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A Lognormal Recurrent Network Model for Burst Generation
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The strength of cortical synapses distributes lognormally, with a long tail of strong synapses. Various properties of neuronal activity, such as the
average firing rates of neurons, the rate and magnitude of spike bursts, the magnitude of population synchrony, and the correlations between
presynaptic and postsynaptic spikes, also obey lognormal-like distributions reported in the rodent hippocampal CA1 and CA3 areas. Theoretical
models have demonstrated how such a firing rate distribution emerges from neural network dynamics. However, how the other properties also
display lognormal patterns remain unknown. Because these features are likely to originate from neural dynamics in CA3, we model a recurrent
neural network with the weights of recurrent excitatory connections distributed lognormally to explore the underlying mechanisms and their
functional implications. Using multi-timescale adaptive threshold neurons, we construct a low-frequency spontaneous firing state of bursty
neurons. This state well replicates the observed statistical properties of population synchrony in hippocampal pyramidal cells. Our results show
that the lognormal distribution of synaptic weights consistently accounts for the observed long-tailed features of hippocampal activity. Further-
more, our model demonstrates that bursts spread over the lognormal network much more effectively than single spikes, implying an advantage
of spike bursts in information transfer. This efficiency in burst propagation is not found in neural network models with Gaussian-weighted
recurrent excitatory synapses. Our model proposes a potential network mechanism to generate sharp waves in CA3 and associated ripples in CA1
because bursts occur in CA3 pyramidal neurons most frequently during sharp waves.
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The wiring structure of local cortical networks is known to be far from random. Here, we propose a recurrent neural network
model with a long-tailed synaptic weight distribution to account for various properties of the synchronous firing of hippocampal
neurons observed typically during sharp wave ripples. Furthermore, the model predicts that pathways of strong synapses route
spike bursts much more efficiently than single spikes. Sharp wave ripples are crucial for memory encoding, but the underlying
mechanism remains unknown. Our model suggests the crucial role of internal dynamics of nonrandom hippocampal circuits in
generating and routing such activity patterns. Our results will have significant implications in understanding the mechanism of
memory encoding by the hippocampus. j

ignificance Statement

Introduction

The advent of unbiased, large-scale recordings has started to re-
veal strikingly large differences in activities among neurons in
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local cortical areas. These differences are often seen in a skewed
distribution of the average firing rates of individual neurons. In
hippocampal CA1 and CA3 areas, firing rates as well as several
other prominent features of population neural activity were
shown to obey similar lognormal statistics (Buzsaki and Miz-
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useki, 2014). Because lognormal patterns are also seen in other
regions of the brain, they may be part of the fundamental princi-
ples of computation by the brain. However, the origin of these
lognormal patterns is poorly understood. In addition, little is
known about the computational implications of the highly
skewed statistical structure of cortical circuits and the resultant
neural activity.

Here, we use computations to investigate whether the lognor-
mal distribution of synaptic weights accounts for the various
skewed distributions observed in hippocampal neuronal activi-
ties. The strengths of synapses, typically assessed as amplitudes of
EPSPs among neurons, are distributed lognormally in the hip-
pocampus (Ikegaya et al., 2013) and neocortex (Song et al., 2005;
Sarid et al., 2007; Lefort et al., 2009). Spine sizes are also lognor-
mally distributed (Yasumatsu et al., 2008; Loewenstein et al.,
2011). In addition, the spontaneous firing rates of individual
neurons are distributed lognormally in recurrent network mod-
els with lognormally weighted synapses (Koulakov et al., 2009;
Teramae et al., 2012). Such a firing rate distribution can emerge
from a nonlinear neuronal response curve, which also appears in
a low-frequency regime of lognormally weighted recurrent net-
works (Roxin et al., 2011). Lognormal neural networks maintain
sparse and highly irregular spontaneous firing by internally gen-
erating noise for stochastic resonance effects (Teramae et al.,
2012). These results prompted us to examine whether the multi-
ple lognormal patterns observed in the hippocampus originate
from lognormally weighted synapses in a computational model
of a CA3 recurrent network.

Hippocampal pyramidal neurons in vivo exhibit both single
spikes and complex spike bursts (Ranck, 1973; Harris et al.,
2001). To describe bursting activity, we used a multi-timescale
adaptive threshold (MAT) neuron, known for its ability to mimic
the irregular responses of cortical neurons (Jolivet et al., 2008;
Kobayashi et al., 2009). We show that the low-frequency sponta-
neous activity in our network model well replicates the lognormal
features of hippocampal activity. Moreover, the bursting activity
exhibited by our model resembles the complex spike bursts of
hippocampal pyramidal neurons (Harris et al., 2001) observed
frequently, but not always, during sharp-wave ripples (SWRs)
(Buzsdki et al., 2002; Lee and Wilson, 2002; Foster and Wilson,
2006), which are transient oscillatory activities in CA1 and play a
crucial role in memory consolidation (Girardeau et al., 2009;
Ego-Stengel and Wilson, 2010; Carr et al., 2011). The SWRs orig-
inate from the activation of CA3 neural ensembles and typically
occur when sensory influences on the hippocampus decrease
during slow-wave sleep and immobility. Although it is unknown
how synchronized activity occurs spontaneously in CA3 (Csics-
vari etal., 2000), our results suggest that alognormal distribution
of synaptic weights underlies the generation of the spontaneous
synchronous firing.

Materials and Methods

Network. The structure of the network connections is essentially the same
as that used previously (Teramae et al.,, 2012). The present network
model consists of 12,000 (10,000 excitatory and 2000 inhibitory) MAT
neurons connected randomly. Each neuron receives on average 1000
excitatory and 1000 inhibitory synaptic inputs. The MAT neuron model
has two parallel dynamics for the membrane potential and spike thresh-
old, with the characteristics of the spike trains tailored by the values of the
parameters in the spike threshold dynamics. The membrane dynamic is
the same as that in a leaky integrate-and-fire neuron, except that the
membrane potential is not reset to the resting potential after spike gen-
eration as follows:
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dv;
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where the membrane time constant 7, is 20 ms for excitatory neurons
and 10 ms for inhibitory neurons, and RI is the total input generated by
excitatory and inhibitory reverberating synaptic inputs. The reversal po-
tentials of leaky, excitatory, and IPSCs are V, = =70 mV, V, = 0 mV,
and V, = —80 mV, respectively.

The adaptive threshold 6;(¢) has fast (k = 1) and slow (k = 2) compo-
nents and obeys the following:

0.0 = > H(t—t) + o (3)

J

t
H(t) = E a; exp <— *) (4)
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where t; is the j-th spike time of the i-th neuron, w the resting value of the
threshold, 7, the k-th time constant, and ¢, the weight of k-th compo-
nent. Each neuron generates a spike when its membrane potential
reaches the instantaneous value of the spike threshold, and the threshold
value is increased according to Equations 3 and 4 at every spike firing and
decays exponentially to the resting value w when the neuron does not fire.
The total synaptic input to the neuron is interrupted during a refractory
period of 1 ms. In excitatory neurons, the magnitudes of the fast compo-
nent o, are drawn randomly from a normal distribution with the mean
1.5 mV, and the SD 0.25 mV, and the magnitude of the slow component
is set as &, = 0.5 mV. In inhibitory neurons, the magnitudes of fast and
slow components are set as &, = 3 mV and «, = 0. Excitatory and
inhibitory neurons have identical time constants, 7, = 10 ms, for fast
components, and excitatory neurons have 7, = 200 ms for slow compo-
nents. For both neuronal types, = —55 mV.

The time course of the synaptic conductance g(t) of the i-th neuron is
described as follows:

dg; &i
w——g+2Gﬂrw—@ (5)

where the decay constant 73 = 2 (ms), d; is the synaptic delay, G;; the
synaptic weight from the j-th to the i-th neuron, and 8(¢) is Dirac’s &
function. The delays of the excitatory-to-excitatory synaptic connections
are uniformly distributed in the range of 1-3 ms, and the delays of the
other connections have an identical value of 1 ms. Setting the different
delays enhances the stability of spontaneous activity (Teramae et al.,
2012). The weights of the excitatory-to-excitatory synaptic connections
are drawn from the following lognormal distribution independently for
individual neurons:

V(x) =

Inx — w)?
( M)) ©

1
2Tox P < - 20°

where o = 1.0 and u = log(0.2) — o7 are the mean and SD of the
variable’s natural logarithm. Equation 6 mimics the typical EPSP ampli-
tude distributions observed in the experiment (Song et al., 2005; Lefort et
al., 2009). Here, any unrealistic value that is >20 mV is avoided by
drawing a new value from the distribution. Thus, in our model, each
excitatory neuron has terminals with similar heterogeneous synaptic
connections weighted as lognormal. The weights of excitatory-to-
inhibitory, inhibitory-to-excitatory, and inhibitory-to-inhibitory synap-
tic connections are uniform for mathematical simplicity as the
corresponding experimental distributions are not known well, and their
values are fixed at 0.018, 0.0035, and 0.0025, respectively, to ensure stable
spontaneous activity. Synaptic transmission fails at excitatory-to-
excitatory synapses at a rate depending on the amplitude of EPSP as
follows:

0.1

Pt = 01+ EPSP [mV]' 7
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The network is randomly connected so that the innervation probabilities
of excitatory and inhibitory neurons are 0.1 and 0.5, respectively. Brief
external Poisson spike trains are applied to all neurons to initiate spon-
taneous activity in the network model.

Gaussian-weighted network of MAT model. This approach inherits its
structure from the original lognormal model, maintaining its parameters
and characteristics but for the aspects we mention below. The weights of
excitatory-to-excitatory synapses were drawn from a normal distribution
as follows:

1 (x = po)?
’\I,Gz\uss(x) \/EO'G eXP( 20_%; )’ (8)

where wg and o are the mean and SD. As this distribution allows nega-
tive values, we have truncated its results, allowing synaptic weights to
take only non-negative and realistic numbers <20 mV. To make a fairer
comparison between this approach and its lognormal counterpart, we
ask that u should be so that the mean for the resulting truncated distri-
bution approaches p; (with an error of 0.001), and 05 = o7, where u;
and oy are the mean and SD of the lognormal counterpart, respectively.

pto?/2 2pto? 2
e (e” — 1), where wand

Theyare givenas u; = e and o, = \
o hold the same meanings as in Equation 6. In this work, we set us =
—0.114082 and o; = 0.896338.

As changing the weight distribution function broke our previous
spontaneous activity, we lowered the resting threshold value w to —60
mV, a procedure that showed itself successful for achieving longer stabil-
ity in the lognormal network. Such results, however, were not found in
the Gaussian network, even though durations for dying activities were
increased in general. Therefore, in the presence of the lowered w, we
further applied external background input represented by Poisson spike
trains at 1 Hz to a randomly chosen subgroup of 5% of the excitatory
neuron population. By analyzing the results for the duration of activities
as shown in Figure 9A, we chose the weight values for inhibitory-to-
excitatory and inhibitory-to-inhibitory synapses as 0.0023 and 0.0037,
respectively, keeping the original value of the excitatory-to-inhibitory
weight, 0.0018. This balance gives us 86% of chance of having a simula-
tion with activity longer than 5 s, and only such activities were used to
extract our results. Activities lasting 10 s were prioritized for any single
analysis.

Synchrony and population synchrony. The words “synchrony” and
“population synchrony” are used herein to describe distinct phenomena.
In Figure 1F, the cross-correlograms of each neuron pair were calculated
from presynaptic and postsynaptic spikes separated by intervals within
(—20, 20 ms). The cross-correlograms over all neuron pairs were then
averaged, the mean value (over bins) from the peak value was subtracted,
and the resultant value normalized using the mean to define synchrony.
In Figures 4 and 6, the magnitude of the population synchrony was
defined as the fraction of neurons that fired at least once in a sliding time
window of 30 ms. We calculated the instantaneous firing rates of a neu-
ron for population synchrony of given magnitude level by dividing by
0.03 s the average number of spikes generated by the neuron over re-
peated population synchrony of that level. The time step for the sliding
time windows was 10 ms.

Correlation coefficient. In each time window, a correlation coefficient
between spike trains of two excitatory neurons was calculated as follows:

~ Cov (ny, n,) ©)
P= \Var(n,)Var(n,)

where 1, and n, are the spike counts of neuron 1 and neuron 2 in the time
window, Cov(n,, n,) is the covariance of spike counts between the two
neurons, and Var is the variance in spike counts.

Selectivity indices. Selectivity indices were defined to assess the change
in dominance among excitatory neurons with an increased magnitude of
population synchrony. Two values from each Lorenz curve y = L(x) of
the distributions of firing rates are exploited; y,,, = L(1/2) gives the
fraction of spikes emitted by the lower 50% of excitatory neurons to
the overall spikes emitted by all excitatory neurons. Similarly,
X1, =1 — L7'(1/2) represents the most active fraction of excitatory
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neurons generating half of all spikes to all excitatory neurons. The two
quantities for the long-term averaged firing rates of individual neurons
(x{%, $19) and the firing rates for each class of the ranked time windows
(x4, ;) (see Fig. 4D) are calculated, where the index r refers to the six

ranks from A to F. The value of "), is smaller for a stronger population

synchrony, as is the value of x"),. Now, the selectivity index of each class
ris defined by x\7,/x{%,, or similarly by 7,/\%,, which is unity if spikes
from each neuron contribute equally to the count of all spikes. In Figure
6, the former index is shown in orange, whereas the latter index is shown
in yellow. The selectivity indices are small in the time windows for highly
synchronous events.

Statistical test for sequence propagation. Sequences propagating
through the pathways formed by extremely strong synapses are expected
to be statistically significant. We examined this by the following three
methods. In the first method, we calculated the cuamulative distributions
of sequences following bursts of a reference excitatory neuron and having
length n = 11. We tracked only such sequences of single spikes and bursts
that propagate along a cascade of the strongest 25 (instead of 5) synapses
from each participating neuron and defined the temporal order of par-
ticipating neurons using the first spikes within bursts if they generate
bursts. We used the large number of strong synapses to pool many
different sequences. The observed sequences were arranged in the de-
creasing order of their frequencies, and a cumulative distribution was
generated. Then, as a control, we calculated a similar cumulative distri-
bution for sequences propagating in arbitrary time periods temporally
far from any activity from the reference neuron. We may term these
sequences “imaginary sequences.” We examined by Kolmogorov—
Smirnov (KS) test whether the distributions of actual and imaginary
sequences are statistically different, which clarifies whether some se-
quences following bursts of a reference neuron occur statistically more
often when the neuron is active than in other instances.

In the second method, we used different control sequences, in which
the temporal order of the (#—1) neurons following a reference neuron
was randomly permuted. We constructed cumulative distributions for
actual and permuted sequences, and performed the KS test to examine
whether they are statistically different. If this is indeed the case, the se-
quences following the firing of a reference neuron occur in specific tem-
poral orders more often than expected by chance.

In the third method, we changed our control sequences to those fol-
lowing single spikes of a reference neuron. We analyzed cumulative dis-
tributions for burst-following and single-spike-following sequences by
KS test to examine whether the firing pattern can influence the occur-
rence of statistically significant sequences.

Results
Dynamics of bursty neurons in the recurrent network
We examined whether the lognormal statistics observed in
single-cell and neural ensemble activities in the hippocampus
originated from interactions between the lognormal distribu-
tions of synaptic weights and bursting properties of hippocampal
neurons. To this end, we constructed a network model of the CA3
region with recurrent excitatory connections in which the EPSP
amplitudes were lognormally distributed in individual neurons
(Fig. 1A). We used the MAT model to describe both single spikes
and spike bursts of CA3 neurons, where a spike burst was defined
as a series of two or more spikes with <6 ms intervals (Ranck,
1973; Harris et al., 2001), unless otherwise stated. Thus, the char-
acteristic feature of the present network model was that each
neuron demonstrated a bursting property. The MAT model is
mathematically simple and enabled us to perform numerical sim-
ulations in large-scale networks. Because the proportion of very
strong synapses in a lognormal network is small, individual neu-
rons may acquire very strong connections only when they receive
sufficient synaptic inputs, that is, when the network is sufficiently
large.

Except for the bursty property of neurons, the present net-
work model shares various dynamic properties with the lognor-
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Figure 1.  Basic properties of the model. A, The weights of excitatory-to-excitatory synapses are lognormally distributed. Inset, A schematic illustration shows that all excitatory
neurons have equally heterogeneous weights of synaptic connections. B, Raster plot of 10,000 excitatory (red) and 2000 inhibitory (blue) neurons is shown for spontaneous network
activity (top) together with their population firing rates (bottom). C, Time evolution of the membrane potential (thick trace) and spike threshold (thin trace) is shown for an excitatory
(red) and an inhibitory (blue) neuron (left panels). A spike burst from an excitatory neuron is magnified (right). D, Distributions of the coefficient of variation values are shown for
excitatory and inhibitory neurons. E, Firing rates and coefficient of variation values of excitatory neurons are positively correlated due to their bursting nature. F, The ranges of parameter
values yielding stable spontaneous activity are shown with the average firing rates of excitatory (top) and inhibitory (bottom) neurons. Unstable regions are shown as gray (diverging
activity) and white (vanishing activity).
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Figure 2.

Spike bursts in individual excitatory neurons. 4, 1SI distributions of excitatory (left) and inhibitory (right) neuronal populations. Neurons are arranged in descending order of average

firing rates. B, The probability of finding a given number of spikes in a burst is shown for a typical excitatory neuron and for an exceptionally bursty neuron in C. D, The proportions of excitatory
neurons with a given correlation coefficient between the bursting probability and burst length. E, Recursive map for intervals between successive bursts. F, Time courses for EPSCs (left) and IPSCs
(middle) evoked in an excitatory neuron during bursts. The averaged time courses (solid lines) and SDs (gray shading) calculated from 200 bursts. Time 0 indicates the time at which the postsynaptic

neuron fires. The trajectory of EPSCs and IPSCs averaged over 20 neurons is shown on the right.

mal network model of integrate-and-fire neurons (Teramae et
al., 2012). As shown in that study, in this latter type of network,
recurrent synaptic inputs to many weak synapses generate sub-
threshold noise useful for maximizing the signal-to-noise ratio of
spike transmissions at extremely strong recurrent synapses.
Through this mechanism, a brief application of external stimuli
elicited a stable spontaneous activity in the neural network exam-
ined in the present study in which time-varying excitatory and
inhibitory activities were balanced (Fig. 1B). During a spike burst,
the spike threshold of a MAT neuron was incremented by a small
amount whenever the membrane potential hit the threshold
from below; otherwise, the spike threshold declined exponen-
tially to a baseline level. A burst eventually stopped because the
threshold rapidly increased during the burst (Fig. 1C). Only oc-
casional strong excitatory inputs evoked single spikes or spike
bursts from postsynaptic neurons, keeping neuronal firing very
sparse and irregular (Fig. 1D, E). Hippocampal pyramidal neu-
rons exhibit a refractory period of ~100 ms between successive

spike bursts due to the slow inactivation of sodium channels
(Mickus et al., 1999; Su et al., 2001), and such burst refractoriness
emerged in the MAT model from the slower decay constant of the
spike threshold 7, (see Materials and Methods). The network
activity was self-sustained without external background input, so
the neural dynamics were deterministic. Our model robustly gen-
erated stable spontaneous activity across a wide range of param-
eter space (Fig. 1F).

The quantitative features of the spike bursts in our model were
in good agreement with the experimental observations of the
hippocampus (Harris et al., 2001). Individual pyramidal cells ex-
hibit both single spikes and spike bursts, and typical interspike
intervals (ISIs) during a burst are ~2—4 ms. The IST histogram in
our model was bimodal, reflecting the generation of single spikes
and spike bursts, although the ISIs in a burst were typically 1-2
ms, slightly shorter than the experimentally derived hippocampal
values (Fig. 2A). In the hippocampus, the number of spikes
within a burst varies from event to event in a single neuron as well
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as across neurons, and bursts with more spikes occur less fre-
quently. Typically, the probability that a pyramidal cell generates
a burst of length 7 (i.e., a burst contains n spikes) decays expo-
nentially as a function of n for the majority of pyramidal cells.
However, some pyramidal cells are exceptionally bursty, and
their distributions of burst length are supraexponential. Similar
to experimental results, the majority of our model neurons
showed an exponential distribution of the burst length (Fig. 2B),
whereas exceptionally bursty neurons showed a clear trend away
from exponential behavior (Fig. 2C). However, the correlations
between the generation probability and burst length were contin-
uously distributed over the entire excitatory neuron population,
indicating no clear border between the two categories of bursty
model neurons (Figs. 2D, 3B,C). In hippocampal pyramidal
cells, the ISIs between successive spikes are progressively pro-
longed in a spike burst, which was also the case in our model (Fig.
2E). In the spontaneous activity of the model, each excitatory
neuron fired when the balance between the excitatory and IPSCs
was biased slightly toward excitation (Fig. 2F). This result is con-
sistent with a similar finding in spontaneous sharp wave-like
events that occur in slice preparations of the hippocampus (Beh-
rens et al., 2005). Pyramidal cells have been shown to exhibit
sharp wave-locked spiking when excitation briefly dominates
over inhibition in CA3 (Héjos et al., 2013) and CA1 (Mizunuma
etal., 2014).

Firing rate distribution and burstiness of neurons

In the hippocampus, the distribution of the mean firing rate and
burstiness (i.e., the burst-event rate and burst index, where the
latter refers to the ratio of spikes within a burst to all generated
spikes) in a neural population displays lognormal patterns re-
gardless of brain states, such as slow-wave or rapid eye movement
sleep, running, and immobility (Mizuseki and Buzsaki, 2013). As
shown in Figure 3A—C, excitatory neurons in the present model
displayed lognormal patterns in the distributions of those quan-
tities. The distributions for inhibitory neurons were narrow and
not regarded as lognormal. For excitatory neurons, the median,
upper, and lower quartiles for the average firing rates were 0.87,
1.48, and 0.48 Hz, respectively; for burst-event rates, they were
0.027, 0.079, and 0.008 Hz, respectively; and for the burst index,
they were 0.10, 0.18, and 0.05 Hz, respectively. In Figure 3D, we
constructed Lorenz plots for the average firing rates of excitatory
and inhibitory neurons to calculate the Gini coefficient (Gini,
1921), which measures inequality among the values of a fre-
quency distribution, becoming zero if all neurons equally con-
tribute to the distribution. The coefficient was calculated as 0.41
for excitatory neurons (Fig. 3E). All of these values obtained for
our model were in good agreement with those measured for hip-
pocampal pyramidal cells. In addition, the burst-event rate and
burst index were positively correlated with the firing rate, as ex-
perimentally observed for the burst index (Fig. 3F). These results
showed that population bursts are dominated by a relatively
small number of highly active neurons in the lognormal network.
However, unlike results from experimental models, the present
model lacked low-frequency firing neurons displaying strong
burstiness, suggesting that a mechanism additional to the lognor-
mal pattern of excitatory recurrent synapses boosts burst gener-
ation in hippocampal neurons. For instance, although most
hippocampal CA3 pyramidal cells produce bursts, the patterns of
spike firing exhibit a considerable cell-to-cell variability (Brown
and Randall, 2009). This diverse heterogeneity in excitatory
neuron population was not incorporated into our model. Fur-
thermore, our model also did not take into account the highly
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nonrandom wiring topology of hippocampal circuits (Takahashi
et al., 2010). The nonrandom connectivity, especially that of in-
hibitory circuits, may further enhance the heterogeneity of firing
patterns across the excitatory cell population.

As shown above, our model predicts that some activity indices
also exhibit lognormal patterns in inhibitory neurons. However,
the quantitative results obtained for inhibitory neurons signifi-
cantly depended on how we modeled the unknown details of
hippocampal inhibitory circuits. Therefore, the predictions for
the inhibitory neurons should be considered qualitative rather
than quantitative.

Although a rigorous treatment is difficult, we may heuristi-
cally argue the underlying mechanism oflognormal distributions
in the network of MAT model. Leaky-integrate-fire (LIF) neu-
rons show alognormal firing rate distribution if the average firing
rate of spontaneous activity is sufficiently low (e.g., Roxin et al.,
2011; Teramae and Fukai, 2014). This follows from the facts that
the sum of many independent identical spike inputs obeys a
Gaussian distribution and that the firing rate versus input fluctu-
ation ( f-AI curve) of LIF neuron is an exponential function in the
low-frequency regime (Brunel, 2000). Although the f~AI curve is
not analytically known for MAT model, we can expect that the
event rate for single spikes and bursts should obey lognormal
distributions. Unlike in LIF neuron, spiking does not reset the
membrane potential in MAT model. Rather, threshold is reset
and then evolves with fast and slow time scales (1, << 7,). Be-
cause the typical interburst interval T'is much larger than the fast
time scale responsible for burst generation (Fig. 2A), we may treat
multiple spikes within a burst effectively as a single firing event.
Furthermore, we may regard threshold value at every burst onset
as approximately constant if variations from burst to burst are
negligible (Fig. 1C). Now, except for boundary conditions, MAT
model and LIF neuron obey identical Fokker-Planck equations
for the membrane potential (Brunel, 2000). Therefore, the first
passage time to threshold, from which the exponential response
curve is derived for LIF neuron (Roxin et al., 2011; Teramae and
Fukai, 2014), may take approximately identical values in MAT
model and LIF neuron. Thus, we expect that the rate R, of events
(including single spikes and bursts) obeys an approximate log-
normal distribution in MAT model. Now, numerical simulations
show that ~90% of the events are single spikes and the remaining
10% are bursts (Fig. 2B). If all neurons generate single spikes in
the fixed fraction of events, or if this fraction also varies from
neuron to neuron lognormally, firing rate f and burst event rate
R, obey approximate lognormal distributions with different scale
parameters. Then, because spike threshold increases by « at every
postsynaptic spike during a burst, the number of spikes within a
burst is approximately calculated as the amplitude of EPSP di-
vided by «, and burst index is estimated as follows:

EPSP/a X R,
7 )

Equation 10 suggests that burst index also obeys a lognormal
distribution, as the EPSP amplitude, fand R, all obey lognormal
distributions. If variables x and y are lognormal, variables xy and
1/x also obey lognormal.

The above arguments are far from rigorous. However, they
suggest that different mechanisms underlie the various lognor-
mal distributions in the present model. In particular, Equation 10
suggests that a lognormal fit for burst index requires the lognor-
mal property of synaptic weights unlike for firing rate and burst
event rate.

burst index = (10)
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Temporal and spatial distributions of population dynamics
The SWR is a transient activity observed in CA1 and is primarily
triggered by synchronized firing of neural ensembles in CA3
(Csicsvari et al., 2000; Behrens et al., 2005; Nakashiba et al.,
2009). Population synchrony refers to the synchronous activa-
tion of neurons in a specific time window, which is typically in the
range of 100 ms (see Materials and Methods). Various indices
measuring the magnitude of the population synchrony, for in-
stance, the proportion of neurons activated during the time win-
dow, obey lognormal patterns in areas CA1 and CA3, both inside
and outside of SWR events (Mizuseki and Buzsaki, 2013). We
next examined whether our model generated such distributions
for the population synchrony.

To characterize the magnitude of the population synchrony,
we counted the numbers of excitatory and inhibitory neurons
that fired within a time bin of 30 ms (Fig. 4A). The population
synchrony exhibited significant temporal fluctuations in its mag-
nitude, and the instantaneous firing rates and the magnitude of
the synchrony were strongly correlated between excitatory and
inhibitory neurons, implying that an excitatory—inhibitory bal-
ance was maintained during the population synchrony (Fig. 4B).
The population firing rate and magnitude of the population syn-
chrony were also positively correlated, and their distributions
were skewed over excitatory and inhibitory neurons (Fig. 4C).
Similar results have been reported for pyramidal cells (Mizuseki
and Buzsaki, 2013).

Population bursts frequently occur during SWR events, al-
though they do not always co-occur (Buzsaki et al., 2002; Lee and
Wilson, 2002; Foster and Wilson, 2006). Although the precise
relationship between SWR and population burst remains uncer-
tain, it will be intriguing to compare the distribution of popula-
tion bursts in this model with experimental observations for SWR
and population burst. As shown above, the magnitude of the
population synchrony varied significantly from event to event in
our model. We categorized this magnitude using the standard
normal deviate (Fig. 4D). Because we did not model neural cir-
cuits in CA1, we needed to define a reasonable method to com-
pare the population synchrony in the model with the SWR events
in the hippocampus. Figure 4E shows a typical temporal sequence
ofhighly synchronous events in the model, which have a standard
normal deviate >2. The distribution of interevent intervals was
exponential, and the intervals were uncorrelated between the
successive events, suggesting that the sporadic outbreaks of high
excitation emerging among neural populations follow a Poisson
process. The average interevent interval was ~1.25 Hz, which
approximately coincides with the intervals of spontaneous sharp
waves measured in area CA3 in vitro (~1.1-1.6 Hz) (Ellender et
al., 2010; Héjos et al., 2013) and in vivo (0.01-2.0 Hz) (Buzsaki,
1986). The SWR events in CAl, which reflect the population
synchrony in CA3, occur at average frequencies of 0.3-1.0 Hz
during sleep (Eschenko et al., 2008; Girardeau et al., 2014). These
values were also consistent with the prediction of our model.
Furthermore, excitatory neurons dominantly generated single
spikes in our model (average spike number = 1.43; Fig. 4F)
similar to those observed during in vitro SWRs (spike num-
ber = 1.5 = 0.2) (Behrens et al., 2005). All of these results
support our selection of SWR-associated population syn-
chrony in the model.

We next calculated the proportion of neurons participating in
each highly synchronous event among the ~250 randomly cho-
sen neurons and found that the distribution of the proportion
obeyed a lognormal pattern (Fig. 4G). This result is consistent
with the experimental finding that the proportion of pyramidal
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cells participating in the population synchrony during SWRs
shows a lognormal pattern (Mizuseki and Buzséki, 2013). We
also calculated spike correlations between excitatory neuron
pairs (see Materials and Methods). As shown experimentally, the
correlation coefficients were also distributed lognormally (Fig.
4H). As intuitively anticipated, neuron pairs having large corre-
lation coefficients were found more often among those pairs con-
nected by extremely strong synapses than among pairs connected
by weaker synapses (Fig. 4I).

Population activity patterns in highly synchronous events
Firing patterns of individual neurons during population syn-
chrony exhibit skewed patterns in experiments (Mizuseki and
Buzsaki, 2013). We investigated these patterns in highly synchro-
nous events by calculating the same three indices that were used
in the experimental analyses for every excitatory neuron: (1) the
proportion of spikes within highly synchronous events to all
spikes; (2) the proportion of highly synchronous events in which
a neuron fires relative to all events; and (3) the mean number of
spikes in a highly synchronous event (Fig. 5A). The distributions
of these indices displayed skewed patterns over a broad range of
values (Fig. 5B), with profiles and value ranges of the distribu-
tions similar to those observed experimentally. The three indices
exhibited positive correlations with the firing rates of individual
neurons (Fig. 5C-E), consistent with previous experimental find-
ings, except for a positive correlation obtained for the proportion
of spikes in highly synchronous events (r = 0.17; Fig. 5C). In the
experiments, this index measured during sleep and awake SWRs
is negatively correlated with firing rates (r = —0.12 to ~—0.56),
showing a rare qualitative discrepancy between our model and
the experiments. The degrees of the correlations for the other
two indices were consistent with those in experimental
observations.

Neural selection during highly synchronous events

Whether a highly synchronous event represents the overall acti-
vation of the entire neural population or the selective activation
of a subpopulation has important functional implications. Dur-
ing a highly synchronous event, both excitatory and inhibitory
neurons are strongly modulated by reverberating synaptic input.
Accordingly, some neurons are more depolarized by increased
excitatory activity, whereas other neurons are more hyperpolar-
ized by increased inhibitory activity (Fig. 6A). To achieve further
insight into these competitive neural dynamics, we categorized
population synchrony into six levels of magnitude ranked from A
(the lowest) to F (the highest) according to the standard normal
deviate of the distribution of the magnitude, as illustrated in
Figure 4D. Highly synchronous events are categorized as rank F.
We calculated the distributions of instantaneous firing rates over
the entire neural population for the various magnitude levels
(Fig. 6B).Itis clear from the figure that the distributions acquired
longer tails as the magnitude of the population synchrony in-
creased, implying that the neurons were not uniformly activated
during a highly synchronous event. The highly activated neurons
were not necessarily those neurons already firing at high average
frequencies during spontaneous activity because some of these
highly activated neurons were actually inhibited during highly
synchronous events (Fig. 6C). Indeed, whereas the average firing
rate of the neural population increased monotonically with the
magnitude of the population synchrony, the proportion of neu-
rons with increased firing rates to all neurons decreased during
the epochs of highest synchrony (Fig. 6D), indicating that the
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activity of only a small number of neurons was selectively en-
hanced in these epochs.

We assessed the contributions of individual neurons to the
overall spike count in the network. For the six ranked states of
population synchrony, we calculated the proportion of the spikes
r, generated by the 50% of excitatory neurons that were less active
to all spikes and the proportion of the excitatory neurons r, that
produced 50% of all spikes. For instance, during the strongest
population synchrony (rank F), the least active half contributed a
mere 17% to all spikes (r, = 0.17), and only 15% of all neurons
contributed to half of all spikes (r, = 0.15). We also calculated
these proportions for the long-term averaged network activity (R,
and R,)) and defined the “selectivity index” for each ranked state
asr/R orr,/R, (see Materials and Methods). We found that R, =
0.22 and R,, = 0.21, and thus the selectivity indices were 0.77
and 0.71 for the F-ranked synchrony. As the population syn-
chrony grew stronger, the selectivity indices rapidly decreased
(Fig. 6E), indicating that the excitatory neurons underwent
stronger competition during the epochs of stronger popula-
tion synchrony.

Efficient propagation of spike bursts through the

lognormal network

We showed that our lognormal neural network generated popu-
lation neural activity that replicated the statistical properties of
single spikes and complex spike bursts of hippocampal CA3 neu-
rons. A question arises regarding the functional role of the spike

bursts generated by the lognormal network. Spike transmission
in a lognormal network is highly probabilistic even at strong
synapses (Teramae et al., 2012). Similarly, single spikes and spike
bursts showed only a finite “lifetime” in the present lognormal
network. Spike bursts, however, exert a stronger impact than
single spikes on a postsynaptic neuron (Lisman, 1997), and hence
may travel longer distances and more robustly than single spikes
in a recurrent network. This possibility is of particular interest
from a functional viewpoint because a lognormal network in-
volves a tremendous number of synaptic pathways linked by
strong connections.

We therefore investigated how spike bursts and single spikes
were distinctly propagated through such synaptic pathways. We
selected an arbitrary excitatory neuron from the network and
observed how signals propagated through the cascade of neurons
starting from this “parent” neuron. To simplify the analysis, we
tracked only spikes and bursts that propagated through the five
strongest links from any neuron in the cascade. Figure 7A depicts
an example of such cascade networks up to the fourth generation
of neurons. Although in reality spikes and bursts may propagate
through weaker connections, we did not take those pathways into
account because the probability of such a transmission in the
model was small. Figure 7B displays typical examples of spike
propagation and burst propagation in the cascade network. A
single spike from the parent neuron typically traveled only a few
links along a few pathways. By contrast, a spike burst traveled a
much longer distance along many more pathways to a signifi-
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and inhibitory (Inh, blue) neurons, the magnitude of population synchrony in excitatory neurons, and the average time-
varying membrane potentials of two excitatory neuron groups. A neuron group is depolarized during, but not outside, the
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synchronous event (bottom, dashed red trace). B, The firing rates of excitatory neurons are distributed lognormally for
different magnitudes of population synchrony. €, Modulations in the firing rate are shown for the 100 most active excit-
atory neurons during population synchrony with different magnitudes (ranked in A to F; see Fig. 4) in descending order of
mean firing rates. D, The proportion of excitatory neurons generating more spikes during population synchrony of given
rank than their means is shown (black solid line). Horizontal bars indicate the medians and the upper and lower quartiles
of the distributions of the firing rates. Triangles represent mean values. E, Gini coefficients (solid line) and two selectivity
indices (bars). These indices tell whether the less active half of neurons increases their contributions to network activity
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details, see Materials and Methods).
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mal network, and this may have signifi-
cant implications for the processing of
memory traces in CA3.

Statistical test of sequences

We then tested whether sequences propa-
gating through the present network
model are statistically significant by two
methods that use imaginary or permuted
sequences as control groups (see Materials
and Methods). Figure 8, A and B, exem-
plifies the distributions of actual and
imaginary sequences with length 3 or 7,
respectively, following bursts of a refer-
ence neuron, which was highly bursty.
The distributions of actual and imaginary
sequences were statistically different (KS
test: p < 0.01), implying that some se-
quences following the bursts of the refer-
ence neuron occur statistically more often
when the neuron is active than in other
instances. Figure 8, C and D, shows simi-
lar cumulative distributions of real and
permuted sequences for the same refer-
ence neuron as before. The distributions
for actual and permuted sequences were
statistically different (KS test: p < 0.01),
meaning that the sequences following the
bursting of a reference neuron prefer
specific temporal orders to randomly gen-
erated orders. Because of practical limita-
tions of computation time and memory,
we repeated similar analyses in the five
most bursty neurons (including the previ-
ous neuron, listed as the fourth most
bursty neuron). We found that longer se-
quences are generally less likely to be sta-
tistically =~ significant. Although the
critical length varied from neuron to
neuron, actual sequences were statisti-
cally significant compared with per-
muted sequences if the length was
typically shorter than 5 or 6. By contrast,
sequences were statistically significant
compared with imaginary sequences
only for lengths up to 3 or 4.

We then analyzed whether sequences
following bursts of a reference neuron
and those following single spikes of the
same neuron are statistically different. As
shown in Figure 8, E and F, for the same
reference neuron as used in the previous
tests, the differences are large, especially

cantly greater number of “children” neurons. Burst propagation
originating from a parent neuron is stereotyped and repeatable,
and may recruit thousands of children neurons within several
steps of propagation (Fig. 7C). In Figure 7D, we summarize the
statistics of burst propagation for initial bursts from the parent
neuron comprising different numbers of spikes. For example, the
transmission length (the number of links a burst propagates)
could be as large as 30 if the initial burst contained more than
three spikes. These results showed that spike bursts are much
more effective than single spikes for routing signals in a lognor-

for short lengths. The cumulative distribution for single spikes
increases linearly with the rank order, implying that all sequences
following single spikes occur with almost equal probabilities. In
three other neurons, the differences remained to be statistically
significant for sequence lengths equal to or shorter than 3. In
one reference neuron, single spikes did not produce any se-
quence. Thus, the occurrence of bursts favors particular se-
quences in detriment of others, altering an otherwise uniform
frequency distribution of sequences generated by single
spikes. Together, our results imply that burst sequences prop-
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agating through the pathways of strong
synapses are statistically significant.

Comparison with other network
models

We have shown that lognormal connec-
tivity is sufficient for producing various
properties of spike bursts observed in the
hippocampus during highly synchronous
events. We examined whether other con-
nectivity structures, typically Gaussian
random connections, are also able to rep-
licate these properties. We constructed a
recurrent network model of MAT neu-
rons connected randomly with Gaussian-
weighted excitatory synapses. The weights
of each excitatory synapse were drawn
from a Gaussian distribution in which the
negative portion was truncated. The mean
and SD of the truncated Gaussian were the
same as those of the lognormal model.
The weights of other connection types
were uniform and parameter values for
MAT model were unchanged, except w
(see Materials and Methods).

It was previously shown that the gen-
eration of sparse (typically <10 Hz) spon-
taneous activity is difficult in truncated
Gaussian recurrent networks of leaky
integrate-and-fire neurons (Teramae et
al., 2012). Similarly, we could not find out
parameter values for which the present
truncated Gaussian network generates
stable sparse spontaneous activity. There-
fore, we added weak background input to
randomly chosen 5% of excitatory neu-
rons. Then, this network could generate
long-lasting sparse activity (at ~1-2 Hz)
in a narrow area of the parameter space
(Fig. 9A). For the following results, we set
Gg; = 0.0023 and G;; = 0.0037, at which
the sparse activity continued most ro-
bustly. Excitatory neurons displayed a
skewed firing rate distribution (Fig. 9B),
as expected from the low firing rates of
these neurons (Roxin etal., 2011). By con-
trast, the distributions of burst event rate
and burst index were not lognormal-like
(Fig. 9C,D). Indeed, the great majority of
excitatory neurons frequently showed sin-
gle spikes and only occasionally showed
consecutive double spikes (Fig. 9E). Here,
we define “bursty” neuron as a neuron
that achieves all activity sizes up to a burst
of size 3, a group that represents ~2% of
the total excitatory population. As evi-
denced by the biggest burst size neuron
(Fig. 9F), analogous examples to excep-
tionally bursty neurons in the lognormal
network (and in experiment) were not
found (compare Fig. 2C). In sum, we
found that the lognormal network is
much more susceptible to bursts of all
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include imaginary (4, B), permuted (C, D), and single-spike-following sequences (E, F) with lengths 3 and 7, respectively.

sizes, whereas the truncated Gaussian network shows a higher
average probability for single spikes (Fig. 9G). Finally, we exam-
ined burst propagation and found that bursts could propagate
only short distances in the truncated Gaussian network regardless
of burst size (Fig. 9H; compare Fig. 7D). This result suggests that
efficient routing of information by spike bursts is a virtue of the
lognormal network.

We also examined another model of Gaussian-weighted net-
work in which only the positive portion of a Gaussian weight
distribution having a zero mean was used to generate the weights
of recurrent excitatory connections. We performed similar nu-
merical simulations while changing the size of SD of this distri-
bution. We found a narrowly restricted region of the parameter
space in which sparse activity (at ~1 Hz) can last for at least a few
tens of seconds. All properties of this network, including difficul-
ties in burst propagation, were similar to those of the previous

Gaussian-weighted network (data not shown). Thus, properties
and implications of spike bursts are different between the lognor-
mal network and Gaussian-weighted network.

Discussion

Network mechanism of lognormal activity patterns

The lognormal distribution of synaptic weights implies that syn-
aptic strength is distributed over a broad range of magnitudes.
Theoretical models suggest that such distributions underlie the
lognormal distributions of firing rates in cortical and hippocam-
pal neurons in vivo (Koulakov et al., 2009; Teramae et al., 2012;
Ikegaya et al., 2013) and significantly improve the pattern re-
trieval performance of associative memory networks in spiking
neurons (Hiratani et al., 2013). For other weight distributions
without long tails, such as Gaussian distributions, recurrent neu-
ral networks contain very few of the low-frequency regimes (typ-



14598 - ). Neurosci., October 28, 2015 - 35(43):14585-14601

Omura et al. @ A Network Model for Bursting during Sharp Waves

E o '
Z
0.004 =A% 207 012 . 8705f o
= 2 N 5 e
- o 061 ® 4101 & o 1} 4
u 75% 205 g =)
0.003 - £ ® 1008: o
= = 504} - 39415 .
o 2 50% S 0.3 s, 10068 1 2 3
- s loos & Number of spikes per event
0.002 =02 ' el o
25% 50,1;,' o -0.02% z —r—
% 0 0 2 ®.5} ]
0.001 doT01 1 10 100 = 8
0001 00015 0002 00025 Firing rate (Hz) o
G e °'r
El S
450 .
C D G 1 2 3 4 5
- Number of spikes per event
%30 5 =1 0
S ocle laz <4} S 10 &
v 25 S g S >
= 1.8 2| g8 10 [ 1
£20}| e 3= =3¢t = 8 2 ~ Lognormal
2 R 2 §10,f : ]
o B & o
815 " 28 82} g 810 | . 1
S10f 1 2 2t = Sq0't o
= b 112 11 = ®'“5| Gaussian
5 ° Y | &8 ¢t AN ]
S oL i 2 g 2 C
Y — 0% & 05 01 12 W0 T T 2345867
Burst event rate (Hz) Burst index (Hz) Number of spikes per event
H
£ 0 So .0 0 a0
210 2010 210 210}
Qo S® © (3]
o =2 % =
S g 5 S 4
210" S w10 510" 510}
£ [T Qo &
7] 29 e [0}
= €S> S Qo
S o 32 5 zZ E 2
=10 Z510% 10 310%
12 3 45 12 3 45 12 3 45 123 45

Number of spikes

Figure9.

Number of spikes

Number of spikes Number of spikes

Network of MAT model with a truncated-Gaussian EPSP distribution. A, The small region in parameter space enables the network to produce nondiverging, long-lasting sparse activities.

Asin Figure 1f, unstable points are marked in gray (diverging activities) and white (vanishing activities; i.e., all activities were <<5 s). Pseudocolor code indicates the percentage of activities >5's
from all trial simulations with given values of synaptic weights. B-D, Distributions of firing rates, burst-event rates, and burst indices are shown for excitatory (red) and inhibitory neurons (blue).
Neither lognormal (as shown) nor normal distribution functions showed good fit for the excitatory firing rate distribution, whereas lognormal fit was used for comparison. The odd burst-event rate
distributions indicate the difficulty of bursting in the truncated Gaussian network. Compared with results of the lognormal network, all quantities ranged over less orders of magnitude in frequency.
E, F, The probability of finding a given number of spikes in a burst is shown for an average bursty excitatory neuron and for the excitatory neuron with the biggest burst size. G, Average probability
of finding a given number of spikes in a burst for all neurons of both truncated Gaussian network and lognormal network. Error bars from SD values were negligible to the actual means. H, Measures
for spike propagation (longest transmission length, number of activated children neurons, number of activated synaptic pathways, and number of branches) are shown for each possible number of
spikes involved in the initial burst. These measures were averaged over all instances of activities of a given size for all neurons. Variability is very low for different initial burst sizes, and mean values
(circles) are exceptionally low compared with the lognormal network. Error bars indicate the SD of those distributions.

ically <10 Hz) of spontaneous firing (Teramae et al., 2012) that
are necessary for a lognormal pattern of firing rates (Roxin et al.,
2011). As shown recently, lognormal distributions also appear in
other statistical features of hippocampal activity, such as the
burstiness of individual neurons (Mizuseki and Buzsaki, 2013).
Here, we demonstrated that lognormal distributions naturally
emerged in firing rates, burstiness, and the magnitude of the
population synchrony in a recurrent network of bursty neurons
that were connected lognormally. The model predicted exponen-
tial distributions of burst length for the majority of excitatory
neurons and supraexponential distributions for a minority of
neurons. These results were consistent with previous observa-
tions in the hippocampus (Harris et al., 2001). Our model also
predicts that the temporal fluctuation of population firing rates

and population synchrony display lognormal patterns in CAl
and CA3.

A class of neural networks possessing lognormal EPSP ampli-
tude distributions has been shown to generate a lognormal dis-
tribution in the mean firing rate (Koulakov et al., 2009; Roxin et
al., 2011; Teramae et al., 2012; Ikegaya et al., 2013). Yet, it is not
obvious why similar lognormal statistics appear in other statisti-
cal indices of neuronal activity because several potential origins
exist for these lognormal patterns. For example, a specific intrin-
sic property of neurons or a multiplicative stochastic process may
give rise to a lognormal distribution of burstiness. These possi-
bilities cannot be excluded because the intrinsic properties of a
cell crucially influence the statistical properties of burst gen-
eration. Our results, however, suggest that a lognormal EPSP
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amplitude distribution is sufficient for explaining the various
lognormal patterns observed in neuronal activity.

Lognormal neural networks spontaneously activate

neural ensembles

To describe the bursting activity in CA3, we used the MAT neu-
ron model, known for its ability to mimic the stochastic spiking
responses of in vivo cortical neurons (Jolivet et al., 2008; Ko-
bayashi et al., 2009). The resultant network model with lognor-
mally weighted synapses accounted for several known features of
single spikes and spike bursts in hippocampal neurons (Harris et
al., 2001). Consistent with the results of recent experiments (Ha-
jos et al., 2013; Mizunuma et al., 2014), spike bursts occurred in
our model because of a transient deviation from the balanced
state of excitation and inhibition. It is widely thought that the
transient synchronous activation of ensembles of CA3 pyramidal
cells propagates to CA1 to cause SWRs (Buzsaki et al., 1983; Buz-
saki, 1989; Csicsvari et al., 2000). Our model showed that similar
temporal fluctuations in population firing rates and population
synchrony organized spontaneously in recurrent neural net-
works connected by lognormally weighted synapses. The propor-
tion of neurons activated in highly synchronous events obeyed a
lognormal distribution (Fig. 4G), and the distribution of the cor-
relation coefficients between connected excitatory neuron pairs
was also lognormal (Fig. 4H ), consistent with experimental ob-
servations (Buzsaki and Mizuseki, 2014). Thus, we propose that
the long tails of the synaptic weight distribution in the neural
network of CA3 consistently account for the sporadic outbreaks
of the population activity observed in CA1 during SWR events.

The recurrent architecture among excitatory and inhibitory
connections induces neurons to compete with one another dur-
ing highly synchronous events. The instantaneous firing rates of
the individual neurons fluctuate with an increased magnitude of
synchronization, with winner (depolarized) and loser (hyperpo-
larized) neurons emerging in the network, while maintaining
lognormal patterns for the overall distribution of firing rates. A
similar selection mechanism potentially underlies the selective
reactivation of neuron groups during SWR events that engage in
the hippocampal representations of episodes (Wilson and Mc-
Naughton, 1994; Skaggs and McNaughton, 1996; Nakashiba et
al., 2009; Carr et al,, 2011). Neurons in CA3 generate more bursts
during slow-wave sleep than in other brain states (Mizuseki and
Buzsaki, 2013). Our results suggest that spike bursts propagating
through the lognormal CA3 network generate an excess amount
of sequence information during slow-wave sleep (Fig. 7). Because
a single spike burst in Schaffer collaterals can induce long-term
potentiation at synapses on CAl pyramidal cells (Remy and
Spruston, 2007), the selective reactivation of bursting CA3 pyra-
midal cells likely enhances the process of memory formation
during SWR events in immobile or sleep states of an animal.
Voltage-dependent spike-timing-dependent plasticity may serve
to strengthen reciprocal connections between the co-activated
neurons (Clopath et al., 2010), or, alternatively, logarithmic
spike-timing-dependent plasticity (Gilson and Fukai, 2011) may
organize these neurons into mutually connected cell assemblies
(Hiratani and Fukai, 2014). Future studies will be necessary to
reveal how particular neural ensembles are selected for this pro-
cess based on past behavioral experiences.

Although the present model described several fundamental
features of burst generation in hippocampal neurons during pop-
ulation synchrony, some quantitative aspects of the modeled ac-
tivity deviated from those obtained during experiments. For
instance, the ISI during a burst of 1-2 ms described in the mod-
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eled activity was shorter than that for the experimentally ob-
served value of 2—4 ms. This may be due in part to our use of a
simple neuron model, which presumably lacked some important
details for the intracellular mechanism of burst generation. In the
hippocampus, pyramidal cells with lower spontaneous firing
rates tend to be activated more frequently during SWRs (Miz-
useki and Buzsaki, 2013), implying a negative correlation be-
tween the spontaneous firing rate and the proportion of spikes
during bursts to all spikes (correlation coefficients of ~—0.12 to
—0.56). In the model, however, the correlation coefficient was
~0.17. We speculate that inhibitory neurons play a role in pro-
ducing the counterintuitive negative correlation, although the
cause of the above discrepancy remains to be further clarified.

Our model well describes spontaneous activity in CA3. How-
ever, the random recurrent connectivity makes it difficult to lo-
calize the activity in a restricted part of the network. Therefore,
the model does not describe spatially localized task-related activ-
ity, such as place fields. The encoding of localized activity may
require cell assemblies characterized by highly nonrandom recur-
rent connectivity (Takahashi et al., 2010), such as modeled pre-
viously (Klinshov et al., 2014), or a specific configuration of
inhibitory connections.

Relationship to other models of sharp waves and ripples
Computational models of SWR oscillations in CA1 have been
proposed in which transient synchronous input from CA3 drives
pyramidal cells and GABAergic interneurons in CAl to cause
high-frequency oscillations with (Traub and Bibig, 2000) and
without axo-axonic gap junctions between pyramidal cells (Taxi-
dis et al., 2012). Some models include the influences of different
types of interneurons on pyramidal cell responses (Cutsuridis
and Hasselmo, 2010). Analysis of the distinct roles of inhibition is
important because recent experiments revealed that a transient
inhibition of interneurons in CA3 selectively activates the axon
initial segments of pyramidal cells during SWR events (Viney et
al., 2013). Stimulus-evoked synchronous bursting in CA3 was
previously studied in a recurrent network of multicompartmen-
tal hippocampal neuron models (Traub and Wong, 1982). Our
present results demonstrated that a lognormal recurrent network
spontaneously generated and coordinated the synchronous acti-
vation of ensembles of bursting CA3 neurons without external
input. Sharp waves are also likely to be spontaneous events be-
cause they preferentially occur when sensory influences on the
hippocampus are weak during sleep or immobile states (Carr et
al., 2011). Population synchrony was also modeled previously in
terms of frequency-dependent recurrent synapses (Tsodyks et al.,
2000). In this model population, synchrony tends to occur peri-
odically due to the inherent rhythm of dynamic synapses. By
contrast, the population synchrony generated in alognormal net-
work obeys the Poisson process.

The most important finding in our model is that a lognor-
mal network efficiently broadcasts spike bursts, but not single
spikes, to distant neurons through pathways consisting of
strong synaptic connections (Fig. 7). For instance, if a burst
from one neuron in a pathway activates on average 3 recipient
neurons, the initial burst can propagate to 6561 downstream
neurons after 8 steps (3°) and 531,441 downstream neurons
after 12 steps (3'?) of synaptic transmissions in a recurrent
network. By contrast, single spikes cannot travel a long dis-
tance. Although this estimation is oversimplified, we suggest
that only spike bursts, and not single spikes, are efficient in-
formation carriers in the lognormal networks of the hip-
pocampus and neocortex. Our results may account in part for
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the recent experimental findings indicating that the transmis-
sion of isolated spikes in the hippocampus is dispensable for
the acquisition of contextual fear memory and that informa-
tion transfer by hippocampal neurons relies solely on spike
bursts during memory encoding (Xu et al., 2012). Thus, over-
all, our results suggest that lognormal networks are useful for
sequence-based information processing in the brain.
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