested on the independent contrast of task–reward
mappings cued by visual cues 1 and 2. This resulted in two accuracy
values for each time bin. This cross-classification allowed us to disentan-
gle the mapping signal from signals encoding the visual shape of the cues
presented on screen (Reverberi et al., 2012a). This procedure further
mimicked the way subjects learned to associate cues and mapping con-
ditions during the training session. Subjects were taught that cues 1 and 2
were one “cue set,” whereas cues 3 and 4 were a different “cue set.” The
cross-classification did not mix data from different cue sets, training on
one such cue set and testing on the other. Furthermore, training the SVC
on one condition and testing it on an independent condition was neces-
sary to control for potential problems of overfitting. The classification
was repeated for every sphere in the measured brain volume, resulting in
two three-dimensional classification accuracy maps for each bin in each
subject. The resulting accuracy maps were normalized to a standard
brain [Montreal Neurological Institute (MNI) EPI template as imple-
mented in SPM8] and resampled to an isotropic resolution of 3 � 3 � 3
mm. Normalized images were smoothed with a Gaussian kernel with 6
mm FWHM to account for differences in localization across subjects.

Then, a random-effects group analysis was performed on the accuracy
maps, using a 2 (visual cue training set) � 11 (time bin) ANOVA. The
two levels of the visual cue training set factor were as follows: training on
visual cues 1/2 and testing on visual cues 3/4 versus training on visual
cues 3/4 and testing on visual cues 1/2. In this ANOVA, two contrasts
were computed: (1) one testing for above-chance accuracies in the time
bins encompassing the mapping cue and delay 1 (time bins 3– 6, called
“delay 1”) across both visual cue training sets; and (2) the other testing
for above-chance accuracies in all succeeding phases, i.e., task cue, delay
2, task execution, and feedback (time bins 7–9, called “task execution”)
across both visual cue training sets. In each condition, the first two time
bins were not analyzed to account for the hemodynamic lag in the data.
Because the SVC was performed on two conditions, the chance level was
50%. We applied a statistical threshold of p � 0.05 (FWE corrected at the
cluster level, initial threshold p � 0.001).

To investigate the temporal development of mapping information, we
extracted voxel coordinates from all significant clusters. Then, we deter-
mined the mean decoding accuracy across subjects in these clusters in
each time bin. We also extracted the accuracy time course in the same
task–reward mapping ROIs for the task and reward MVPA analyses,
respectively (see below). This allows us to compare information about
different aspects of the tasks throughout the trial within the same ROI.
fMRI is not a technique ideally suited to resolve decoding time courses
with a high temporal resolution. Therefore, one should be careful inter-
preting the exact onsets and offsets of accuracy time courses down to a
single time bin. For instance, the temporal interpolation during slice-
time correction might shift the onset or offset of an accuracy time course
by half a time bin. However, for our purposes, it is enough to distinguish
more broadly between the first part and the second part of the trial. In the
first part, before the task cue onset, subjects only had information about
the mapping of both tasks to the reward conditions. They could not
prepare for the execution of a specific task and could not expect to gain a
high or low reward yet. In the second part, after the task cue onset,
subjects knew which task was to be executed and which reward they could
expect and could therefore prepare for the upcoming execution of the
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task. As an additional test of the validity of the ROI analysis, we applied
an additional shape constraint in the two contrasts used to define signif-
icant regions. To add greater physiological plausibility we fitted a gamma
function (as implemented in SPM) to the contrast vectors. We then
extracted the significant clusters and computed the accuracy time courses
in these clusters, as before. We found no apparent differences between
the results.

As stated above, there might be some effects of the preceding trial on
performance of the current trial (Braem et al., 2012), and therefore, we
decided to conservatively control for the influence of the preceding trial
conditions (previous mapping, previous reward, and previous task) in
the neural data of the current trial by explicitly modeling them in our
GLM analysis (as was done with the current RT). Controlling data care-
fully is important especially for sensitive multivariate analyses (Todd et
al., 2013; Woolgar et al., 2014). Therefore, we repeated the whole analysis
described above an additional three times, only changing the parametric
modulator from the current RT to the previous mapping, previous re-
ward, or previous task, accounting for and regressing out any variance in
the data attributable to these conditions. After performing the decoding
and group-level analyses that were identical to the ones described above,
we had four group-level contrast maps for the mapping decoding analy-
sis. We computed the overlap of those four maps, and only areas in which
all four models showed significant above-chance decoding accuracies are
interpreted. In contrast to simply averaging the resulting accuracy maps,
this procedure ensured that the influence of the previous trial conditions
and the current RT was minimized. If for instance the current RT were to
affect the decoding, by averaging, we would aggregate one analysis in
which this was controlled for with three analyses in which this was not
controlled for, and the resulting average map would still represent results
that would be partly correlated with RTs. Computing the overlap avoids
this pitfall. We also want to point out that the reason for running four
independent analyses instead of one analysis incorporating all control
regressors is that using the FIR basis function leads to the estimation of a
very large number of parameters in each run. Adding all regressors in one
analysis would likely lead to a model that cannot be estimated. Therefore,
our approach ensures a balance between high quality of the results and
being able to estimate all parameters.

Analysis II: MVPA of reward effects. This analysis was analogous to the
analysis of task–reward mappings. For each subject, we estimated a GLM
with the following regressors: (1) high reward cued by visual cue 1; (2)
high reward cued by visual cue 2; (3) low reward cued by visual cue 3; and
(4) low reward cued by visual cue 4. Movement parameters were added,
and RTs were explicitly modeled as parametric modulations. All regres-
sors were locked to the onset of the mapping cue. However, the actual
reward condition of each trial was only revealed to the subject after a
delay, with the presentation of the task cue. Before that point in time,
subjects could not expect to gain a high or a low reward. Note that we
used the potential reward outcome, not the actually received reward in
this analysis, because the latter is obviously strongly dependent in the perfor-
mance of the trial. It should also be mentioned that results in this analysis
could be driven by either the reward value or the processes associated with
the value signal, such as attentional preparation (Kahnt et al., 2014). Again,
we used the FIR as the basis function with the same parameters as in the
mapping analysis. A searchlight decoding analysis was performed on the
results of the GLMs, as in the mapping analysis (Fig. 1B). The resulting
accuracy maps were entered into a random-effects group analysis, and sta-
tistical testing was performed using a two-factorial ANOVA (factor 1, time
bins; factor 2, visual cue training set). The same two contrasts were com-
puted for delay 1 and task execution. We applied a statistical threshold of p �
0.05 (FWE corrected at the cluster level, initial threshold p � 0.001). Also, as
in the task–reward mapping analysis, we repeated the whole analysis proce-
dure three more times, adding the previous trial conditions (mapping, re-
ward, and task) as control regressors to the GLM, respectively. Again, the
overlap of all four analyses was computed, and only regions surviving this
control procedure are interpreted.

Analysis III: MVPA of tasks. For the task analysis, a GLM was estimated
for each subject using the following regressors: (1) parity cued by visual
cue 1; (2) parity cued by visual cue 2; (3) magnitude cued by visual cue 3;
and (4) magnitude cued by visual cue 4. Movement parameters were

added, and RTs were explicitly modeled as parametric modulations. All
regressors were locked to the onset of the mapping cue. As in the reward-
effect analysis, the task to be performed in each trial was not revealed
until later in the trial, when the task cue was presented. Before that point
in time, subjects could not prepare for the execution of a specific task.
Again, time-resolved searchlight decoding was applied to the parameter
estimates as in the mapping analysis. The resulting accuracy maps were
entered into a random-effects group analysis, and two contrasts were
computed (delay 1 and task execution). The maps were thresholded at
p � 0.05 (FWE corrected at the cluster level, initial threshold p � 0.001).
As for the task decoding, we repeated the whole analysis, controlling for
the influence of the previous trial conditions (mapping, reward, and
task). We computed the overlap of all four maps and only interpret
regions surviving this conservative control procedure.

Results
Behavioral
The mean � SE RT across all trials was 963 � 29 ms. Subjects
were correct and fast enough in 56 � 0.8% of the trials, correct
but too slow to meet the RT threshold in 34 � 0.9% of the trials,
wrong in 9 � 1.3% of the trials, and missed the response window
in 1.1 � 0.8% of the trials. The fact that subjects were correct and
fast enough in �60% of the trials validates our RT thresholding
procedure. For all further analyses, trials in which the correct
button was pressed were considered correct, regardless of the RT.
Trials in which the wrong or no button was pressed are consid-
ered error trials and are excluded from all further analyses.

We then analyzed whether there were any differences in RTs
between mappings, tasks, visual cues, or rewards. We found no
difference in RTs between mappings (t(16) � 1.02, p � 0.32) nor
between tasks (t(16) � 1.9, p � 0.07). For the latter test, the ob-
served p value was very close to the significance threshold. To
determine how task effects on RTs could be resolved in a future
experiment, we calculated the sample size needed to detect this
effect with a probability (power) of 0.80, given the current � level
of 0.05. Results indicate that such a study would need 39 subjects
to resolve this effect. With the current sample, the results remain
somewhat inconclusive, because they provide no strong evidence
for either the existence or non-existence of an effect.

We also found no RT difference between the two visual cue
conditions (t(16) � 0.2, p � 0.81). This demonstrates that there
were no strong differences in the difficulty between these condi-
tions. As expected, we found a significant difference in RTs
between the reward conditions (t(16) � 3.4, p � 0.003). High-
reward trials were on average 74 ms faster than low-reward trials,
showing that subjects invested more effort into high-reward tri-
als. This is an important finding because the only source of infor-
mation about the reward condition was the mapping cue. By
demonstrating a behavioral effect of reward, we therefore also
demonstrate that subjects attended to the mapping cue and used
the information provided by it. Note that this effect cannot be
explained by different RT thresholds between the two reward
conditions, because this difference was negligible (6 ms). No dif-
ference was found between mappings, tasks, visual cues, or re-
wards in the error rates (all t(16) values � 1.52, all p values � 0.15).

We then assessed the task switch costs by subtracting the av-
erage RTs in task repeat trials from the average RT in task switch
trials. There was a significant switch cost (t(16) � 7.07, p � 0.001;
the average � SE switching cost was 56 � 8 ms), which likely
reflects residual switch costs that are still detectable after long
preparatory periods (Monsell, 2003). To assess task switching
costs and their interaction with reward values in more detail, we
performed a three-factorial ANOVA on RTs and error rates, us-
ing the following factors: (1) task switch/repeat; (2) reward value
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of the current trial; and (3) reward value of the previous trial. For
this analysis, trials following error trials were also excluded.
Given previous findings (Braem et al., 2012), one might expect
that task switch costs in our experiment interacted with the re-
ward value of the previous trial. Results showed a significant main
effect of task switching (F(1,16) � 52.9, p � 0.001) and a significant
main effect of the current reward value (F(1,16) � 19.1, p � 0.001).
Neither the effect of the previous reward value nor any interac-
tion reached significance (all F(1,16) values � 2.53, all p values �
0.13). Thus, our findings do not replicate previous results on the
interaction of rewards and task switch costs with our experimen-
tal setup (Braem et al., 2012). An ANOVA of the error rates
yielded no significant results (all F(1,16) values � 4.13, all p val-
ues � 0.06). Again, we calculated the sample size needed to re-
solve this effect in a future experiment with a probability (power)
of 0.80 and an � level of 0.05. Results indicate that such a study
would need 72 subjects to resolve this effect. With the current
sample, the results remain somewhat inconclusive, because they
provide no strong evidence for either the existence or non-
existence of an effect. Future research will investigate the rela-
tionship of task switch costs and rewards more directly.

Analysis I: representation of task–reward associations
During task–reward mapping cue presentation and delay 1, dis-
tributed activation patterns in the bilateral inferior parietal cortex
(Brodmann area 40) contained information about the task–
reward mappings (Fig. 2A, Table 1). During task cue presenta-
tion, delay 2, and task execution, no significant information was
found. In a next step, we repeated the analysis, using a simpler
model that did not explicitly control for the influence of the
previous trial conditions and current RT. This analysis was per-
formed to test our control procedure. In fact, results were highly
similar to the original analysis, with the bilateral inferior parietal

cortex representing task–reward associations (p � 0.05, FWE
corrected at the cluster level, initial threshold p � 0.001). We then
extracted time-resolved decoding accuracies from both parietal
clusters for the task and reward-effects analyses (Fig. 3A, for de-
tails, see below). As soon as the task cue was presented and the
current task and reward conditions were revealed to the subjects,
they could start preparing for the task execution and could expect
to gain either a high or a low reward. At this point in time, both

Table 1. Summary of MVPA results

Brain region Side Cluster size

MNI coordinates
(peak voxel)

x y z

Task–reward associations
Left inferior parietal cortex Left 67 �48 �52 37
Right inferior parietal cortex Right 73 57 �64 34

Tasks
Ventral premotor cortex Left 80 �42 2 19
Inferior parietal cortex Left 134 �54 �43 22

Rewards
Inferior parietal cortex Left 300 �45 �43 19
Inferior parietal cortex Right 56 57 �40 28
Medial cortex Bilateral 7736 6 �4 67
Precentral gyrus Left 305 �30 �19 49
Midfrontal gyrus Left 74 �36 14 43
Superior temporal gyrus Right 31 60 �19 �5
Anterior midfrontal gyrus Right 35 42 47 13
Anterior midfrontal gyrus Left 59 �27 44 22
Inferior frontal gyrus, pars triangularis Left 28 �30 35 7
Inferior frontal gyrus, operculum Right 26 48 14 1
Cerebellum Right 231 27 �52 �32

Results are shown for a statistical threshold of p � 0.001, corrected for multiple comparisons at the cluster level
( p � 0.05). The regions shown for the task–reward association results encoded these associations before the onset
of the task cue. The regions shown for the task and reward results encoded these variables after the onset of the task
cue. All clusters larger than 20 voxels are reported.

Figure 2. Depicted are the results from all decoding analyses. A, Task–reward mapping decoding. It can be seen that two clusters in the bilateral inferior parietal cortex represented task–reward
mappings during the presentation of mapping cues and delay 1. B, Task decoding. The left inferior parietal cortex and left premotor cortex represented tasks during the presentation of the task cue,
delay 2, task execution, and reward feedback. C, Above, results from the reward-effects decoding analysis are shown. It can be seen that a large cortical and subcortical network shows reward effects
during the presentation of the task cue, delay 2, task execution, and reward feedback. This network included striatal, medial prefrontal, and parietal regions. Below, brain regions showing a
univariate signal increase in high reward trials during the same period in the trial are shown for comparison.
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parietal regions changed from representing mappings to repre-
senting rewards or their effects on preparatory processes. Addi-
tionally, the left parietal cortex also represented the task, while it
was being performed. This is also supported by the overlap of
mapping, task, and reward effects-related brain regions depicted
in Figure 4. To ensure that this overlap is not merely induced by
spatial smoothing of the accuracy maps, we repeated the group-
level analysis using unsmoothed data. In this analysis, we found
an overlap of mapping and task-related brain regions as well,
indicating that spatial smoothing did not have a strong effect on
the results depicted in Figure 4. However, this analysis does not

test directly whether there is an overlap in single-subject space.
Although unlikely, we cannot fully rule out that the parietal re-
gions identified are neighboring but non-overlapping in individ-
ual subjects. Our results indicate that the inferior parietal cortex
can flexibly reconfigure its function within a trial to meet chang-
ing task demands (Rao et al., 1997; Sigala et al., 2008; Stokes et al.,
2013).

One possible explanation of this result is that subjects had a
bias toward preparing the task associated with a high reward in
each trial instead of representing the whole task–reward map-
ping. This would help them being prepared for the highly reward-

Figure 3. A, Time course of information for the two brain regions identified in the task–reward mapping analysis (left parietal cortex and right parietal cortex). The left gray line shows
the onset of the mapping cue and the duration of the delay 1. The right gray line shows the onset of the task cue, and the duration of the delay 2, task execution, and reward feedback
periods. The two black lines represent the same events with a hemodynamic lag of 4 s factored in. Error bars represent SEs. Four independent decoding analyses were performed, each
correcting for a different possible confounding variable. The plot shows the minimum accuracy value of those four analyses at each time point. Because the mapping analysis has been
used to define the ROIs, data from that analysis are not shown to avoid circularity. Task and reward accuracy time courses are independent of the data used to define the ROIs. B, Time
course of information for the two brain regions identified in the task decoding analysis (left parietal cortex, left premotor cortex). Because the task analysis has been used to define the
ROIs, data from that analysis are not shown to avoid circularity. Mapping and reward accuracy time courses are independent of the data used to define the ROIs.
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ing task if it was cued later in the trial. If
this were the case, the neural pattern that
encodes mappings should be similar to
the pattern encoding tasks. Therefore, we
trained a classifier to distinguish between
the task–reward mapping conditions early
in the trial before the task cue was pre-
sented. We then used this classifier to dis-
tinguish task patterns (parity vs
magnitude) later in the trial after the task
cue was presented. We found no signifi-
cant results (p � 0.05, FWE corrected at
the cluster level, initial threshold p �
0.001), suggesting that subjects did not
simply prepare the highly rewarded task
in each trial. As an additional confound
control, we tested whether the cue set
training direction showed any significant
results. We found no significant results
for the cue set factor (p � 0.05, FWE cor-
rected at the cluster level, initial threshold
p � 0.001), further validating our cross-
classification procedure.

Analysis II: representation of tasks
As expected, we found no information about tasks during map-
ping cue presentation and delay 1, before the onset of the task cue.
During task cue presentation, delay 2, and task execution, local
spatial activation patterns in the left inferior parietal cortex
(Brodmann area 40) and left premotor cortex (Brodmann area 6)
contained information about the currently performed task (Fig.
2B). We then extracted the voxel coordinates for both clusters
and investigated the temporal development of decoding accura-
cies in these clusters for the mapping and reward-effects decoding
analyses (Fig. 3B). It can be seen that both clusters also represented
reward effects in the second half of the trial, while simultaneously
representing tasks. Again, this finding demonstrates the flexibility of
the parietal cortex to flexibly adapt to changing task demands.

Analysis III: reward effects
As expected, the MVPA found no effect of reward during map-
ping cue presentation and delay 1. As soon as the task cue was
presented, local spatial activation patterns predicted the reward,
or its effects, of the trial in a widespread network, including sub-
cortical striatal areas, as well as prefrontal, parietal, temporal, and
occipital brain regions (Fig. 2C). The reward MVPA results can
be partly explained by the presence of a clear signal difference
between high-reward and low-reward trials (Fig. 2C) at the
single-voxel level (univariate analysis, p � 0.05 voxelwise FWE
corrected). However, it is unlikely the MVPA results reflect a
“pure” reward value signal. The reward manipulation likely led to
widespread preparatory processes in, for example, attentional or
motor systems. Furthermore, it might increase the salience of the
stimuli (cf. Kahnt et al., 2014). Such effects are reflected in the
MVPA results as well. We call these findings “reward” effect sim-
ply because this was the underlying experimental manipulation
that elicited this effect.

Discussion
Adaptation and decision-making often rely on the abstract
knowledge on how a number of complex behaviors (e.g., jobs)
would be rewarded under different circumstances (e.g., salaries
under different employers). In this experiment, we investigated

the representation of task–reward associations using fMRI and
multivariate pattern classification. We used time-resolved
searchlight decoding to identify which brain areas represented
task–reward associations and tasks and which brain areas pro-
cessed rewards across each trial. Importantly, we were able to
separate patterns of activity underlying task–reward associations
from those underlying task preparation and reward effects. We
hypothesized that parietal and/or medial prefrontal brain areas
play a role in processing task–reward associations. We found
them to be encoded in local spatial activation patterns in the
bilateral inferior parietal cortex, whereas tasks were processed in
the left inferior parietal and left premotor cortices. Reward ef-
fects, such as attentional preparation, were found in a widespread
cortical and subcortical network, including striatal, medial pre-
frontal, and parietal brain regions. Interestingly, we found that
the inferior parietal cortex is highly flexible in adapting to the
current task demands within a trial. It first represented task–
reward mappings and later switched to processing rewards as
soon as information about them became available. The left infe-
rior parietal cortex additionally encoded which of two tasks were
performed during their execution.

Task–reward associations in the parietal cortex
We found the bilateral inferior parietal cortex to represent asso-
ciations between tasks and rewards in our experiment. Converg-
ing behavioral results demonstrated a strong effect of the reward
condition on both RTs and behavioral accuracies. Given that the
task–reward association cue was the only source of information
about the current reward condition, both results suggest that
subjects attended to and processed the task–reward association
cues in the beginning of each trial. However, it can be difficult to
distinguish the knowledge of rules linking multiple behaviors
with rewards from task preparation and reward expectation pro-
cesses. To separate the neural signals arising from task–reward
associations from task and reward-related signals, we orthogo-
nalized these variables in our design. Furthermore, we separated
these variables in time as well, using a double-cueing procedure.
Therefore, our MVPA results in the parietal cortex represent the

Figure 4. Overlap of all three MVPAs. Regions informative about the mapping during delay 1 are shown in red, regions
informative about the task during task execution are shown in blue, and regions informative about the reward during task
execution are shown in green. The informative regions of all three analyses overlap in the left inferior parietal cortex, whereas
regions informative about mappings and rewards overlap in the right inferior parietal cortex. This shows that brain areas that
represent an association between tasks and rewards early in the trial represent actual tasks and rewards or their effects at a later
stage in the trial.
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abstract knowledge of which tasks are associated with which re-
wards only.

The parietal cortex plays a role both in the processing of
rewards and tasks, which will be discussed in turn, and is
therefore a likely candidate to represent associations between
them as well. Previous research demonstrated that neural ac-
tivity in the parietal cortex in nonhuman primates correlates
with the relative subjective desirability of actions in strategic
games (Dorris and Glimcher, 2004) and during foraging (Su-
grue et al., 2004) and also represents expected outcomes and
their probability (Platt and Glimcher, 1999). It is also impor-
tant for the processing of future rewards in humans (Tanaka et
al., 2004), playing an important role in guiding decisions
based on reward values. Our results are mostly in line with
these findings, because the parietal cortex represented the po-
tential outcomes of two alternative tasks, while also being in-
volved in processing current rewards directly. Note that our
experimental manipulation of rewards likely led to widespread
preparatory processes, for example, recruiting attentional re-
sources in high-reward trials. We do not claim that the reward
regions in our experiment represent a pure value signal. In
fact, a recent theory suggests that rewards have three different
effects on behavior (Peck et al., 2009): (1) biasing attention;
(2) triggering conditioned responses; and (3) motivating to
increase performance. Rewards in our experiment likely had
all three effects, but the reward effect in the inferior parietal
cortex is best explained with changing the attentional bias
(Peck et al., 2009; Kahnt et al., 2014).

We have further shown that the left lateral parietal cortex
represents which of the two alternative numerical tasks is per-
formed in the current trial. This finding supports previous evi-
dence that highlights the role of the lateral parietal cortex in task
processing (Bode and Haynes, 2009; Reverberi et al., 2012a,
Woolgar et al., 2015). Given that these studies used very different
tasks, the parietal cortex might play a more general role in repre-
senting task sets.

In summary, we have shown that the inferior parietal cortex
has a key role in directly representing associations between tasks
and rewards. This extends previous findings focusing on the role
of the inferior parietal cortex in processing tasks or rewards.
More broadly, we demonstrate that the parietal cortex directly
links cognitive control and motivational functions in the brain,
which further extends previous findings on its role in cognitive
control (Brass et al., 2005; Yeung et al., 2006; Esterman et al.,
2009; Shomstein, 2012; Power and Petersen, 2013). Although we
demonstrate that task–reward associations are partly represented
in local spatial activity patterns, these associations need not be
exclusively represented locally. It is possible that the same infor-
mation is also contained in distributed connectivity patterns be-
tween brain regions as well. Future research will address this
question more directly.

Flexible reconfiguration of parietal cortex function
In each trial, subjects were first provided with information about
the current task–reward association condition, specifying how
both tasks could be rewarded. Only after a delay was the actual
task specified, and only at this point in time could subjects have
prepared for executing a specific task and expected a specific
reward. This allowed us to dissociate neural signals arising from
task–reward associations from those related to task preparation
and reward processing, using time-resolved searchlight decod-
ing. We demonstrated that the parietal cortex first represented
task–reward associations, switching to reward processing once

the reward condition was specified. This highlights the ability of
the parietal cortex to flexibly reconfigure its functions on rela-
tively short timescales.

It has been argued that the parietal cortex is part of a larger
network that flexibly reconfigures its function, depending on
the current task demands (Dehaene et al., 1998; Duncan, 2010;
Fedorenko et al., 2013). Previous studies in nonhuman pri-
mates showed that neurons, mainly in prefrontal brain re-
gions, can even flexibly reconfigure their function within a
trial, as task demands change from one trial phase to the next
(Rao et al., 1997; Sigala et al., 2008; Stokes et al., 2013). Our
results corroborate the idea of flexible reconfiguration within
trials by demonstrating that the inferior parietal cortex be-
haves similarly in humans, as shown using time-resolved
MVPA. It represents the relevant information for the subject
at each point in time, first the abstract task–reward association
and later the actual task and reward conditions, rapidly and
flexibly changing the content of representation.

Brain regions related to task–reward associations represent
task sets
More generally, one might speculate that task–reward associa-
tions are represented in brain areas closely related to the process-
ing of the specific task currently performed (for a similar
argument, see Reverberi et al., 2012b). As shown above, the pari-
etal cortex is generally well suited to represent and process task
sets (Bode and Haynes, 2009; Reverberi et al., 2012a), and this
might by the reason why we found it to represent task–reward
associations as well. In fact, the left parietal cluster identified in
the mapping decoding analysis also seems to represent task infor-
mation directly in our experiment, which is compatible with this
idea. Converging evidence for this hypothesis also comes from
nonhuman primates, in which action outcomes (juice rewards)
in an oculomotor task were represented in a brain area closely
linked to eye movements (Platt and Glimcher, 1999). Further-
more, research on action-reward associations highlighted the
role of the dorsal anterior cingulate cortex (dACC; Kennerley et
al., 2006; Alexander and Brown, 2011; Hayden et al., 2011; Shen-
hav et al., 2013), which is also an important region for goal-
directed action selection (Ridderinkhof et al., 2004) and therefore
well suited to process actions. Interestingly, we did not find the
dACC to represent task–reward associations. We can only spec-
ulate why we did not see the dACC, but it might have to do with
the tasks we used in our design, which relied more strongly on
parietal cortex functioning (Fig. 2) and not as much on dACC.
Future research will have to show whether the parietal cortex also
represents task–reward associations in task relying on brain re-
gions different from the parietal cortex.

Conclusion
In this experiment, we investigated the neural processing of
tasks, rewards, and task–reward associations. We found all
three variables to rely on inferior parietal cortex functioning.
Importantly, we orthogonalized these three variables and fur-
ther dissociated them in time to investigate their neural cor-
relates independently. Interestingly, the inferior parietal
cortex flexibly changed its content of representation on a short
timescale within trials, from task–reward associations early in
the trial to reward effects and tasks later in the trial. This
demonstrates that the parietal cortex is a key area to link cog-
nitive control and motivational functions in the brain, while
showing a remarkable flexibility in adapting its function to
current demands.
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