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Behavioral/Cognitive

Transcranial Stimulation over Frontopolar Cortex Elucidates
the Choice Attributes and Neural Mechanisms Used to
Resolve Exploration-Exploitation Trade-Offs

Anjali Raja Beharelle, Rafael Polania, “Todd A. Hare,* and “Christian C. Ruff*

Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, 8006 Zurich, Switzerland

Optimal behavior requires striking a balance between exploiting tried-and-true options or exploring new possibilities. Neuroimaging
studies have identified different brain regions in humans where neural activity is correlated with exploratory or exploitative behavior, but
it is unclear whether this activity directly implements these choices or simply reflects a byproduct of the behavior. Moreover, it remains
unknown whether arbitrating between exploration and exploitation can be influenced with exogenous methods, such as brain stimula-
tion. In our study, we addressed these questions by selectively upregulating and downregulating neuronal excitability with anodal or
cathodal transcranial direct current stimulation over right frontopolar cortex during a reward-learning task. This caused participants to
make slower, more exploratory or faster, more exploitative decisions, respectively. Bayesian computational modeling revealed that
stimulation affected how much participants took both expected and obtained rewards into account when choosing to exploit or explore:
Cathodal stimulation resulted in an increased focus on the option expected to yield the highest payout, whereas anodal stimulation led to
choices that were less influenced by anticipated payoff magnitudes and were more driven by recent negative reward prediction errors.
These findings suggest that exploration is triggered by a neural mechanism that is sensitive to prior less-than-expected choice outcomes
and thus pushes people to seek out alternative courses of action. Together, our findings establish a parsimonious neurobiological
mechanism that causes exploration and exploitation, and they provide new insights into the choice features used by this mechanism to
direct decision-making.
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We often must choose whether to try something new (exploration) or stick with a proven strategy (exploitation). Balancing this
trade-off is important for survival and growth across species because, without exploration, we would perseverate with the same
strategies and never discover better options. Which brain mechanisms are responsible for our ability to make these decisions? We
show that applying different types of noninvasive brain stimulation over frontopolar cortex causes participants to explore more or
less in uncertain environments. These changes in exploration reflect how much participants focus on expected payoffs and on
memory of recent disappointments. Thus, our results characterize a neural mechanism that systematically incorporates antici-
pated rewards and past experiences to trigger exploration of alternative courses of action. j

ignificance Statement

long-term success (e.g., devoting resources to pursue alternative
sources of energy). Managing this quandary between exploiting
well-known choice options and exploring alternative opportuni-
ties is a central aspect of behavior for most species (e.g., Krebs et
al., 1978; Keasar, 2002; Ame et al., 2004; Ben Jacob et al., 2004;
Pratt and Sumpter, 2006; Hayden et al., 2011b) because explora-

Introduction

To make optimal choices, we often have to shift away from ac-
tions with known outcomes (e.g., relying on a current fuel
source) and test untried options that may potentially maximize
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tion is critical for organisms to harvest resources optimally for
growth and reproduction (Watkinson et al., 2005). When con-
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fronted with choices requiring a trade-off between exploration
and exploitation, organisms ranging from plants to primates be-
have according to the approximate best solution (Krebs et al.,
1978; Stephens and Krebs, 1986; McNickle and Cahill, 2009;
Bendesky et al., 2011; Hayden et al., 2011b). However, in hu-
mans, the neural mechanisms underlying this behavior are not
fully understood, particularly because the decision environments
where they are encountered are often dynamic, uncertain, and
involve no explicit cues for behavior, even when objectives are
clearly formulated (Cohen et al., 2007).

Neuroimaging studies have demonstrated a network of re-
gions that are activated during exploration but have not yet de-
termined whether this brain activity actually drives exploratory
choices or only reflects correlated cognitive processes. Specifi-
cally, these studies have shown that frontopolar cortex (FPC) and
the mid-intraparietal sulcus are more active when human partic-
ipants engage in exploratory modes of behavior (Daw et al., 2006;
Boorman et al., 2009, 2011; Laureiro-Martinez et al., 2013). Fur-
thermore, the FPC has been shown to track the reward probabil-
ity of unselected choice options (Boorman et al., 2009, 2011;
Donoso et al., 2014), and activity in an extended section of pre-
frontal cortex that includes the FPC is associated with uncertainty
in individuals who rely on this metric for exploration (Badre et
al., 2012). These studies suggest that FPC activity may reflect a
neural mechanism that triggers exploration, but whether or not
neural computations in FPC indeed directly control exploration
or exploitation is an open question.

In the present study, we addressed this question by applying
anodal and cathodal transcranial direct current stimulation
(tDCS) (Nitsche and Paulus, 2000) over right FPC (rFPC) to
enhance or decrease neural excitability, respectively, while par-
ticipants played a three-armed bandit task with continuously
drifting payoff magnitudes. Our central hypothesis was that en-
hancing rFPC excitability would increase deliberative explora-
tion (to collect information on bandit attributes), whereas
decreasing rFPC excitability would lead to a focus on exploiting
the bandit expected to give the maximum reward.

We also used choice variables derived from the computational
modeling analyses to test two more mechanistic hypotheses clar-
ifying the role of rFPC in controlling exploration. First, we
examined the hypothesis that the tDCS-induced changes in ex-
ploration are mediated by altered sensitivity to the payoff magni-
tude of the bandits. This hypothesis was derived from findings
that rFPC activity is increased during exploratory choices but is
decreased during exploitative choices that focus on the immedi-
ate payoffs (e.g., Daw et al., 2006). Second, we investigated the
more novel hypothesis that tDCS-mediated increases or de-
creases in exploration are related to higher or lower sensitivity to
previous unexpected outcomes in payoff magnitudes (i.e., pre-
diction errors), respectively. This hypothesis was motivated by
proposals that the rFPC is involved in integrating memories of
recent events to guide behavior (Tsujimoto et al., 2011). Our
results were consistent with all three hypotheses: Anodal and
cathodal rFPC-targeted tDCS indeed caused increased and de-
creased exploration, respectively. The increased exploitation dur-
ing cathodal stimulation was strongest following higher payoff
magnitudes, whereas the increased exploration under anodal
stimulation was driven by increased sensitivity to previous
negative prediction errors from unexpectedly low payoffs.
These findings establish the rFPC as a neural sine qua non for
integrating information about past, present, and future pay-
offs to arbitrate between exploration and exploitation in hu-
man decision making.
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Materials and Methods

Participants

Seventy-nine students at the University of Zurich (23 female, mean *
SEM age 23 * 0.34 years, range = 19-38 years) participated in our study.
Only healthy participants who were not taking any medication for neu-
rological or psychiatric illnesses or other psychotropic drugs were in-
cluded. Smokers were not excluded from the study. Participants were
randomly assigned to one of three groups that differed with respect to the
type of tDCS they received: anodal (N = 26, 8 females), cathodal (N = 27,
7 females), or sham (N = 26, 8 females). Participants were well matched
with respect to socioeconomic and personality variables across the three
groups (Table 1). All participants gave informed consent before the
study, and all experimental procedures were approved by the Zurich
Cantonal Ethics Committee.

The experiment was conducted in a custom-designed, multipartici-
pant tDCS testing room at the Laboratory for Social and Neural Systems
research. Participants were tested in groups of 6—12 people that were
evenly distributed across the three stimulation conditions by random
assignment in each testing session. Stimulation was initiated simultane-
ously for participants across all conditions in each testing session. Assign-
ment to one of the three tDCS groups was performed in a double-blind
fashion, where the persons who conducted the experiment did not know
which seats received active or sham stimulation, and the participants did
not know which type of stimulation they received. The group testing of
participants thus controlled for unspecific effects, such as order and time
of day effects that could potentially confound serial testing regimens.

Experimental paradigm and measures

Before the behavioral experiment, participants completed a question-
naire on basic demographic information and several personality scales
measuring traits that may be confounded with exploration, such as im-
pulsivity (BIS-11), sensation seeking (SSS-V), and anxiety (STAI). In
addition, three questions were asked to get a gross assessment of IQ
(Frederick, 2005) as well as the subjects’ optimism about their answers to
these questions, which has been shown to relate to exploratory behavior
(Herz et al., 2014). In addition, three questions were asked to obtain a
gross indication of risk aversion (Dohmen et al., 2011), impulsivity, and
temporal discounting. Finally, subjects played incentivized lotteries mea-
suring risk and ambiguity aversion preferences (Ellsberg, 1961) and an-
swered questions related to their current mood [Multidimensional
Mood State Questionnaire (MDMQ), which is the English version of the
Mehrdimensionale Befindlichkeitsfragebogen] (Steyer et al., 1997) be-
fore and after tDCS. Importantly, none of these measures was differen-
tially affected by tDCS (for details, see Results).

Participants then played a computerized virtual slot machine game in
which they had to choose repeatedly among three bandits with real fi-
nancial consequences, during a baseline control period and again during
stimulation over rFPC, to quantify stimulation effects relative to baseline
exploratory decision-making. The bandit task is well suited for assessing
exploration and exploitation because the payout values of the slot ma-
chines drift randomly and independently over trials. The variation over
time prompts participants to explore occasionally the payout values of
other slot machines for comparison with the slot machine that they cur-
rently believe to be the highest-paying option (Fig. 1B).

The bandit task we used was similar to tasks used in previous fMRI
studies (Daw et al., 2006). The payout values for each bandit were gen-
erated with a decaying Gaussian random walk. Specifically, the reward
for choosing the ith slot machine on trial t was between 1 and 100 points
(rounded to the nearest integer), drawing from a Gaussian distribution
(SD, o, = 4) centered on a mean g, . On each trial ¢, the means diffused
in a decaying Gaussian random walk, with the following:

I‘l‘i,t+1=)\l“'i,t+(1 - M0+ v (1)

for each slot machine i. The decay parameter A was set at 0.9836, the
decay center 6 was 50, and the diffusion noise v was zero-mean Gaussian
(SD, 0, = 2.8). Eighteen such reward payout sequences were generated
to have at least four instances where the bandit with the highest reward
switched and at least four instances where the bandit with the highest
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Table 1. Demographic, socioeconomic, and personality variables”
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Demographic, socioeconomic, or personality variable Anodal (N = 26) (athodal (N = 27) Sham (N = 26) Fozs) p

Age (years) 2335 £ 415 22.88 £ 2.16 22,96 +2.49 0.170 0.844
Gender (2 = female) 131 £ 047 1.26 = 0.45 131 £ 047 0.097 0.907
Nationality 1.46 = 0.85 1.85 + 1.03 1.69 = 0.88 1.183 0.312
First language 238 £2.12 252 x£221 1.69 = 1.69 1.264 0.288
Marital status 1.38 = 0.64 1.30 = 0.47 123 =043 0.577 0.564
Religious affiliation 3.69 + 246 4.00 = 2.15 415 %1239 0.263 0.769
Direction of studies 4152135 4151123 4.04 + 1.46 0.061 0.941
Community size (scale 0-5) 327 =148 330 +1.20 312 =153 0.125 0.882
Relative affluence (scale 0—6) 373137 4.04 * 0.81 3.46 = 1.10 1.767 0.178
Risk aversion (scale 0—10) 5.81 £ 2.61 5.56 £ 2.31 6.04 * 2.47 0.255 0.776
Impulsivity (scale 0—10) 454 +2.10 496 * 2.39 4.00 + 2.14 1.254 0.291
Temporal discounting (scale 0—10) 7.50 = 2.04 6.78 = 2.08 731+138 1.069 0.348
1Q no. correct (of 3) 2.58 +0.76 2.52+0.89 242 +0.76 0.241 0.786
Optimism about IQ (scale 0-3) 3.00 = 0.69 281+ 0.74 2.88 = 0.71 0.453 0.637
BIS-11 60.54 = 7.92 65.00 + 9.24 62.27 + 8.56 1.819 0.169
SSS-V 21.96 £ 26.40 18.11 = 23.51 15.54 = 25.45 0.430 0.652
STAI 60.00 = 6.82 62.85 = 6.23* 62.04 = 5.68 0.151 0.860
MDMQ mood ® 23.58 + 261 23.48 = 3.86 2412 £285 0.307 0.737
MDMQ mood —3.07 = 461 —4.63 =411 —2.54 + 359 1.842 0.165
MDMQ alertness ® 17.15 = 2.26 18.00 = 3.06 17.50 = 3.46 0.545 0.582
MDMQ alertness 292 523 1.51 = 6.05 2.08 + 6.47 0.374 0.689
MDMQ calmness® 17.27 = 3.75 16.04 = 4.53 18.08 = 3.07 1.902 0.156
MDMQ calmness —1.77 = 416 —0.26 = 430 —3.08 £ 4.02 3.036 0.054
Risk aversion lottery ® 296 * 1.04 285+ 1.06 319 £ 0.85 0.813 0.447
Risk aversion lottery 0.12 £ 0.52 0.33 £0.48 0.04 = 0.60 2189 0.119
Ambiguity aversion lottery ® 3.00 = 1.10 3.48 £ 1.09 3.54 £1.24 1.751 0.181
Ambiguity aversion lottery 0.46 = 0.76 0.04 = 0.81 042 =121 1.647 0.199
Math Task performance ® 0.93 £ 0.08 0.88 £ 0.21 0.93 £0.15 0.712 0.494
Math Task performance 0.03 = 0.08 0.03 = 0.1 0.03 = 0.15 0.002 0.998

“The first three columns of this table display the descriptive statistics (means == standard deviations) for the various demographic, socioeconomic, and personality variables collected on individuals in each treatment group. The last two
columns contain F-statistics and corresponding p values for the main effect of tDCS group derived from one-way ANOVAs with a single three-level factor: tDCS group assignment (anodal, cathodal, and sham). The details of the demographic,
socioeconomic, and personality measures are given in the section “Material and Methods.” The tDCS groups did not differ on any of these variables, suggesting that any differences in exploration were unlikely to be caused by interactions
of the stimulation with underlying personality, cognitive, demographic, or socioeconomic characteristics. The superscript letter B refers to a measure collected during the pre-stimulation baseline, while a superscript symbol A indicates a
difference score calculated as tDCS minus baseline. Measures without any superscript symbol were collected only once prior to the start of the experiment. *One subject was missing the STAI score.

reward was at least 30 points greater than the bandit with the lowest
reward. The payout sequences between bandits were nearly orthogonal
(pairwise correlations <0.1). A subset of four sequences was selected for
the experiment based on separation among the individual payout se-
quences; each participant saw one randomly drawn sequence during
baseline and another one during stimulation.

The task consisted of 284 “decision” trials and 15 “belief” trials. On
each trial, participants were presented with three boxes representing the
virtual slot machines (Fig. 1A). In the center of the screen, a diamond or
square symbol indicated whether the trial was a decision or a belief trial
(3-7.5 s intertrial interval). Decision trials started with presentation of a
bonus [randomly drawn from a (3 distribution (a = 2, B = 5) ranging
from 0 to 20 points] in each of the slot machines. Modifying the original
task (Daw et al.,, 2006) by adding these bonuses did not affect task per-
formance, except for the fact that the bonuses were also factored into
choices (see Bonus values alone on do not differentially affect choice
behavior as a function of stimulation type). Participants then selected a
slot machine, using three arrow keys on the keyboard, and the slot ma-
chine’s summed reward (bonus plus payout value) was displayed on the
screen (2.5 s). To compute the payout value of a bandit, participants
simply had to subtract the bonus assigned to that bandit from the total
payoff displayed. This design ensured that participants could not plan
their next response immediately after receiving the current feedback and
therefore had to take their choice at the start of each trial, when the
bonuses appeared onscreen. On belief trials, subjects were instructed to
rate the slot machines in terms of estimated payouts from 1 (highest
payout value) to 3 (lowest payout value).

Participants completed a short practice session before proceeding
with the actual task. After the participants completed the bandit task
during both baseline and stimulation runs, they performed a Math
Task (consisting of 50 trials) designed to assess whether stimulation

over rFPC affected their abilities to perform the subtraction necessary
to update a bandit’s payout value. During this task, a single box
appeared that was visually identical to the boxes representing the
virtual slot machines. The box contained a randomly drawn bonus
ranging from 0 to 20 points, which was followed by the sum of the
bonus and a random integer ranging from 1 to 100 representing a
summed reward. Participants were instructed to input the underlying
payout value of the slot machine (i.e., the difference of the displayed
total amount and the bonus).

tDCS

During the experiment, we applied tDCS over the participants’ rFPC
using a commercially available multichannel stimulator (neuroConn;
http://www.neuroconn.de/dc-stimulatormc/) that allows for simultane-
ous stimulation of up to 16 participants with individually customized
stimulation protocols. tDCS can alter cortical excitability via application
of direct currents, with anodal tDCS increasing and cathodal tDCS de-
creasing excitability of the area under the target electrode (Nitsche and
Paulus, 2000). In the present study, we applied anodal, cathodal, or sham
tDCS over the right FPC region (MNI peak: x = 27, y = 57, z = 6) that
had shown significantly enhanced BOLD signal for exploratory relative
to exploitative choices at the group level (Daw et al., 2006). We chose the
right over left FPC because the peak of the BOLD signal was reported on
the right side in previous studies (Daw et al., 2006; Boorman et al., 2009;
Laureiro-Martinez et al., 2013). This standardized coordinate was trans-
formed to each individual’s native headspace by aligning it to the T1-
weighted MR scan of the participant’s neuroanatomy (T1-weighted 3D
turbo field echo, 181 sagittal slices, matrix size 256 X 256, voxel size =
1 X 1 X 1 mm). The point on the scalp overlying this brain area was
marked and used as the center point for the active electrode. The refer-
ence electrode was placed over the vertex, defined for each participant as
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The bandit task paradigm. A, Participants selected among three virtual slot machines (shown as blue squares) whose payout values drifted independently and randomly

across trials. The time-varying monetary rewards required participants to learn continuously about the slot machines to maximize their monetary payoffs. At the start of each trial,
participants saw three bonuses (numbers displayed within the squares in first screenshot) that had to be added to the slot machine’s underlying payout value to determine the total
reward. After participants made their choice (circled option), the total reward was displayed. B, One example payoff sequence for all three slot machines over the course of 284 trials. Each

colored line indicates a different slot machine.

the point corresponding to the confluence of the left and right central
sulcus. For each participant, both the stimulation and reference points
were located using Brainsight 2.2 frameless stereotaxy (Rogue Research;
https://www.rogue-research.com/).

tDCS was applied using a 5 X 5 cm? electrode over the site of stimu-
lation and a 10 X 10 cm? electrode over the reference site. Both elec-
trodes were fixed by rubber straps and gauze. We chose a more focal
electrode to maximize the current density over the area of interest and a
large electrode for the reference to minimize current density at the vertex
area. Using such a tDCS montage makes the large reference electrode
functionally ineffective (Nitsche et al., 2007); we could therefore be cer-
tain that the effects of tDCS on exploratory behavior would not be af-
fected by neuromodulatory influences on neural activity under the
reference electrode. Therefore, the only difference between the two active
stimulation groups was whether the electrode placed over the rFPC was
the anode or the cathode, respectively.

We stimulated with a current intensity of 1 mA for both the anodal and
cathodal groups. It has been shown in basic neurophysiological studies in
humans (Nitsche and Paulus, 2000) and mouse slice preparations
(Fritsch et al., 2010) that the impact of tDCS on brain excitability be-
comes more robust and long-lasting after several minutes, possibly re-
flecting delayed short-term neuroplastic processes occurring in addition
to the immediate changes in membrane electric potential. To account for
this possible delay in the onset of stable tDCS effects, we waited for 3 min
of stimulation to pass before subjects started the bandit task. At the start
of stimulation, the current was slowly ramped up for 20 s to minimize the
itching or tingling sensations caused by abrupt onsets of tDCS. Normally,
the participants adjust to the sensation of the stimulation after a short
period of time, and tDCS is usually not noticeable throughout the rest of
the duration of stimulation (Gandiga et al., 2006). At the end of anodal
and cathodal stimulation, the current was slowly ramped down for 20 s.
In the sham group, the tDCS was ramped down after 30 s of stimulation.

This allowed the participants to feel an initial sensation identical to
that experienced by the participants in the anodal and cathodal
groups, but there was no subsequent effect on neural excitability.
Indeed, when participants were asked at the end of the experiment to
indicate (“yes” [1] or “no” [0]) whether they felt the stimulation
throughout the whole experiment, the sham group’s responses to this
question were not significantly different from the anodal and cath-
odal group’s responses (F, ,5) = 0.838, p = 0.432; mean * SD: An-
odal = 0.23 * 0.43; Cathodal = 0.37 = 0.49; Sham = 0.23 = 0.43).
Likewise, there were no significant differences among groups when
participants were asked to rate (on a scale of 0—6) whether the tDCS
affected their behavior during the slot machine game (F, ;) = 0.087,
p = 0.917; mean = SD: Anodal = 1.58 *= 1.77; Cathodal = 1.67 =
1.73; Sham = 1.46 * 1.88). However, the sham group did rate (on a
scale of 0—6) the tDCS to be less annoying compared with the anodal
group as shown by Tukey post hoc tests (F, ;) = 6.072, p = 0.004;
Sham vs Anodal 5, = —3.4267, p = 0.001, Sham vs Cathodal
tis1y = —1.9583, p = 0.056, Anodal vs Cathodal f5,) = 1.6014, p =
0.115; mean *= SD: Anodal = 3.27 * 2.16; Cathodal = 2.37 * 1.92;
Sham = 1.35 = 1.87). There were no significant differences in the
responses to this question between anodal and cathodal groups or
cathodal and sham groups. Furthermore, a more rigorous assessment
of participants’ emotional state using a standardized questionnaire
(MDMQ) indicated that the tDCS manipulations did not result in
changes in subscales indexing mood, alertness, and calmness from the
baseline period to after stimulation. There were also no initial base-
line differences among groups in mood, alertness, and calmness (Ta-
ble 1). Together, these control analyses show that tDCS did not have
any unspecific non-neural effects on beliefs about stimulation or
emotional state. Thus, changes in exploratory behavior due to stim-
ulation over rFPC are unlikely to have been caused by these unrelated
factors.
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Bayesian reinforcement learning model
To assess participants’ exploratory behavior, we used the Bayesian mean-
tracking rule described by Daw et al. (2006) that modeled participants’
estimates of the mean and variance of the reward values for each bandit
across trials. We assumed the participant believed the process of gener-
ating bandit rewards is governed by parameters &, 6, A, and 6, corre-
sponding to o, 0, A, and 6 from the process described above. Assume
on trial ¢ a prior distribution over the true mean reward values, u;,, as
independent Gaussian distributions Normal ((£7, 67 /7). If option c, is
chosen and reward value r, is received, then the posterlor mean for that
option is as follows:

A= A+ K, @

cpt

with the prediction error 6, = r, —
__ a2 prejs a2 pre

Ke = O, /( cpt

tion is then:

6" and learning rate
+ 67). The posterior variance for the chosen op-

o2 = (1 — ) 67 (3)

The posterior means and variances for the unchosen bandits are not
changed by the result of the choice; however, the prior distributions
for all bandits, i, are updated on the subsequent trial with the follow-
ing diffusion process:

B = AREE 4+ (1= X)b (4)

and
a2 pre — x2 AZ ost a2
6Ll = K2 6l + 6y (5)

Together with this tracking rule, we used a softmax choice rule that
included an uncertainty bonus to determine the probability P;, of
choosing slot machine i on trial  as a function of the estimated means
and variances of the rewards as follows:

exp[B(ALY + bonus + @67])]

bt 3 exp[B (i + bonus + o6/ ] )

where 3 is the gain parameter that determines how tightly the deci-
sions are constrained by the relative mean rewards among the bandits.
A + bonus refers to the participant’s estimates of the mean reward
(payout value plus bonus) of bandit i at trial t. &%} refers to the
participant’s estimates of variance around the estimated mean reward
of banditiat trial #. If ¢ > 0, a participant’s choices are also influenced
by their estimate of the relative variance (or uncertainty) among the
bandit reward values.

Model fits

The computational model was fit to the participants’ choices using a
hierarchical Bayesian framework. We adopted this approach to increase
the sensitivity of our modeling framework, as simulations have shown
that hierarchical Bayesian modeling techniques outperform standard
individual- or group-level maximum likelihood estimation in recovering
true parameters (Ahn et al., 2011). However, our model remains a minor
adaption of the model originally proposed by Daw et al. (2006). At the

Table 2. Bayesian learning model parameters”
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participant level, we treated the interindividual differences as random
effects for B and ¢.

B ~ Beta(gig X kg, (1 — fig) X kp)

@ ~ Beta(gi, X k,, (1 = fi,) X k,) X 10°

where (i and k correspond to the expected value and the precision of the
Beta distribution, respectively. The Beta distribution used for ¢ is scaled
by 107 to allow this parameter to have a wide range exceeding 1 (the
upper boundary of a Beta distribution), thus allowing it to act as a bonus
(i.e., multiplier) of the participant’s estimate of variance (6¥7°) within the
choice rule. For both fi and k, we assumed uninformed flat priors such
that (L was initialized with a Beta distribution with « = 1 and 8 = 1 and
k was initialized with a Gamma distribution with shape = 1 and rate =
0.1. At the population level, a single instance was used to fit X, 0, and Gy,
assuming uninformed flat priors via a Beta distribution with & = 1 and
B = 1. 6, was held constant at 4.00 due to model degeneracy. To main-
tain consistency with the modeling approach taken by Daw et al. (2006),
we fit A, 0, and &, at the population level while allowing the softmax
choice rule parameters to vary individually. We also allowed the choice
rule parameters to be fit individually as these parameters were a focus of
our modeling hypotheses. At the trial level, the categorical choices y at
each trial r were assumed to be drawn from a multinomial distribution as
follows:

X(P1:3,n1)

Posterior inference of the parameters in the hierarchical Bayesian models
was performed via the Gibbs sampler using the Markov chain Monte-
carlo sampling scheme implemented in JAGS (Plummer, 2003) (http://
memc-jags.sourceforge.net/). Three chains were derived based on a dif-
ferent random number generator engine, each starting with a different
seed. A total of 5000 samples were drawn during an initial burn-in step to
allow the model parameters to reach a stable range. Subsequently, a total
of 5000 new samples were drawn for each of the chains. We applied a
thinning (i.e., downsampling) of five steps to this final sample, thus
resulting in a final set of 1000 samples for each parameter and chain.
This thinning assured that there were no auto-correlations in the final
samples for all of the parameters of interest investigated in this study. We
conducted Gelman-Rubin tests (Gelman et al., 2013) for each parameter
to confirm convergence of the chains. All estimated parameters in our
Bayesian models had <1.05, which suggests that all three chains con-
verged to a target posterior distribution (Gelman et al., 2013).

When comparing the fit for both the above choice rule with the un-
certainty bonus and the standard softmax choice rule used by Daw et al.
(2006), we found that the former fit the data better [average Deviance
Information Criterion (DIC)] (Gelman et al., 2013) across groups =
2.19 X 10* compared with an average DIC = 2.22 X 10* for the standard
softmax choice rule; the smaller the DIC, the better the fit. We therefore
applied this rule to generate the model-based estimates of reward values.
However, the model-based estimates of the reward values for both choice
rules were strongly correlated in any case (r = 0.7972, p < 0.00001). The
fitted parameters for each participant group and condition are presented
in Table 2.

Y choices ™

Baseline tDCS — Baseline
Model parameter Anodal (athodal Sham Anodal (athodal Sham
B 0.0846 = 0.0318 0.0707 = 0.0358 0.0808 == 0.0403 —0.0031 == 0.0332 0.0115 = 0.0267 0.0107 = 0.0480
¢ 0.0304 = 0.0349 0.0133 = 0.0162 0.0700 = 0.0770 —0.0285 = 0.0313 —0.0018 = 0.0114 —0.0638 = 0.0699
A 0.9489 0.9537 0.9406 —0.0073 —0.0083 —0.0127
0 31.189 19.279 12.326 —2.3406 1.9519 11.465
Gy 0.0010 0.0028 0.0010 0.0025 —0.0001 0.0053

“Thefirst three columns show the parameter estimates across all participants and trials within each stimulation group (anodal, cathodal, or sham) in the baseline condition. Columns 4 to 6 show the change in the parameter estimates under
tDCS relative to baseline for each stimulation condition. Parameters 3 and ¢ were allowed to vary individually across participants and were fit in a hierarchical manner (see Materials and Methods). For these parameters, the table reports
the means (= standard deviations) of the median values of each subject’s posterior distribution. The remaining parameters were fit across the population; for these parameters, the table reports the medians of the population posterior

distribution.
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Next, we sampled the posterior distributions obtained from the Bayes-
ian model 100 times for each parameter and generated subject-specific
estimates of the means and variances of the reward values for each bandit.
The final estimates for each subject were taken as the average of these 100
samples. To test how well the model estimates of reward values approx-
imated the actual reward values, we conducted a linear mixed effects
regression using the Ime4 package (Barr et al., 2013) in R (R Core Team,
2014, Version 3.0.2) as follows:

Yst = BO + ﬁlllst + (SOS + Slslj’z) + €5 (7)

where Y, refers to the real reward value for a given subject (s) and trial (¢)
on each slot machine, and fi, refers to the estimated reward value of the
same slot machine. The coefficients 3, and 3, are fixed effects fit to the
entire sample, whereas S;; + Sy, are subject-specific random effects.

Analyses of bandit task choices

We conducted several analyses to test our three hypotheses (H1, H2, and
H3) about how rFPC-targeted stimulation would affect choice behavior
on the three-armed bandit task. To clearly convey the logic of our analysis
strategy, we first introduce our hypotheses and their underlying rationale
in a numbered list before describing in correspondingly labeled subsec-
tions the analyses conducted to test each of them.

HI: The right FPC is causally involved in biasing choices toward explo-
ration or exploitation. Based on prior neuroimaging work implicating the
rFPC in exploratory behavior (Daw et al., 2006; Boorman et al., 2009,
2011; Laureiro-Martinez et al., 2013), we predicted that enhanced FPC
neural excitability will increase deliberative exploratory choices whereas
decreasing excitability will result in more exploitative decisions. We
tested this hypothesis in two steps. First, we compared the frequency and
degree of exploration following anodal, cathodal, and sham stimulation.
Second, we compared reaction times between the stimulation groups to
determine whether any increase in exploratory behavior is (1) the result
of a neural mechanism promoting deliberate exploration, which should
slow choices because the increased consideration among several alterna-
tive options increases choice difficulty (Bogacz et al., 2010; Krajbich et al.,
2010, 2015; Shenhav et al., 2014) or (2) instead reflects unspecific effects
of tDCS on response inhibition or neural signal-to-noise ratio, which
would result in faster choices as predicted by modeling (Bestmann et al.,
2014; Bonaiuto and Arbib, 2014) and neurophysiological studies (Ter-
zuolo and Bullock, 1956; Bindman et al., 1962, 1963; Creutzfeldt et al.,
1962; Nitsche and Paulus, 2000, 2001; Fritsch and Hitzig, 2009) (for
further theoretical rationale behind this hypothesis, see REPC-targeted
stimulation affects both exploration and exploitation).

H2: The tDCS-elicited biases toward exploration or exploitation reflect
changes in behavioral sensitivity to the estimated reward magnitudes of the
highest-paying and/or alternative options. FPC activity is thought to over-
ride tendencies to choose based on reward signals generated in striatal
and ventromedial prefrontal areas of the brain (Daw et al., 2006). We
thus predicted that cathodal stimulation inhibiting activity in rFPC
would render choices more sensitive to the immediate payoff magnitude
of the highest-paying option, whereas anodal stimulation would cause
participants’ choices to be less influenced by the highest-paying option
and perhaps more sensitive to the payoffs of the second- or third-highest-
paying bandits (for further theoretical motivation of this hypothesis, see
tDCS-induced exploitation relates to increased sensitivity to predicted
payoffs).

H3: The bias toward exploration elicited by anodal tDCS reflects a change
in the sensitivity to unexpected choice outcomes. Because the FPC is
thought to integrate memory of recent experiences to directly inform
choice (e.g., Tsujimoto et al., 2011), we hypothesized that anodal rFPC
stimulation will increase participants’ likelihood to explore either follow-
ing negative prediction errors (i.e., unexpectedly low payoffs) for exploit-
ative choices in the recent past and/or after positive prediction errors
(i.e., unexpectedly high payoffs) for recent exploratory choices. By con-
trast, cathodal stimulation will result in reduced sensitivity to these pre-
diction errors (for further information motivating this hypothesis, see
tDCS-induced exploration relates to increased sensitivity to negative pre-
diction errors).

J. Neurosci., October 28, 2015 - 35(43):14544 —14556 * 14549

Tests of H1: analyses quantifying exploration and exploitation
Using the model-generated estimates of mean reward values, we classi-
fied choices as exploitative if the participant chose the option with the
highest estimated payoff (mean plus bonus) and as exploratory if the
participant chose the options with the estimated second- or third-highest
payoff. Once we had classified choices as exploitative or exploratory, we
conducted three analyses to test the (1) frequency, (2) degree, and (3)
deliberative nature of exploratory choices. The frequency of exploratory
choices was simply the fraction of trials on which participants chose to
explore. We defined the degree (or strength) of exploration as the
amount of monetary reward the participant was willing to give up by not
selecting the highest-paying option and instead explore. This was quan-
tified as the difference between what a participant estimated as the high-
est reward value (mean + bonus) that they could receive on any given
trial and the actual estimated reward value that they chose. We tested the
directional hypotheses that the frequency and strength of exploration in
the task during stimulation over rFPC would follow the pattern: an-
odal = sham = cathodal, using a one-sided Jonckheere-Terpstra trend
(JT) test. Finally, we analyzed reaction times to assess whether tDCS-
elicited changes in exploration reflected faster, more random or slower,
more deliberative responses. We therefore tested the directional hypoth-
esis that relative reaction times would be affected in the following way:
anodal = sham = cathodal stimulation with a one-sided JT test.

Tests of H2: analyses of how monetary reward magnitudes
influence choice

To examine how stimulation over rFPC affected the participants’ sensi-
tivity to the monetary reward magnitudes of the slot machines, we first
standardized the estimated payoffs (underlying mean + bonus) using a
z-transformation for each participant and bandit (ranked from highest to
lowest value in a trial-wise manner). We then conducted a logistic regres-
sion individually for each participant (using the glmfit function in
MATLAB, Release R2014a, version 8.3.0.532; The MathWorks, 2014) to
assess how much each bandit’s estimated reward value (and interactions
of these estimated values) predicted the participant’s choice to explore or
exploit as follows:

¥y =Bo+ Bifk T Baftr + Bsfs + By * ) + Bs(fy * fis)
+ Bo(fhy * fis) + Br(fy * iy * fi3) + e (8)

where y is the choice to explore (1) or exploit (0) and fi; is the
estimated monetary reward value for bandit Rank i = 1, 2, or 3. Bandit
rank refers to a trial-wise ranking of the bandits estimated to yield the
highest (1) to lowest (3) payoff. These subject-wise regressions
yielded a set of coefficients quantifying the relationship between es-
timated payout values and exploratory choices in each participant.
The B,, B,, and B; parameters of this regression were then submitted
to repeated-measures ANOVAs to examine the effects of Condition
(baseline, tDCS), stimulation Polarity (anodal, cathodal, and sham),
and payoff-based bandit Rank (1-3) on exploration. The interaction
terms were added to quantify any potential interaction effects among
the estimated bandit reward values when estimating the coefficients
for each individual bandit. However, none of these interaction terms
was significantly different from zero. Nevertheless, for the sake of
completeness, we tested whether any of these interaction terms was
significantly affected by tDCS, but found no significant effects [i.e.,
there was no interaction between the factors Condition and stimula-
tion Polarity (ANOVA stimulation Polarity X Condition, F, ,4 for
B,_, = 0.228, 0.930, 0.883, 0.984, p = 0.413, 0.293, 0.702, 0.651)].
Moreover, the results for our analyses are similar if we omit
these interaction terms from the individual regressions for each
participant.

Tests of H3: analyses of how current choices are guided by previous
prediction errors

To examine how tDCS alters the degree to which recent outcomes influ-
ence the choice to explore or exploit, we calculated the prediction error
(i.e., the difference between the observed and expected outcome) sepa-
rately for (1) the highest-paying bandit and (2) either the second- or
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third-highest-paying bandits on the preceding trials. To approximate a
short-term memory effect for this signal (e.g., Cowan, 2011), the predic-
tion error signals were modeled as persisting over two subsequent choices
and returned to zero if a bandit was not sampled for two consecutive
trials.

We then conducted a logistic regression (using the glmfit function in
MATLAB) to assess how these two prediction error signals related to
exploratory or exploitative decisions when the relative mean estimates of
the bandit reward values were controlled for the following:

Y= BO + B]PEexplme + BZPEeprnir + BS(Ij‘l - Iiz)
+ Bl — fas) Te (9)

where y is the choice to explore (1) or exploit (0), PE is the prediction
error on the previous trials of the highest-paying option (exploit) or the
second or third best options (explore), and fi; is the estimated reward
value for bandit i. Next, we examined the effects of Condition (baseline,
tDCS), stimulation Polarity (anodal, cathodal, and sham) on the 8, 3,
parameters of these logistic regressions with a repeated-measures
ANOVA.

The reported results are robust with respect to the temporal influence
of the prediction errors across trials. We chose a time-limited influence to
approximate a short-term memory-effect (e.g., Cowan, 2011) and be-
cause model comparisons favored our model in which prediction errors
influenced future choices only over a short time window (lag = 2 trials)
over a model with a prediction error that was continuously held in mind
until the bandit was sampled again (quantified by lower Akaike informa-
tion criteria; Akaike, 1974) (paired-samples t test: ¢,4) = —2.917, p =
0.005). Moreover, the effects of Condition (baseline, tDCS), stimulation
Polarity (anodal, cathodal, and sham), and Choice type (exploratory vs
exploitative) remained consistent when examining the 3 parameters of
logistic regressions with prediction errors that persisted for limited lags
greater or less than 2, indicating that, although short lags provide a su-
perior fit compared with continuously persisting PEs, the precise dura-
tion of the lag is not crucial (repeated-measures ANOVA for
prediction errors that persisted for one subsequent trial: three-way inter-
action, F, ;¢ = 3.766, p = 0.028; repeated-measures ANOVA for pre-
diction errors that persisted for three consecutive trials: three-way
interaction, F, ,5) = 3.600, p = 0.032).

Additional supporting analyses

The effect of bonus values on choice behavior. Because we modified the
bandit task used by Daw et al. (2006) to incorporate trial-wise bonuses
that prevented participants from making their choices before the onset of
a trial, we also tested whether stimulation altered the impact of the bo-
nuses themselves on choice for completeness. This was done with a lo-
gistic regression similar to the one used to examine estimated payoff
magnitudes (i.e., underlying mean + bonus), but which now used only
the three bonuses and not the estimated underlying means. Specifically,
we conducted a logistic regression individually for each participant (us-
ing the glmfit function in MATLAB, as above) to assess how much each
bandit’s bonus value (and interactions of these estimated values) pre-
dicted the participant’s choice to explore or exploit as follows:

y = Bo+ BiBy + B.B, + B3B; + By(B, * By) + Bs(B * Bs)

+ Bs(By * Bs) + B;(By * B, * B;) + e (10)
where y is the choice to explore (1) or exploit (0) and B; is the bonus value
on each trial for bandit with Rank i = 1, 2, or 3. Bandit rank refers to a
trial-wise ranking of the bandits expected to yield the highest (1) to
lowest (3) payoff.

The parameters of this regression were then submitted to repeated-
measures ANOVAs to examine the effects of Condition (baseline, tDCS),
stimulation Polarity (anodal, cathodal, and sham), and reward-based
bandit Rank (1-3; ranked by bonus + estimated mean) on exploration.

Average earnings. To examine the effects of stimulation on task perfor-
mance, we tested the effects of Condition (baseline, tDCS) and stimula-
tion Polarity (anodal, cathodal, and sham) on the average amount of
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monetary reward earned across all trials, using repeated-measures
ANOVA.

Results

Participants could track the bandit payoffs

Before examining any tDCS effects, we ascertained that partici-
pants understood the underlying structure and time-varying na-
ture of the payoffs in the bandit task during the prestimulation
baseline. To this end, we compared the payoff estimates derived
from our Bayesian reinforcement learning model with the true
underlying parameters of the task. During the baseline period,
model-generated estimates of the participants’ beliefs about the
payoff magnitudes were strongly correlated with the actual mag-
nitudes seen during the experiment (linear mixed effects regres-
sion across all slot machines and participants during the baseline
period: intercept coefficient = 7.253 * 0.767, t = 9.46, p < 0.001;
slope coefficient = 0.966 = 0.01, t = 98.10, p < 0.001), confirm-
ing that the participants’ beliefs closely tracked the actual payofts.

Effects of rFPC stimulation are not confounded by
preexisting group differences or modulation of general
cognitive ability

Before testing our core hypotheses about the effects of rFPC stim-
ulation on exploration, we also established that the three stimu-
lation groups did not show personality or cognitive differences at
baseline. ANOVAs (Table 1) showed that the three groups did
not differ in terms of basic sociodemographic and personality
variables. There were also no baseline differences in decisions
over incentivized lotteries measuring aversion to risk and ambi-
guity or in the ability to perform the subtractions necessary to
calculate the bandit payout values (Math Task percentage cor-
rect). We also ascertained that the three rFPC stimulation proto-
cols applied after the baseline session did not differentially affect
basic aspects of cognition that might contribute to exploratory
and exploitative choices in our task. Importantly, tDCS did not
significantly change preferences for risk, ambiguity, or Math Task
performance relative to baseline behavior (Table 1). Thus, any
tDCS effects on exploratory or exploitative choices are not con-
founded by changes in these basic cognitive functions that may
potentially relate to exploration.

RFPC-targeted stimulation affects both exploration

and exploitation

We then tested our three main hypotheses, namely, that rFPC-
targeted stimulation would alter deliberate exploratory behavior
(H1) and that these effects would be mediated by changes in the
influence of current payoff estimates (H2) and feedback from
preceding outcomes (H3). We derived and tested a series of pre-
dictions from these three interrelated hypotheses, as already de-
scribed in the Introduction and Materials and Methods. These
predictions are presented in greater detail alongside the corre-
sponding results in the paragraphs below.

Previous neuroimaging work has shown that the rFPC is more
active during exploratory decisions (Daw et al., 2006; Boorman et
al., 2009, 2011; Laureiro-Martinez et al., 2013). Therefore, to
examine Hypothesis 1, we first tested the prediction that enhanc-
ing rFPC neural excitability through anodal stimulation will in-
crease exploration, whereas decreasing excitability with cathodal
stimulation will result in more exploitative decisions. In line with
our hypothesis, anodal stimulation increased the number of ex-
ploratory choices, whereas cathodal stimulation decreased the
number of exploratory choices, relative to the sham group (JT
test; z = —2.59, p = 0.005; Fig. 2A). Both types of tDCS also had
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Figure2.  Brain stimulation effects on behavior (Tests of H1). Anodal and cathodal stimula-
tion over rFPChad opposing effects on exploration and reaction times. 4, Anodal stimulation led
to an increase in exploration, whereas cathodal stimulation decreased exploration, relative to
inactive sham stimulation that left exploration unaffected. Exploration was measured as the
fraction of exploratory choices made, and all displayed data pointsindicate changes in thisindex
under tDCS relative to the preceding baseline. B, Anodal stimulation made participants willing
toincurasignificantly higher monetary cost to explore, whereas cathodal stimulation rendered
participants less willing to pay for exploration, compared with sham stimulation. Cost to explore
was calculated as the best amount possible for a given trial minus the monetary units (i.e., the
payout magnitude consisting of reward + bonus) received on the trial. All displayed data
pointsindicate changes in this index under tDCS relative to the preceding baseline. €, All groups
showed faster reaction times from baseline to stimulation due to training effects. However,
anodal stimulation over rFPCled to relatively slower choices than sham stimulation. Conversely,
cathodal stimulation resulted in relatively faster choices. Reaction times (RT) are plotted as
relative to the mean of the sham group (which was defined as zero). Error bars indicate SEM.

the predicted opposite effects on the degree of exploration, with
anodal increasing and cathodal decreasing the monetary cost par-
ticipants were willing to incur to explore (JT test; z = —3.02, p =
0.001; Fig. 2B). Thus, stimulation over rFPC causally regulated
both the frequency and degree to which participants engaged in
exploratory versus exploitative decision behavior.

In addition, we found broadly consistent results for the soft-
max [3 parameter, the inverse of which has been suggested as a
proxy for exploration (e.g., Cohen et al., 2007). This parameter
was indeed decreased more in the anodal group and increased
more in the cathodal group relative to baseline (Table 2). How-
ever, the magnitude of the inverse B parameter is also propor-
tional to the noise or randomness across choices, which may
potentially be altered by unspecific tDCS effects on response in-
hibition and neural signal-to-noise ratios (Terzuolo and Bullock,
1956; Bindman et al., 1962, 1963; Creutzfeldt et al., 1962; Nitsche
and Paulus, 2000, 2001; Fritsch and Hitzig, 2009; Bestmann et al.,
2014; Bonaiuto and Arbib, 2014). Such random responses may
therefore be mistaken for enhanced exploration but would be
inconsistent with our hypothesis that anodal stimulation over
rFPC will lead to more deliberate decisions to explore.

To test whether the increase in exploratory choices under
rFPC stimulation reflected enhancement of a neural process for
deliberate consideration of choice properties or rather an unspe-
cific random process, we directly compared reaction times for
choices across stimulation groups. If the observed choice modu-
lations were caused by unspecific tDCS effects (such as generally
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reduced response inhibition or altered signal-to-noise character-
istics), then anodal stimulation should lead to faster reaction
times relative to sham stimulation for all types of decisions,
whereas cathodal stimulation should result in slower reaction
times, as predicted by neurophysiological studies (Terzuolo and
Bullock, 1956; Bindman et al., 1962, 1963; Creutzfeldt et al., 1962;
Nitsche and Paulus, 2000, 2001; Nitsche et al., 2003; Fritsch and
Hitzig, 2009) and model simulations (Bestmann et al., 2014; Bo-
naiuto and Arbib, 2014). However, if tDCS specifically affects
neural computations in rFPC that result in deliberate choices to
explore or exploit, the opposite pattern should emerge: Reaction
times should be longer for anodal stimulation (due to increased
consideration of exploratory options and thus greater choice dif-
ficulty) but shorter during cathodal stimulation (that results in a
selective focus on the current best option). This prediction is
based on repeated findings that choices take longer if they involve
more alternatives and/or entail options that are more similar in
value (Bogacz et al., 2010; Krajbich et al., 2010, 2015; Shenhav et
al., 2014). Evidence that exploratory choices in our task indeed
entailed increased deliberation comes from our participants’
baseline behavior before tDCS: Exploratory choices indeed took
longer than exploitative choices (ANOVA, main effect of trial
type: F(; 76) = 6.397, p = 0.014; Exploratory trial mean * SD =
3032.81 * 121.45 ms; Exploitative trial mean = SD = 2937.86 *
145.94 ms). Crucially, once stimulation was applied, participants
in the anodal group responded more slowly while participants in
the cathodal group responded more quickly, relative to the sham
stimulation group response times (JT test; z = —1.71, p = 0.043;
Fig. 2C). This pattern of tDCS-induced response time alterations
was only evident for the bandit task and was not observed for the
control task involving mental calculation ability (JT test; z =
0.468, p = 0.320). Thus, these directional and selective tDCS
effects on reaction times argue against an explanation of our
results in terms of altered neural noise levels or response inhibi-
tion (Terzuolo and Bullock, 1956; Bindman et al., 1962, 1963;
Creutzfeldt et al., 1962; Nitsche and Paulus, 2000, 2001; Fritsch
and Hitzig, 2009; Bestmann et al., 2014; Bonaiuto and Arbib,
2014). Instead, our results show that rFPC-targeted stimulation
caused either slower, more deliberative exploratory decisions or
faster, more targeted exploitative choices, depending on whether
the stimulation was set up to increase or decrease neural excit-
ability, respectively. Further tests of how tDCS affected the nature
of the choices in the bandit task are included in the analyses
addressing Hypotheses 2 and 3 below.

tDCS-induced exploitation relates to increased sensitivity to
predicted payoffs

After establishing that anodal and cathodal rFPC-targeted tDCS
increased and decreased the frequency of exploratory choices,
respectively, we sought to determine which attributes of the ban-
dit task were associated with each decision type as a function of
stimulation polarity. By definition, value-based choices are
thought to be driven by the level of reward that is predicted to
result from each possible action in the choice set (i.e., the ex-
pected value) (Rangel et al., 2008). Frontopolar activity has been
postulated to promote exploration by overriding exploitative re-
sponse tendencies that are based on expected value signals com-
puted in striatal and ventromedial prefrontal areas (Daw et al.,
2006). Therefore, we hypothesized that the modulation of ex-
ploratory behavior through rFPC-targeted stimulation may be
mediated by changes in the degree to which choices are driven by
the immediate payout values of each slot machine. To test this
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Table 3. The influence of estimated payoffs on choice as a function of stimulation Polarity, Condition, and reward-based bandit Rank”

Baseline tDCS

Bandit rank 1 Bandit rank 2 Bandit rank 3 Bandit rank 1 Bandit rank 2 Bandit rank 3
Anodal —0.44 = 0.55 0.21 % 0.40 0.04 = 0.25 0.03 = 0.91 —0.02 = 0.56 0.02 = 0.37
(athodal —0.11 = 0.69 0.23 +0.40 —0.00 = 0.27 —0.49 = 0.58 0.26 = 0.40 0.02 =0.30
Sham —0.31*0.68 0.24 +0.36 —0.03 = 0.35 —0.45 = 0.77 0.21+0.39 0.01 = 0.38

“The values in this table represent the mean == SD coefficients for each bandit rank (1-3) from Regression 8. In the baseline condition, participants were more likely to exploit the higher the estimated payoffs of the highest ranked bandit
and more likely to explore the higher the estimated payoffs of the second and third highest-ranked bandits. In the stimulation condition, anodal participants’ choices were no longer driven by the estimated rewards of the highest ranked
bandit, whereas cathodal participants’ choices were more strongly influenced by the estimated payoffs of the highest ranked bandit. This table corresponds to information presented in Figures 3 and 4 and tests of Hypothesis 2.
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—3.874, p = 0.0002; highest-paying slot
machine, t,5 = 5.287, p = 0.000001;
third-highest-paying slot machine, #,5) =
0.035, p = 0.972; Figure 3). The strength
of this relationship was significantly al-
tered during tDCS compared with the
preceding baseline period (interaction of
stimulation Polarity and reward-based
Rank of slot machines, F, 5 959, = 3.134,
p = 0.037; Fig. 4A). The estimated rewards of the highest-paying
slot machine became less influential in driving the more explor-
atory anodal group’s choices (¢, = —2.151, p = 0.041) but had
a stronger effect on the choices of the more exploitative cathodal
group (t,6) = 2.107, p = 0.045). Importantly, these changes were
not due to general time or learning effects, as sham tDCS did not
significantly change the impact of estimated monetary rewards
on choice compared with baseline (¢,5, = —0.711, p = 0.484).
Moreover, these tDCS effects were specific to the slot machine
with the highest estimated monetary reward, as the influence
of the second- and third-highest payouts on choice did not
change with tDCS (second-highest baseline vs stimulation:
anodal paired-sample, t,5, = —1.479, p = 0.152; cathodal
paired-sample t,¢ = 0.320, p = 0.751, sham paired-sample,
tos) = —0.199, p = 0.844; third-highest baseline vs stimula-
tion: anodal paired-sample, t,5) = —0.177, p = 0.861; cath-
odal paired-sample, ¢, = 0.285, p = 0.778; sham paired-
sample, t,5) = 0.351, p = 0.723).

Bandit 1 Bandit2 Bandit 3

Payoff-driven exploration during baseline. During the baseline before stimulation, the rewards of the slot machines
influenced participants’ decisions to explore or exploit similarly across all three groups. The y-axis represents standardized 3 values
from a logistic regression of decisions (explore vs exploit on estimated slot machine rewards). Positive 3 values indicate that the
participant was more likely to explore with higher estimated rewards of the slot machine. Negative (3 values indicate that the
participant was more likely to exploit with higher estimated rewards of the slot machine. There was a significant main effect of the
reward-based rank of the slot machines on the probability to explore or exploit. Participants in all three groups were more likely to
exploit if the value of the highest-paying slot machine was greater and more likely to explore if the value of the second highest-
paying slot machine was greater. Bandit 1, Bandit 2, and Bandit 3 refer to a trial-wise ranking of the bandits estimated to yield the
highest (1) to lowest (3) payoff. Error bars indicate SEM.

Bonus values alone do not differentially affect choice
behavior as a function of stimulation type
Because we modified the bandit task used by Daw et al. (2006) to
incorporate trial-wise bonuses that prevented participants from
making their choices before the onset of a trial, we tested whether
stimulation altered the impact of the bonuses themselves, rather
than the predicted payoffs, on choice. Comparisons of the rele-
vant regression weights (see Additional supporting analyses)
showed a nonsignificant interaction between Condition, stimu-
lation Polarity, and bandit Rank [repeated-measures ANOVA,
three-way interaction of Condition (baseline, stimulation), stim-
ulation Polarity (anodal, cathodal, sham), and reward-based
Rank of the slot machines (1-3), F(, 9,109.71) = 2.091, p = 0.108;
Polarity X Rank interaction: F(3 135 119.121) = 1.863, p = 0.137].
Thus, the tDCS effects on exploitative choices were specifically
related to the more choice-relevant total payoff values (underly-
ing mean + bonus) rather than to the bonuses in isolation.
Together, our results concerning Hypothesis 2 suggest that the
more frequent exploitation during cathodal stimulation reflected
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Figure 4.  Brain stimulation effects on the influence of estimated rewards on choice (Test of
H2). Right, FPCstimulation changed how the estimated rewards of the slot machines influenced
participants’ decisions to explore or exploit. The y-axis represents standardized 3 values froma
logistic regression of decisions (explore vs exploit) on estimated slot machine rewards. Positive
(negative) [3 values indicate that the participant was more (less) likely to explore as the esti-
mated monetary rewards of a slot machine increased. Significant effects were found only for the
highest-paying slot machine; therefore, only those coefficients are shown here. A, Generated
from the difference between tDCS and baseline values shown in B. A, tDCS led to a significant
change in the influence of estimated monetary rewards from the highest-paying slot machine
on participants’ choices relative to baseline. B, Participants who received anodal stimulation
over rFPC became significantly less influenced by the estimated rewards relative to baseline
when deciding to explore or exploit, whereas participants who received cathodal stimulation
over rFPC became significantly more influenced by the estimated rewards relative to baseline.
Error bars indicate SEM. *p << 0.05.

Table 4. Earnings as a function of stimulation polarity and condition”

Baseline earnings Stimulation earnings

Anodal 65.25 = 6.28 61.70 = 7.64
Cathodal 61.84 = 8.20 65.01 = 6.08
Sham 62.61 = 6.87 64.03 = 7.39

“The earnings from task payoffs are reported in experimental monetary units (MUs). The conversion rate from
experimental MUs to CHF was 1 MU = 0.42 CHF. The anodal group earned significantly less than average during
stimulation compared with baseline. The cathodal group earned more than they did during baseline, whereas there
was no change in earnings in the sham group (repeated-measures ANOVA: interaction between Condition and
stimulation Polarity, F ¢ = 3.864, p = 0.025; post hoc paired-sample ¢ test for stimulation vs baseline: Anodal
tos) = 2110, p = 0.045, Cathodal t55) = —1.856, p = 0.075, Sham t,5 = —0.736, p = 0.469). Data are
mean = SD.

an increased focus on monetary reward magnitudes expected for
the highest-paying option, whereas the increased exploration
during anodal stimulation related to a lower sensitivity to mon-
etary reward magnitudes. Interestingly, the stimulation-induced
exploration came at a financial cost: The anodal group earned
significantly less monetary units (MUs) on average during stim-
ulation compared with baseline, the cathodal group earned more
than they did during baseline, whereas there was no change in
earnings in the sham group (repeated-measures ANOVA: inter-
action between Condition and stimulation Polarity, F, ;s =
3.864, p = 0.025; post hoc paired-sample t tests for stimulation vs
baseline: anodal, t,s 2.110, p = 0.045; cathodal,
frs) = —1.856, p = 0.075; sham, {5, = —0.736, p = 0.469; Table
4). The conversion was 1 MU = 0.42 CHF. This difference in
monetary earnings concurs with the results above concerning
Hypothesis 1, by showing again that the anodal group was willing
to sacrifice more money to explore.

tDCS-induced exploration relates to increased sensitivity to
negative prediction errors

Our third hypothesis was that the bias toward exploration elicited
by anodal tDCS reflects a change in the sensitivity to unexpected
choice outcomes. This hypothesis was derived from previous
proposals that the FPC integrates and extrapolates recent experi-
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ences in short-term memory (Ramnani and Owen, 2004; Kovach
etal., 2012). In the context of our task, the saliency of an outcome
may be determined by the difference between the actually re-
ceived and the expected payoff (i.e., the prediction error)
(Schultz, 1998; Tobler et al., 2006; Hayden et al., 2011a; Hauser et
al., 2014). If the rFPC promotes exploration based on salient
recent outcomes, then this tendency should be particularly strong
following large negative prediction errors (unexpectedly low pay-
offs) for the highest-paying option and/or for large positive
prediction errors (unexpectedly high payoffs) for the two lower-
paying options. Therefore, we examined whether anodal stimu-
lation caused participants to explore more either because they
were more attracted by positive prediction errors on the alterna-
tive options (Boorman et al., 2009) or because they shifted away
from the exploited option after negative prediction errors. We
also examined the corresponding prediction that cathodal stim-
ulation would make participants’ choices more robust to recent
deviations from expected outcomes while maintaining the al-
ready established focus on exploitation of maximum estimated
payoffs. To conduct these tests, we estimated an additional set of
GLMs at the individual level and then compared the effects of
previous prediction errors on current choices across stimulation
conditions (see Tests of H3: analyses of how current choices are
guided by previous prediction errors).

We found that rFPC-tDCS indeed differentially affected how
previous prediction errors influenced current choice behavior,
depending on the types of stimulation and slot machine chosen
[repeated-measures ANOVA: three-way interaction Condition,
stimulation Polarity, and Choice type (exploratory vs exploit-
ative), F, ,5) = 3.789, p = 0.027; Fig. 5B; Table 5]. Compared
with the preceding baseline period, stimulation polarity had op-
posite effects on how current choices were influenced by predic-
tion errors associated with past exploitative choices (ANOVA,
F, 76 = 4.204, p = 0.019; Fig. 5A). In the exploratory anodal
group, participants became more likely to explore when the re-
cent outcome of the highest-paying slot machine was less than
expected and more likely to exploit if the recent outcome of the
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Figure 5.  Brain stimulation effects on the influence of prediction errors on choice (Test of
H3).Right FPC stimulation changed how prediction errors (i.e., the difference between true and
expected outcome; PE, prediction errors) of the highest-paying slot machine influenced subse-
quent decisions to explore or exploit. Because of recoding of prediction errors (multiplication
with —1), positive 3 values indicate that the participant was more likely to explore following
negative prediction errors. 4, Generated from the difference between tDCS and baseline values
shown in B. A, tDCS changed how participants’ choices were driven by the recent outcomes of
the highest-paying slot machine relative to baseline. B, Participants who received anodal stim-
ulation over rFPChecame significantly more likely to explore when the outcome of the highest-
paying slot machine was lower than expected and significantly more likely to exploit when the
outcome was higher than expected. Participants who received cathodal stimulation over rFPC
were less influenced by the recent outcomes of the highest-paying slot machines. Error bars
indicate SEM. *p << 0.05.
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Table 5. The influence of previous prediction errors on choice as a function of
stimulation Polarity and Condition’

Baseline tDCS

PE explore PE exploit PE explore PE exploit
Anodal 0.68 + 0.42 0.60 = 1.91 0.68 + 0.64 1.97 = 2.56
(athodal 0.67 = 0.55 1.60 = 2.53 1.03 = 0.46 0.49 + 178
Sham 0.84 = 0.54 0.89 +2.23 0.95 £ 0.70 1.19 =313

“The values in this table represent the mean (== SD) coefficients of interest in Regression 9. Because of recoding of
prediction errors (multiplication with —1), positive beta values indicate that the participant was more likely to
explore following negative prediction errors. During stimulation, the anodal group’s choice became significantly
moreinfluenced by the past negative prediction errors (PE) on exploitative choices (3, in Regression 9) such that the
more stronger the recent negative prediction error, the more likely they were to explore. In contrast, the influence of
PEs for the exploratory options (/3 in Regression 9) on current choice did not vary significantly based on stimulation
Polarity or Condition. This table corresponds to information presented in Figure 5 and tests of Hypothesis 3.

highest slot machine was more than expected ( post hoc paired-
sample t test: t,5, = 2.362, p = 0.026). By contrast, the exploit-
ative cathodal group’s choices became less strongly influenced by
the recent outcomes of the highest-paying option under stimula-
tion (paired-sample ¢,5) = —2.243, p = 0.034). Consistent with
the analysis of payoff values, these prediction error effects were
only observed for recent outcomes of the potentially exploited
highest-paying option, but not for the recent outcomes of the
exploratory choices on the second- and third-highest-paying
bandits. Again, these changes were not related to time or learning
effects, as sham tDCS did not lead to a significant change in the
effect of recent outcomes on choice (paired-sample #(,5, = 0.432,
p = 0.670). Moreover, the stronger influence of previous negative
prediction errors on choices under anodal stimulation goes be-
yond the updating of bandit payoff estimates because those ef-
fects are already accounted for within the reinforcement-learning
model and accounted for in the individual regressions by includ-
ing the relative payoff estimates as additional regressors. To-
gether, these results suggest that the increased exploration in the
anodal stimulation group reflected an increased responsiveness
to previous lower-than-expected outcomes of exploitative
choices, whereas the increased exploitation in the cathodal group
related to a weaker influence of recent prediction errors and a
stronger focus on the current monetary reward of the highest-

paying option.

Discussion

Our results establish a causal role for the rFPC in regulating
both exploration and exploitation, and they underscore that
this region is critical for participants to look beyond the cur-
rent benefits at hand to search for potentially greater rewards
(Wilson et al., 2014). Together, findings from the tests of our
three hypotheses support that the activation observed in FPC
when participants switch to exploratory choices (e.g., Daw et
al., 2006; Boorman et al., 2009) indeed relates to behavioral
control in those situations. Previous research has character-
ized distributed neuroanatomical systems that underlie
exploration and exploitation, with frontopolar cortex and in-
traparietal sulcus preferentially active during exploratory
choices and striatal and ventromedial prefrontal regions more
activated during value-driven exploitative choices (Daw et al.,
2006). Our findings demonstrate that a parsimonious causal
neurobiological mechanism underlies both exploratory and
exploitative behavior, as deciding both to explore or exploit
could be manipulated along a continuum with tDCS over the
same brain region. While these influences of stimulation may
be mediated by interactions of the rFPC with a network of
interconnected cortical and subcortical brain areas (Boorman
et al., 2009, 2011), they nevertheless support the view that a
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unified neural architecture flexibly resolves the range of the
exploration and exploitation tradeoffs (Gittins and Jones,
1974; Kaelbling, 1993). This view is consistent with the ubiq-
uity of this capacity across organisms of varying complexity.

Our findings go beyond simply demonstrating that tDCS over
FPC changes exploratory behavior, by showing that tDCS-
increased exploration or exploitation is associated with altered
sensitivity to particular attributes of the current decision prob-
lem. As expected, we found that reducing rFPC excitability by
means of cathodal tDCS resulted in an increased focus on the
payoffs available from the bandit currently estimated to yield the
most money. Furthermore, enhancing rFPC neuronal excitabil-
ity via anodal tDCS increased participants’ willingness to pay to
explore alternative, currently less profitable options. These find-
ings significantly extend the correlative results of previous neu-
roimaging studies, by suggesting that the rFPC causally resolves
the exploration/exploitation dilemma by balancing behavioral
sensitivity to expected payoffs.

In addition to the findings that could be predicted based on
previous neuroimaging work, we identified a novel computa-
tional factor driving exploration within FPC circuitry. The
increased exploration due to enhancement of frontopolar excit-
ability was related to a stronger focus on recent negative predic-
tion errors from the highest-paying slot machine, rather than to
outcomes from, or beliefs about, the forgone slot machines, as
might have been predicted based on previous work (Boorman et
al., 2009). That is, the tDCS-enhanced exploration reflected a
stronger influence of recent disappointments (i.e., unexpectedly
low payoffs) on the highest-paying option, thus suggesting that
rFPC-induced exploration may in part be motivated by thinking
that “the grass is becoming less green on this side.” This is in line
with findings that FPC lesions impair the ability to extrapolate
trends (Kovach et al., 2012) and is broadly congruent with sug-
gestions that FPC may integrate outcomes of multiple cognitive
events (Ramnani and Owen, 2004), compare sequential out-
comes within changing context (Pollmann et al., 2007), and use
memory of recent events to generate responses (Wagner et al.,
1998; Fletcher and Henson, 2001; Badre and Wagner, 2005; Tsu-
jimoto et al., 2011). Previous neuroimaging findings have shown
that the FPC more generally tracks multiple probabilistic events
that are temporally linked to forecast future outcomes (Koechlin
and Hyafil, 2007; Koechlin, 2008; Boorman et al., 2009). How-
ever, tracking and forecasting is not enough to explain why in-
creasing excitability over rFPC triggers a signal to more readily
abandon a “sinking” option. Instead, anodal tDCS may have low-
ered decision inertia and made participants less willing to accept
outcomes that were lower than expected, in line with findings
that the FPC may play a role in self-generated actions (Christoff et
al., 2003; Tsujimoto et al., 2010) and that prefrontal-basal ganglia
circuits are important for overcoming status quo bias (Fleming et
al., 2010) and apathy (Alexander and Stuss, 2000; Levy, 2012).
Thus, our results generate the interesting hypothesis for future
neuroimaging work that the rFPC may work in concert with
other interconnected regions to initiate changes in behavioral
strategies after outcomes that are worse than expected (see also
Nevo and Erev, 2012).

Importantly, our results cannot be explained by unspecific
effects of tDCS on neural activity or by changes in decision noise.
If tDCS had generally lowered response inhibition during the
task, then we should have observed faster reaction times for an-
odal stimulation and slower reaction times for cathodal stimula-
tion (Terzuolo and Bullock, 1956; Bindman et al., 1962, 1963;
Creutzfeldt et al., 1962; Nitsche and Paulus, 2000, 2001; Fritsch
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and Hitzig, 2009; Bestmann et al., 2014; Bonaiuto and Arbib,
2014). Instead, stimulation over rFPC appeared to affect specific
neural computations related to choice, resulting in longer delib-
eration for the exploratory anodal group and shorter, more tar-
geted decisions in the exploitative cathodal group. The notion of
such a strategic exploration mechanism is congruent with previ-
ous demonstrations that exploratory choices are generally asso-
ciated with longer reaction times than exploitative choices
(Hassall et al., 2013) as well as with the finding that decisions to
leave a patch in a foraging task have longer average response times
(Shenhav et al., 2014). Critically, anodal stimulation over rFPC
did not generally make participants process information more
slowly, as we did not find stimulation-related changes in reaction
times during numerical processing control tasks. Finally, our re-
sults cannot be explained simply by tDCS-induced changes in
decision noise. This notion is contradicted by the findings that
choices were systematically related to recent outcomes of the
highest-paying option and that the beliefs about the slot ma-
chines’ reward values remained similarly accurate after stimula-
tion. Thus, our results suggest that anodal stimulation indeed
modulated choice-related computations in the rFPC that result
in slower, more deliberative decisions to shift toward exploratory
options.

Our findings identify a locus of transcranial stimulation that
may be used to help steer decision making in cases of pathologies
involving deficits in task switching or stereotyped behavior (Eh-
ring and Watkins, 2008; Stuss, 2011; Kleinman et al., 2013). The
rFPC is thought to be embedded within a larger neural network
regulating the exploration—exploitation tradeoff (Boorman et al.,
2011) and is most likely not the only site where transcranial stim-
ulation can have such effects. Stimulation of regions located
within reward-valuation regions that are situated too deep within
the cortex to be strongly affected by currently established tDCS
techniques may have opposite effects on exploration and exploi-
tation compared with those demonstrated in the present study
(Daw et al., 2006; Boorman et al., 2013). Finally, the fact that
excitatory anodal stimulation over rFPC causes decisions to be
less dependent on immediate payoffs may serve to facilitate learn-
ing about the environment, by increasing the selection of the
more uncertain second- or third-best options (Gittins and Jones,
1974; Badre et al., 2012; Payzan-Lenestour and Bossaerts, 2012).
Foregoing immediate reward in favor of information about op-
tions that are potentially more rewarding in the long term may
have beneficial implications for understanding and mitigating a
wide range of behaviors associated with extreme forms of explo-
ration (impulsivity, attention deficits, failure to integrate social
information) or exploitation (compulsivity, lack of innovation,
addiction) in individuals or social organizations.
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