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Hemispheric Asymmetries in Striatal Reward Responses
Relate to Approach-Avoidance Learning and Encoding of
Positive-Negative Prediction Errors in Dopaminergic
Midbrain Regions
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Department of Neuroscience, Faculty of Medicine, Swiss Center for Affective Sciences, and Geneva Neuroscience Center, University of Geneva, CH-1211
Geneva, Switzerland

Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced
approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than
predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high
and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance
between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning in-
volve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning
biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a
task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to
individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better
encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning,
specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may
be determined by neural processes acting to constrain learning about specific aspects of the world.
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Individuals differ in how they behave toward rewards or punishments. Here, we demonstrate that functional hemispheric asym-
metries measured in dopaminergic reward regions dictate whether someone will learn to choose rewarding options or instead
avoid punishing outcomes. We also show that hemispheric reward asymmetries involve a differential neural encoding of signals
controlling approach and avoidance learning. We thus provide experimental evidence for a mechanism that accounts for individ-
ual differences in approach and avoidance learning. Disabling mental illnesses have previously been associated with hemispheric
asymmetries in dopamine function and extreme biases in approach-avoidance behavior. By showing that these observations
implicate biased learning processes, the present study may offer important insights into the development and maintenance of
some psychiatric disorders. /

fSigniﬁcance Statement

avoiding punishments, such as loss, pain, or humiliation (avoid-
ance behaviors). People are differently motivated to initiate ap-
proach and avoidance behaviors (Elliot, 2008), and also display
differences in their ability to learn cues associated with positive

Introduction
Much of human behavior is directed toward gaining rewards,
such as food, money, or praise (approach behaviors), and toward
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and negative outcomes (approach-avoid- A
ance learning) (Frank et al., 2005; Smillie
etal., 2007).

Fixation

Alternatives
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The influential reinforcement sensitiv- +
ity theory proposed that two separate mo-
tivational systems underlie approach and
avoidance behaviors (Gray, 1981). The
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motivation may thus implicate an imbal-
ance in the reactivity of these distinct sys-
tems. At the brain level, self-reported
biases in approach—avoidance motivation
correlate with the relative difference in
resting state EEG alpha power between
left and right frontal brain areas (Sutton
and Davidson, 1997; Pizzagalli et al., 2005), suggesting that the
relative strength between the BAS and the BIS could be reflected
in hemispheric differences in spontaneous brain activation. More
recently, it has been reported that hemispheric asymmetries in
dopamine (DA) function are associated with biases in approach—
avoidance motivation. For example, Parkinson’s disease (PD)
patients with larger loss of DA neurons in the left and right hemi-
sphere displayed relatively decreased approach and avoidance
motivation, respectively (Porat et al., 2014), as well as decreased
approach and avoidance learning, respectively (Maril et al.,
2013). Similar findings were found in healthy controls where
participants with increased DA tone in the left and right hemi-
sphere, respectively, displayed increased approach and avoidance
motivation and learning (Tomer et al., 2014). The latter studies
suggest that motivational biases are related to hemispheric asym-
metries in DA function, adding to the already established role of
DA in motivation processes (Bromberg-Martin et al., 2010).
However, it is unclear exactly how hemispheric asymmetries in
DA function may influence learning strategies and decision mak-
ing processes.

Reinforcement learning theory is an effective way of describ-
ing this learning process, where an action’s value is updated based
on the mismatch between its predicted outcome and an actual
outcome, the so-called prediction error (PE) (Sutton and Barto,
1998). An action’s value is incremented whenever its outcome is
better than expected (i.e., positive PE; outcome — prediction >
0), whereas its value is decremented following an outcome that is
worse than expected (i.e., negative PE; outcome — prediction <
0). The neural correlates of PEs have been reported in midbrain
DA neurons, including the ventral tegmental area (VTA) and the
substantia nigra (SN) (Schultz et al., 1997; Schultz, 1998). For
example, unexpected rewards (positive PEs) increase the firing
rates of midbrain DA neurons, whereas unexpected omissions of
rewards (negative PEs) decrease the firing rates (Schultz et al.,
1997; Tobler et al., 2003). Encoding of PEs is casually linked to
learning (Steinberg et al., 2013), and altered neural encoding of
PEs has been associated with deficits in value-based learning (To-
bler et al., 2006; Schonberg et al., 2007).

In the present study, we directly tested whether an asymmetry
in neural activity across dopaminergic regions in favor of the left
hemisphere (i.e., relatively increased reward response in the left
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Figure 1.
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A, One training trial in the probabilistic selection task. After fixation, two symbols were presented and participants
selected one symbol within 1. After 1, positive or negative feedback was presented based on the reward probability associated
with the selected symbol. RT, Response time. B, Reward probabilities associated with each pair and symbol. The symbols associ-
ated with each reward probability were randomized between participants.

than right hemisphere) implicates better approach than avoid-
ance learning, as well as better neural encoding of positive (vs
negative) PEs. We estimated approach—avoidance biases in learn-
ing using a reward task in which participants learned to associate
different symbols with different reward probabilities (Frank et al.,
2004). Hemispheric differences in DA function were estimated
during the reward task as the differential neural response of the
left and right nucleus accumbens (NAcc) to positive and negative
feedback. Finally, neural responses to positive and negative PEs in
the midbrain were estimated by combining a computational re-
inforcement learning model with fMRI.

Materials and Methods

Participants

Forty-two healthy participants with no previous history of neurological
or psychological disorders participated in the study. All participants pro-
vided written consent according to the ethical regulations of the Geneva
University Hospital, and the study was performed in accordance with the
Declaration of Helsinki. Data from 8 participants had to be excluded for
the following reasons: falling asleep in the MRI scanner (n = 2), failure to
follow task instructions (n = 2), and failure to reach the performance
criteria in the probabilistic selection task (# = 4, see below). Finally, data
from 34 right-handed and native French-speaking participants (14 fe-
males; average = SEM age, 23.41 * 0.78 years) were included in the
analyses.

Probabilistic selection task (PST)

In the PST, participants learned the values of different symbols by asso-
ciating each symbol with different reward probabilities (Frank et al.,
2004). The first (main) training phase took place outside the MRI scan-
ner. Each trial started with a central fixation cross presented for 0.5-2.0 s
(randomly jittered with an average presentation time of 1.25 s) followed
by one of three possible pairs of symbols presented for 1.0 s. The symbols
were shown to the right and to the left of the central fixation, and partic-
ipants were instructed to select one symbol by pressing the correspond-
ing button using their right hand (Fig. 1A). Feedback, a positive or
negative smiley face, was presented 1 s following symbol presentation
and was presented for 0.6 s. Feedback depended on the reward probabil-
ity associated with each symbol (Fig. 1B). In AB pairs, the probability of
a positive outcome was 80% for the A symbol and 20% for the B symbol.
For CD and EF pairs, the probabilities were 70/30 and 60/40, respectively.
The words “Too slow!” appeared on the screen instead of a smiley face if
no response had been given within 1 s following the symbol presentation.
Each pair of symbols was presented 20 times in a block in a pseudoran-
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dom order (each pair was presented once before any other pair was
repeated). In addition, each symbol was presented an equal number of
times on the left and the right side of the central fixation. Between par-
ticipants, the symbols were randomly assigned to the different pairs and
the reward probabilities were randomly assigned to different symbols.

During training, participants were instructed to increase the number
of outcomes with happy smiley faces while decreasing the number of
outcomes with sad smiley faces. The training continued until the selec-
tion rate of the A and C symbols exceeded 60% and 55%, respectively,
within one block, or until 45 min had passed without reaching both
criteria (Frank and O’Reilly, 2006). Data from participants failing to
reach the criteria were excluded from further analyses (n = 4). This
procedure ensured that all participants reached an above chance level of
performance for the two most asymmetrical pairs in the task before
entering the MRI scanner. On average, participants required 3.735
(SEM = %0.555) training blocks to reach the criteria. Subsequent phases
occurred in the MRI scanner. Two additional training blocks were thus
performed in the scanner, which allowed investigating the neural corre-
lates of reward and reinforcement learning processes. This training was
identical to the training outside the scanner, with the exception that the
central fixation cross was presented for 2.0-5.0 s (randomly jittered with
an average presentation time of 3.5 s) so as to be suitable for an event-
related fMRI design. Next, participants underwent a test phase, in which
they were presented with 12 novel pairs (AC, AD, AE, AF, BC, BD, BE,
BF, CE, CF, DE, and DF), created by mixing the symbols from the orig-
inal trained pairs (AB, CD, and EF). This test phase was similar to the
training blocks performed inside the scanner, with the exception that no
feedback was presented to prevent further learning of the new pairs.
Participants were instructed to perform the task as well as possible and to
trust their instinct, or guess, when uncertain. Each pair was presented
eight times in a pseudorandom order (again, each pair was presented
once before any other pair was repeated), and each symbol was presen-
ted an equal number of times on each side of the central fixation. Both
sessions (i.e., the two training blocks and the test phase) lasted ~10.5 min
each, for a total scanning time of 21 min.

As in previous studies (Frank et al., 2004), the bias in approach versus
avoidance learning was defined as the proportion of trials in which the A
symbol was selected (i.e., reflecting approach learning) minus the pro-
portion of trials in the test phase in which the B symbol was rejected (i.e.,
reflecting avoidance learning).

Reinforcement learning model

Computational learning models provide a mechanistic approach to
studying learning-related trial-by-trial variations in behavior (Watkins
and Dayan, 1992) and in neural activity (Gldscher and O’Doherty, 2010).
Here, we used a slightly modified version of the classical Q-learning
model to account for differences in learning from positive and negative
outcomes (Frank et al., 2007). In this modified “approach—avoidance”
model, each symbol i is assigned a value Q,, which depends on its feed-
back history. That is, the value Q; is updated each time the corresponding
symbol has been selected as follows:

Qi(t+ 1) = Q1) + ap[r — Q)]+ + anlr — Qi(B)]-

where Q;(#) is the value for the selected symbol i in trial t, o and e, are
the learning rates for positive and negative outcomes (denoted by the +
and — subscripts, respectively), and r is the reward outcome (set to 1 for
positive outcomes and 0 for negative outcomes). The probability of se-
lecting a specific symbol is modeled by a softmax rule as follows:

Qa(t)

Praining

PAD = 0,0 Q)

B

B

In this example, p , is the probability of selecting symbol A in an AB pair.
The B,,4ining controls “exploit versus explore” behavior during the train-
ing. When this parameter is small, symbols with the highest Q value are
most likely selected (exploitation), whereas a large value leads to selec-
tions less dependent on the symbol’s value (exploration). The three pa-
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rameters ap, ey, and By, Were fitted to each participant’s training
data by minimizing the negative log-likelihood estimate (LLE) as follows:

LLE = —log (]—L p:-(t))

where p,(1) is the probability of selecting symbol i in trial £. To avoid local
minima, the search was repeated from 100 different starting points.

During the test phase, the final Q values from the training stage were
used as inputs to the soft-max rule to estimate choice probabilities in
each trial. Using the same procedure as previously described one param-
eter B, (estimating “exploit vs explore” behavior during the testing)
was fitted to each individual’s data by minimizing the log-likelihood
estimate.

For tests of the model fit, the model was compared with a parameter-
free “random choice model” that assumes all choices are random and
equiprobable, as well as to a canonical model with only one learning rate.
Model fits were compared using the Bayesian Information Criterion
(BIC) (Schwarz, 1978), which allows comparing the fits of models using
different numbers of free parameters as follows:

BIC = LLE + 0.5 - K In(n)

where K is the number of free parameters and 7 is the number of choice
trials. The random choice model was also used to compute a standard-
ized metric of model fit, a pseudo—R2 statistic (Gershman et al., 2009)
defined as 1 — LLE;, /LLE, .40, Where LLE, . 4,,,, is the log data likeli-
hood under the chance model and LLEj;,,, is that under the fit model.

Statistical methods

Significance levels were obtained by comparing observed results with
null distributions, as obtained by Monte Carlo methods (Howell, 2013).
The null hypothesis states that there is no difference between the means
of the conditions and/or groups. Thus, for example, when performing
the equivalence of a paired ¢ test using Monte Carlo methods, the null
distribution is constructed by the following: (1) randomly shuffling ob-
servations between the two conditions for each participant; (2) recording
the mean difference between the two conditions; and (3) repeating this
procedure a large number of times (7 = 10,000 for the present study). An
estimate of significance (i.e., p values) for a two-tailed test is obtained by
calculating the proportion of trials in which the observed mean is larger
or smaller than the means making up the null distribution. Similar pro-
cedures were used for ANOVAs and correlation coefficients. The advan-
tage of using Monte Carlo methods is that normal distributions are no
longer required, unlike when performing traditional ¢ tests and
ANOVAs. Spearman’s rank correlation coefficient was used to estimate
the relationship between two variables.

MRI data

Image acquisition. MRI images were acquired using a 3T whole-body
MRI scanner (Trio TIM, Siemens) with a 12-channel head coil. Standard
structural images were acquired with a TIl-weighted 3D sequence
(MPRAGE, TR/TI/TE = 1900/900/2.27 ms, flip angle = 9 degrees, voxel
dimensions = 1 mm isotropic, 256 X 256 X 192 voxels). Proton density
structural images were acquired with a turbo spin echo sequence (TR/
TE = 6000/8.4 ms, flip angle = 149 degrees, voxel dimensions = 0.8 X
0.8 X 3 mm, 205 X 205 X 60 voxels). The proton density scan was used
to localize the SN/VTA in the midbrain. The acquisition volume was
oriented to scan the brain from the lower part of the pons to the top of the
thalamus. Functional images were acquired with a susceptibility-
weighted EPI sequence (TR/TE = 2100/30 ms, flip angle = 80 degrees,
voxel dimensions = 3.2 mm isotropic, 64 X 64 X 36 voxels, 36 slices
acquired in descending order with a slice gap of 20%).

MRI data analysis. All fMRI data were preprocessed and then analyzed
using the GLM for event-related designs in SPM8 (Welcome Department
of Imaging Neuroscience, London; http://www.fil.ion.ucl.ac.uk/spm).
During preprocessing, all functional volumes were realigned to the mean
image, coregistered to the structural T1 image, corrected for slice timing,
normalized to the MNI EPI template, and smoothed using an 8 mm
FWHM Gaussian kernel. Statistical analyses were performed on a voxel-
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wise basis across the whole brain. At the first-level analysis, individual
events were modeled by a standard synthetic hemodynamic response
function, and six rigid-body realignment parameters were included as
nuisance covariates when estimating statistical maps. Contrasts between
conditions (see below) were then calculated and the contrast images
entered into second-level tests implemented in SPM.

Reward processing and reinforcement learning

Hemispheric asymmetries in reward processing and the neural correlates
of PEs were investigated during the training blocks performed inside the
MRI scanner. The corresponding event-related design included four
event types time-locked to the feedback onset and depending on the side
of the selected symbol (i.e., left, right) and the feedback type (i.e., posi-
tive, negative). Model-derived PEs were added as parametric modulators
for each event type. Additionally, to ensure that the neural activity related
to the PEs was not confounded by motor aspects, response times were
added as an additional parametric modulator. Crucially, to remove
motor-related neural activity from the neural activity related to the PEs,
the vectors containing the PEs were orthogonalized with respect to the
response times. Hemispheric reward asymmetry was estimated as the
difference in beta coefficients of the feedback onset predictors for posi-
tive and negative feedback for the left versus the right NAcc.

Hemispheric reward asymmetry = [Pos.FB — Neg.FB]; yac
— [Pos.FB — Neg.FB] nacc

The beta coefficients were extracted from 3 mm spheres centered on the
coordinates of the peak activation within the NAcc ROI (see below).

Brain activity related to PE encoding in the midbrain was localized
using a VTA ROI (see below) and the linear combination of the beta
coefficients related to positive and negative PEs. This mean signal of PE
encoding was then assessed further by looking at the contribution of
positive and negative PEs separately.

ROIs

A priori ROIs used for small volume corrections (SVCs) were created
based on previous literature. For the NAcc ROI, center coordinates were
obtained from a recent study (Neto et al., 2008) (left NAcc: MNIx = —9,
y=19,z= —8;right NAcc: MNIx =9,y = 8,z= —8). The NAcc ROl was
created by combining two spheres (radius = 5 mm) centered on these
coordinates into one NAcc mask. For the VTA/SN ROI, center coordi-
nates were obtained from a recent study (Adcock et al., 2006) (left SN/
VTA:x = —4,y =15,z = —9;right SN/VTA: x = 5,y = — 14,z = —8).
The SN/VTA ROI was created by combining two spheres (radius = 5
mm) into one SN/VTA mask, in accordance with a recently described
procedure (Shohamy and Wagner, 2008).

Statistical analyses

The obtained results are reported using a threshold of p < 0.001 and a
minimum cluster size of five contiguous voxels. SVCs using a threshold
of p < 0.05 Family-Wise Error Rate for multiple comparisons were ob-
tained using the a priori ROIs reported above. Conditions were com-
pared using traditional ¢ tests implemented in SPM.

Results

Behavior

Training phase

Figure 2A displays performance as a function of training for the
different pairs. Because participants displayed individual differ-
ences in the number of trials required to reach the performance
criteria, performance was averaged across 10 bins of trials for
each participant and pair (i.e., the bin size for a participant re-
quiring 120 trials is 4 trials, whereas the bin size is 6 trials for a
participant requiring 180 trials).

Next, performance was linearly regressed across trial bins for
each pair and participant, and the resulting learning slopes were
submitted to a one-factor ANOVA with factor Pair (AB, CD, EF).
There was a significant effect of Pair (F, 4 = 3.73, p = 0.029)
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because the learning slopes were significantly steeper for AB pairs
(mean slope = 0.021, SEM = *0.004) compared with EF pairs
(mean slope = 0.006, SEM = *0.004, p = 0.015), whereas CD
pairs (mean slope = 0.017, SEM = %0.004) displayed a marginal
trend compared with EF pairs (p = 0.090), but no difference
compared with AB pairs (p = 0.362). These results suggest that
learning was easier in pairs where the difference in reward prob-
ability between the symbols was large. Of note, there was no
evidence of lateralization effects as the selection rate of a symbol
did not depend on which side it was presented (Table 1; all p >
0.17), nor did participants respond faster when selecting a symbol
in different visual fields (Table 1; all p > 0.23).

Figure 2B displays the “approach—avoidance” model fit to the
behavioral data. The fitted parameters and estimates of model fits
are displayed in Table 2.

The approach—avoidance model provided a significantly bet-
ter fit to behavioral data (mean BIC = 178.272, SEM = *+30.573)
compared with both the random choice model (mean BIC =
240.767, SEM = *22.860, p < 0.0001) and the canonical model
(mean BIC = 187.606, SEM = * 32.174, p = 0.020). To estimate
how much variance in the choice behavior was accounted for by
the approach—avoidance model, the pseudo-R* value was calcu-
lated, which showed that the approach—avoidance model ac-
counted for a large proportion of the variance in choice behavior
(mean pseudo-R* = 32.67%, SEM *+5.60), which was also signif-
icantly larger compared with the canonical model (mean
pseudo-R?* = 29.20%, SEM *5.00, p = 0.0003).

Test phase

During the test phase, the symbols were mixed to create novel
pairs and participants were instructed to select the best symbol in
each novel pair. Figure 2C displays the selection rate for each
symbol during the test phase. A one-factor ANOVA with factor
Symbol revealed a main effect (F 45y = 52.31, p < 0.0001),
indicating that symbols associated with higher reward probabil-
ities were more likely to be selected, whereas symbols associated
with lower reward probabilities were less likely to be selected (i.e.,
more likely to be avoided). This result suggests that participants
were able to use the learned reward probabilities during the test
phase. The model-derived selection rate is displayed in Figure 2D,
and fitted parameters and model fits are displayed in Table 2. The
approach—avoidance model provided a significantly better fit to
behavioral data (mean BIC = 71.558, SEM = *£3.698) compared
with the random model (mean BIC = 79.467, SEM = *+13.629,
p = 0.003), but although the fit was on average better compared
with the canonical model, the difference was not significant
(mean BIC = 74.052, SEM = +3.949, p = 0.350). The pseudo-R*>
value indicated that the approach—avoidance model accounted
for a large proportion of the variance in choice behavior (mean
pseudo-R* = 17.60% SEM = +0.05), but again this difference
was not significantly different from the canonical model (mean
pseudo-R* = 13.20% SEM = *0.04, p = 0.425). The variance
explained is smaller compared with the training phase, plausibly
reflecting difficulties in generalizing reward probabilities from
the training phase to the novel pairs.

Of note, the model overestimates the hit rate for EF pairs during
training (Fig. 2B), an effect that transfers also the testing phase (Fig.
2D). We addressed this issue by fitting a new model with two learn-
ing rates (i.e., related to positive and negative outcomes, respec-
tively) and one “exploration—exploitation” parameter 3 for each
trained pair (i.e., nine parameters in total). This analysis revealed
significantly more randomness in the choices for EF pairs, as indi-
cated by larger B values (mean Bg = 1.628, SEM = +0.423) com-
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A, Performance as a function of training (mean == SEM). Participants improved performance as training progressed, as indicated by increased performance at the end of training.

Performance increased most rapidly for AB pairs where the difference in reward probability between the symbols was largest. B, Performance, as derived from the reinforcement learning model, as
afunction of training. Overall, the predicted performance (solid lines) provides a good fit to the observed performance (dots). €, Selection rate during the test phase with novel pairs (mean == SEM).
Symbols with higher and lower reward probabilities during the training were more likely to be selected and avoided in the novel pairs. D, Selection rate, as derived from the reinforcement learning
model, during the test phase with novel pairs (mean == SEM). Overall, the predicted performance (white bars) provides a good fit to the ohserved performance (black dots).

Table 1. Selection rates and response times”

Selection rate® Reaction time®

Symbol

(reward probability) LVF RVF LVF RVF

A (80%) 0.801(0.026) 0.768 (0.033) 642.618 (15.527) 630.368 (13.773)
C(70%) 0.753(0.030) 0.734(0.030) 673.927 (16.759)  659.485 (14.996)
E (60%) 0.620 (0.033)  0.590 (0.033) 712.677 (16.037)  699.647 (17.512)
F (40%) 0.410(0.033)  0.380(0.033) 693.985 (19.050) 704.294 (21.377)
D (30%) 0.266 (0.030) 0.247 (0.030)  689.179 (21.942)  694.536 (25.254)
B (20%) 0.232(0.033) 0.199(0.026) 681.889 (24.866) 703.741 (29.640)

“Data are mean (SEM). LVF, Left visual field; RVF, right visual field.
%No symbol was selected more often in one visual field (all p > 0.17).
“Response times did not differ for symbols selected in different visual fields (all p > 0.23).

pared with both AB pairs (mean 3,5 = 0.349, SEM = *0.092, p <
0.003) and CD pairs (mean B¢y, = 0.150, SEM = #+0.030, p <
0.0001). This result could be expected as EF pairs are the most diffi-
cult (Fig. 2A). Moreover, the fitted 8 parameter across all pairs in the
approach—avoidance model was closer to 3 parameter values of AB

and CD pairs (mean g cp, gr = 0.214, SEM = %+0.037), a logical
result as there are twice as many trials with less random choice (i.e.,
AB and CD) pairs. However, this result means that the randomness
of choices in EF pairs is severely underestimated by the “approach—
avoidance” model, something that explains why the model overesti-
mates performance for the EF pairs. Importantly, we found no
significant differences in the neural correlates of PE encoding be-
tween the “approach—avoidance” and the nine-parameter model,
suggesting that the overestimation of performance for EF pairs did
not significantly impact the subsequent results.

fMRI

Hemispheric asymmetry in reward processing

We first identified brain regions showing increased response to
positive versus negative feedback (Fig. 3A). Activity in the bilat-
eral NAcc was higher for positive versus negative feedback (left
NAcc: peak voxel MNL, x = =6,y = 11,z = —11, t55) = 4.051,
Psve = 0.004; right NAcc peak voxel MNI, x = 9, y = 11,
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Table 2. Model fits”

Model -1l BIC Pseudo-R* @ e ay Baining

Training
Canonical 181.857 (31.188) 187.606 (32.174) 0.292 (0.050) 0.149 (0.026) — — 0.232 (0.040)
Approach—avoidance 172.272 (29.544) 180.895 (31.023) 0.327 (0.056) — 0.279 (0.048) 0.065 (0.011) 0.214 (0.037)
Random choice 240.767 (22.860) 240.767 (22.860) — — — — —

Testing B
Canonical 74.0520 (3.9488) 76.4234 (3.9500) 0.0723 (0.0474) — — — 0.911(0.029)
Approach—avoidance 69.8957 (3.7446) 72.2671 (3.7443) 0.1194 (0.0479) — — — 0.878 (0.032)
Random choice 240.767 (22.860) 240.767 (22.860) — — — — —

“Data are mean (SEM). LL, Log-likelihood; BIC, Bayes Information Criterion; v, learning rate for the Canonical model; cvp and vy , learning rates for positive and negative outcomes, respectively, for the approach—avoidance model; B,ining

and B, exploration— exploitation parameters for the training and test sessions, respectively.

2= —11, 135 = 6.376, psyc < 0.000001). A
These results are in accordance with a re-
cent coordinate-based meta-analysis re-
porting that both left and right anterior
striatum are more involved in the process-
ing of positive (vs negative) events (Bar-
tra, 2013).

Next, to assess hemispheric differences
in reward responsiveness between indi-
viduals, an asymmetry index was esti-
mated for each individual by calculating
the difference in neural response to posi-
tive and negative feedback between the
right and left NAcc. For each participant,
the neural response to positive and nega-
tive feedback was extracted from two

Positive > Negative Feedback
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the reverse pattern. To investigate the sep- ~ -270-2 Left HS bias & e ©®
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arate contributions of positive and nega-  §-0.4 g 02l @ ©
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tive feedback to the hemispheric reward ‘£-0.6 o .
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asymmetry, beta coefficients for positive £ g < o
and negative feedback in the left and right 1.0 o6l
NAcc were extracted using the same pro- " Sorted participants -0.8 04 0.0 04 08
cedure. Next, the difference in neural re- Hemispheric reward asymmetry
sponses across hemispheres for positive and
negative feedback was correlated with the  Figure3. A, Neural response to positive compared with negative feedback was significantly larger in both the left and right

hemispheric reward asymmetry separately.
Although not reaching standard levels of
significance, there was evidence of both
hemispheric asymmetries in positive and
negative feedback contributing to the hemi-
spheric reward asymmetry (positive feed-
back: p = 0.338, p = 0.051; negative
feedback: p = —0.273, p = 0.119).

We then directly tested the hypothesis that hemispheric asym-
metries in DA function relate to biased approach—avoidance
learning. Individual asymmetry in NAcc response to reward cor-
related significantly with the learning bias (Figure 3D; p = 0.338,
p = 0.025, one-tailed) because participants with larger neural
response to positive versus negative feedback in the left (relative
to the right) NAcc displayed increased approach learning (rela-
tive to avoidance learning). Performing the same analysis on

learning. HS, Hemisphere.

NAcc. Red circles represent the left and right NAcc ROIs. B, Average beta value (mean = SEM) for positive relative negative
feedback extracted from 3-mm-radius spheres centered on the coordinates of the peak voxel within the left and right NAcc ROIs.
**p < 0.001. ®p < 0.1. , Distribution of individual differences in hemispheric reward asymmetry. Fourteen participants dis-
played larger reward responsiveness in the left NAcc, whereas 20 participants displayed larger reward responsiveness in the right
NAcc. D, Learning bias (approach vs avoidance learning) as a function of hemispheric reward asymmetry. Participants with a
relatively larger relative reward response in the left (resp. right) NAcc displayed relatively more approach (resp. avoidance)

hemispheric asymmetries in positive and negative feedback sep-
arately revealed no significant correlations (positive feedback:
p = 0.054, p = 0.763; negative feedback: p = —0.114, p = 0.518).

Extending previous studies, which showed that relatively in-
creased DA receptor binding or reduced loss of DA neuron in the
left hemisphere is associated with relatively increased approach
behaviors (Maril et al., 2013; Porat et al., 2014; Tomer et al.,
2014), the present fMRI result suggests a critical role for phasic
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positive PEs (mean activity = 0.090,
SEM = 0.051, p = 0.094), with no differ-
ence between positive and negative PEs
(p = 0.373). Of note, the extracted activ-

\ ity represents the strength of the correla-
tion between neural activity and the PEs.

| Thus, the positive correlation found for
both negative and positive PEs indicates
that neural activity is stronger for large
positive PEs (i.e., for unexpected rewards
compared with expected rewards) and
weaker for large negative PEs (i.e., for un-
expected omissions of rewards compared
with expected omissions). Provided that
the dopaminergic midbrain tracks both
positive and negative PEs, this result is in
accordance with previous studies showing
that unexpected rewards and omissions

0.25 ns. 1.0 increases and decreases phasic activity of
_ - ® DA neurons, respectively (Schultz et al.,
0 0.20 a 1997; Schultz and Dickinson, 2000; To-
pry e 5 o bler et al., 2003; D’Ardenne et al., 2008).
T S5 Critically, we predicted that partici-
ge ER; pants with increased neural response to
5 0 Tz o . .
T >0510 >4 positive versus negative feedback in the
g § 29 left NAcc (associated with relatively better
ma @G -0.5 o , approach learning) should also display
< 0.05 o ° o O (LeftHS Bias . o .
N o g o better encoding of positive relative nega-
0.00 i e ’ Right HS Bias tive PEs. As predicted, the hemispheric re-

Negative Positive
PE

Figure4. A, Neuralactivity within the SN/VTAROI tracked net PEs. Red circle represents the SN/VTAROI. B, The neural correlate
of net PEs overlaid on an average proton density structural image. The substantia nigra can be identified as a white strip surround-
ing the ventral tegmental area. C, Neural activity in the dopaminergic midbrain (MNI: x = 6,y = 16,z = —5) correlating with
negative and positive PEs (mean = SEM). **p < 0.01. ®p << 0.1. ns., Not significant. D, Relative encoding of positive versus
negative PEs as a function of hemispheric reward asymmetry. Participants with a relatively larger reward response in the left (vs the

right) NAcc displayed relatively better encoding of positive (vs negative) PEs. HS, Hemisphere.

reward responses in determining individual differences in moti-
vational learning.

PEs

Contrasts used to identify ROIs need to be unbiased with respect
to the subsequent correlation analyses (Kriegeskorte et al., 2009;
Vul et al., 2009). For this reason, we first identified brain regions
indicative of mean PE signaling by localizing the maxima from
the net PE contrast (the net PE is the linear combination of the
contrasts for positive and negative PEs). Next, this mean signal
was assessed further by looking at the neural correlates of positive
and negative PE signaling separately.

The neural response to net PEs is displayed in Figure 4A.
Overall, brain activity in the VTA/SN ROI correlated significantly
with net PEs (SN/VTA ROI peak voxel; MNL x = 6, y = —16,
z = =5, t35 = 4.216, psyc = 0.003). To better visualize the
midbrain dopaminergic regions, the same activity is overlaid on
the average proton density structural scan in Figure 4A. The VTA
is medial to the SN, which can be identified as a white strip
(D’Ardenne et al., 2008).

Next, activity from the peak voxel (MNIL, x = 6, y = —16,
z = —5) was extracted for positive and negative PEs separately
(Fig. 4B). Activity correlated significantly for negative PEs (mean
activity = 0.161, SEM = 0.047, p = 0.002) and marginally so for

0
-0.8 -04 0.0 04 0.8
Hemispheric reward asymmetry

ward asymmetry negatively correlated
with the relative neural response to posi-
tive versus negative PEs (Figure 4C; p =
0.375,p = 0.016, one-tailed). This result is
consistent with previous studies indicat-
ing relatively greater involvement of the
DA system in the left hemisphere in be-
havioral approach, but more importantly,
also shows that the expression of post-
learning behavioral biases can be directly
related to biases during the learning.

Discussion
The present study addressed whether hemispheric asymmetries
in reward processing implicate individual differences in ap-
proach—avoidance learning and the neural encoding of positive—
negative PEs.

Hemispheric reward asymmetry relates to
approach—-avoidance learning

A main finding of the present study is that participants with
increased reward response in the left NAcc displayed better ap-
proach learning and conversely for participants displaying stron-
ger reward response in the right NAcc who had better avoidance
learning. While this result is in line with previous studies report-
ing that approach and avoidance learning might relate to asym-
metric loss of DA neurons in PD patients (Maril et al., 2013; Porat
et al., 2014) or asymmetric D2 receptor binding in the striatum
(Tomer et al., 2014), our study provides direct evidence that bi-
ased approach—avoidance motivation and learning are linked to
asymmetries in the transient response of dopaminergic brain re-
gions to rewards. Below, we suggest that asymmetries in DA func-
tion reported in previous studies may plausibly indicate
asymmetries in the phasic response to rewards in the NAcc. First,
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the loss of midbrain DA neurons dampens phasic responses to
rewards in both the midbrain and striatal projection sites, includ-
ing the NAcc (van der Vegt et al., 2013). Second, manipulating
striatal DA function by pharmacological agents strongly affects
phasic responses to rewards in the NAcc (Knutson and Gibbs,
2007). Our results thus offer a new view on existing data by link-
ing approach—avoidance learning to hemispheric asymmetries in
the phasic response to rewards.

Encoding positive—negative PEs controls

approach—-avoidance learning

A second main finding of the present study is that larger neural
responses to rewards in the left (resp. right) NAcc are not only
associated with better approach (resp. avoidance) learning, but
also with better encoding of positive (resp. negative) PEs. PEs are
defined as the mismatch between actual and predicted outcomes.
Positive and negative PEs signal outcomes that are better or worse
than expected, leading to increments and decrements of action
values, respectively. Action values determine which actions
should be approached or avoided, suggesting that positive and
negative PEs underpin approach and avoidance learning. As a
stronger correlation between PEs and brain activity indicates a
better neural representation of the learning signals needed for
adaptive behaviors, better approach—avoidance learning should
be reflected in better neural encoding of positive—negative PEs.
This notion was corroborated by our results as participants with
larger responses to rewards in the left (vs the right) NAcc dis-
played a stronger correlation between neural activity in the mid-
brain and positive PEs (vs negative PEs), as well as increased
approach (vs avoidance learning). Of note, splitting participants
into two groups based on whether they are better approach or
avoidance learners (Frank et al., 2005; Baker et al., 2013) revealed
that approach and avoidance learners also differed in the rel-
ative ability to encode positive and negative PEs in the mid-
brain (data not shown). This result confirms our finding that
positive and negative PEs underpin approach and avoidance
learning, respectively.

Some previous studies reported factors associated with biases
in approach versus avoidance learning, such as the expression of
DA genes (Frank et al., 2007), pharmacological manipulations of
DA function (Frank and O’Reilly, 2006), loss of midbrain DA
neurons (Frank et al., 2004; B4di et al., 2009), or individual dif-
ferences in the neural response to punishment (Frank et al.,
2005). Here, by using a computational account combined with
individual measures of learning and brain activity, we offer un-
precedented evidence that midbrain PE encoding underlies indi-
vidual differences in approach—avoidance learning, as we
describe in more detail below.

The influence of PEs on action selection and biases in
approach-avoidance learning

How can differential encoding of positive and negative PEs lead
to behavioral biases? On the one hand, Frank et al. (2005) pro-
posed that actions are stored in pre/motor cortex and executed
through thalamocortical projections relaying information from
the basal ganglia to the cortex. Activation of striatal DA receptors
would facilitate action execution, whereas reduced activation of
DA receptors suppresses action execution (through disinhibition
or inhibition of the thalamus, respectively). These effects are
themselves controlled by phasic bursts or dips in the activity of
midbrain DA neurons elicited by action outcomes, so that action
execution is facilitated for frequently rewarded actions (approach
learning), whereas action suppression is facilitated for frequently
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punished actions (avoidance learning). On the other hand, phasic
activity of midbrain DA neurons is closely associated with the
encoding of PEs (Schultz et al., 1997; Schultz and Dickinson,
2000; Tobler et al., 2003) and learning (Tobler et al., 2006; Stein-
berg et al.,, 2013). Thus, learning depends on the accurate repre-
sentation of PEs in the phasic activity of midbrain DA neurons. In
particular, better neural encoding of positive and negative PEs
indicates that phasic bursts and dips better represent the learning
signals needed for adaptive changes in approach and avoidance
behaviors. Thus, a relative difference in the neural encoding of
positive and negative PEs in midbrain DA neurons should be
associated with a relative difference in approach and avoidance
learning, as our results demonstrate.

Previous observations suggest that overall DA activity (rather
than hemispheric asymmetries) may affect approach—avoidance
learning. In particular, unmedicated PD patients with altered DA
function are better avoidance learners, whereas the same patients
on DA medication were better approach learners (Frank et al.,
2004; Bodi et al., 2009). These results have also been replicated
using pharmacological manipulations of striatal DA function in
healthy controls (Frank and O’Reilly, 2006). Frank (2005) pro-
posed a computational model to account for these biases in ap-
proach—avoidance learning as a function of overall differences in
striatal DA function, where increased and decreased overall DA
function leads to more disinhibition (approach learning) and
inhibition (avoidance learning) of the thalamus.

Here, we rather suggest that it is the relative encoding of pos-
itive and negative PEs that determines behavioral biases. This
proposal differs but is compatible with the Frank (2005) model.
Supporting both views, pharmacological manipulations of DA
function influence the neural encoding of PEs (Jocham et al.,
2011; Chowdhury et al., 2013). Thus, as it has not been shown
experimentally how pharmacological manipulations of DA func-
tion influence the neural mechanisms underlying approach—
avoidance learning, further work is needed to fully understand
the interaction between approach—avoidance learning, the neural
encoding of PEs, and pharmacological manipulations of the DA
system.

Hemispheric asymmetries in DA function, cognition, and
mental illness

There are similarities between behavioral biases associated with
hemispheric asymmetries in DA function and behavioral biases
expressed in some psychiatric disorders. For example, some evi-
dence suggests that schizophrenia may be associated with abnor-
mal hemispheric asymmetries in DA function (Reynolds, 1983;
Hietala et al., 1999), and cognitive abilities potentially related to
hemispheric DA asymmetry and function, such as associative
processing and creativity (K.C.A., K.C.D., S.S., unpublished
data), are also modified in schizophrenia (Spitzer, 1997; Kauf-
man and Paul, 2014) and by schizotypical traits (Mohr et al.,
2001; Folley and Park, 2005). Moreover, extreme biases in ap-
proach and avoidance behaviors have been associated with de-
pression, anxiety, gambling, and drug addiction (Zuckerman and
Neeb, 1979; Stein and Stein, 2008; Stephens et al., 2010; Paulus
and Yu, 2012), and the development and maintenance of such
disorders may depend on biases in approach—avoidance learning
(Mineka and Oehlberg, 2008). However, although there is evi-
dence for the involvement of hemispheric asymmetries in psy-
chopathologies (Flor-Henry, 1978; Sutton and Davidson, 1997;
Yoney, 2001), very few studies have investigated the relationship
between hemispheric asymmetries in DA function and mental
disorders. Thus, studying the relationship between hemispheric
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brain asymmetries in DA function and behavior may help under-
standing the mechanisms underpinning mental disorders.

Limitations

One limitation of the present study is the correlational nature of
the relationship between hemispheric asymmetries in reward
processing and the neural encoding of positive-negative PEs;
thus, it is unclear how the relative activation of the left and right
NAcc influences the encoding of positive and negative PEs in the
midbrain. One speculation is that individual differences in ap-
proach—avoidance behaviors modulate the connectivity of the
left and right NAcc to other brain regions involved in affective
and executive functions (Cservenka et al., 2014; Coveleskie et al.,
2015), something that may in turn modulate mesolimbic reward
processing (Krawczyk, 2002; Ballard et al., 2011). However, more
work is needed to fully understand the link between hemispheric
asymmetries in DA function and the neural mechanisms mediat-
ing behavioral biases.

In conclusion, to our knowledge, this is the first study to show
hemispheric asymmetries in DA function using fMRI. Moreover,
we demonstrate that specific computational and neuronal biases
in learning processes underlie biases in approach and avoidance
behaviors. Thus, these results significantly extend previous stud-
ies that investigated the role of DA and hemispheric asymmetries
in DA function on cognition. Additionally, because of several
shared behavioral characteristics between hemispheric asymme-
tries in DA function and some psychopathologies, further study
of DA asymmetries may provide novel insights into the patho-
physiology of mental disorders.
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