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The neural circuitry of fear conditioning
and extinction has provided an entry
point to understanding and potentially
improving treatment of anxiety disorders,
which affect approximately one in five
adults in the United States (Kessler et al.,
2005). Classical fear conditioning, more
recently referred to as threat condition-
ing, involves pairing an unconditioned
stimulus (US), commonly pain in the
form of foot shock, with a neutral, but
predictive conditioned stimulus (CS) (Le-
Doux, 2014). This type of conditioning
recruits a number of serial and parallel
neural circuits across amygdala nuclei
(Ehrlich et al., 2009).

US and CS signals appear to converge
in both the lateral amygdala (LA) and cen-
tral amygdala (CeA) (Blair et al., 2001;
Han et al., 2015). The LA provides mono-
synaptic excitatory input to the CeA (Li et
al., 2013), as well as to neurons of the ba-
solateral amygdala (BLA) that in turn ex-
cite CeA neurons (Namburi et al., 2015;
Fig. 1). BLA neurons project to neurons of
both the medial and lateral/capsular sub-
divisions of the CeA (CeM and CelL, re-
spectively) (Tye et al., 2011; Namburi et
al., 2015). CeM neurons ultimately coor-
dinate conditioned fear expression via di-
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vergent projections to extra-amygdala
targets (Ehrlich et al., 2009; Ciocchi et al.,
20105 Fig. 1). Because some BLA neurons
respond to the CS (Herry et al., 2008),
they contribute to fear conditioning via
CeM projections (Namburi et al., 2015).

Situated between amygdala nuclei are
clusters (medial and lateral) of GABAergic
intercalated cells (ITCs) essential for fear ex-
tinction (Likhtik et al., 2008), although they
may also be important for fear conditioning
(Asede et al., 2015). Medial ITCs integrate
input from both local (i.e., BLA) and distal
sources (e.g., the infralimbic cortex) and
they potently inhibit CeM neurons. There-
fore, BLA neurons directly excite and indi-
rectly inhibit CeM neurons (Fig. 1). In
addition to responding during condition-
ing, BLA neurons also respond to the CS
during extinction (Herry etal., 2008), allow-
ing them to provide feedforward inhibition
onto CeM neurons in a stimulus-specific
manner to prevent fear expression. Consis-
tent with this, extinction training enhances
BLA-evoked inhibition onto CeM neurons
via ITCs (Amano et al., 2010).

ITCs express many types of receptors
(Marowsky et al., 2005; Marowsky and
Vogt, 2014), suggesting their activity
and consequently feedforward inhibi-
tion of CeM neurons are subject to di-
verse forms of regulation. In particular,
ITCs display high levels of the w-opioid
receptor (MOR), which binds endoge-
nous opioids. Indeed, this enriched ex-
pression was previously exploited by
Likhtik et al. (2008) to target and ablate
ITCs to test their role in behavior. Yet, how

MOR activation affects ITCs and how such
activation affects feedforward inhibition of
CeM neurons had not been shown until re-
cently. Blaesse etal. (2015) demonstrate that
MOR-mediated inhibition of ITCs damp-
ens BLA-evoked feedforward inhibition of
CeM neurons, and that such action works
against plasticity in this circuitry.

To test the effect of opioids on ITCs’ rest-
ing membrane potential, the authors re-
corded from these neurons in brain slices of
GAD67-GFP mice (which allow visualiza-
tion of GABAergic neurons) while bath ap-
plying DAMGO, a MOR agonist. DAMGO
hyperpolarized both lateral and medial
ITCs, even in the presence of tetrodotoxin,
and this effect was blocked by the MOR an-
tagonist CTAP. Therefore, it appears that
MOR activation inhibits ITCs, consistent
with the receptors coupling to G;,, signaling,
which opens inwardly rectifying potassium
channels. This opioid-induced hyperpolar-
ization reduced ITC firing and decreased
feedforward inhibition of CeM neurons, as
DAMGO reduced the number of action po-
tentials generated by depolarizing current
injection and attenuated the amplitude and
fidelity of BLA-evoked IPSCs recorded from
CeM neurons, respectively.

To more directly probe ITC input to
CeM neurons, the authors uncaged gluta-
mate specifically in the medial ITC cluster
while recording from CeM neurons.
While not affecting the amplitude of CeM
IPSCs, DAMGO application during gluta-
mate uncaging increased their failure
rate, implying that opioids reduce the
probability of GABA release onto CeM neu-
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Figure 1.  Simplified diagram of amygdala circuitry. Arrow-
heads represent excitation and flatheads represent inhibition. As-
terisks represent location of MOR expression. BLA, basolateral
amygdala; CeL, lateral/capsular central amygdala; CeM, medial
central amygdala; IL, infralimbic cortex; LA, lateral amygdala;
mITCs, medial intercalated cells. Note that the Cel and CeM to-
gether compose the CeA.

rons without affecting their postsynaptic
GABA receptors. This, however, does not
show whether this reduction is due to mem-
brane hyperpolarization and/or effects on
machinery involved in synaptic vesicle
€X0Cytosis.

Because the MORs have been shown to
control long-term potentiation elsewhere
in the brain via GABAergic transmission
(Bramham and Sarvey, 1996), the authors
hypothesized that MOR-mediated inhibi-
tion of ITCs might play a role in plasticity
of feedforward inhibition from the BLA to
the CeM. To test this idea, theta burst
stimulation (TBS) was applied to the BLA
either alone or in the presence of the MOR
antagonist CTAP following baseline stim-
ulation. Although no plasticity occurred
with TBS alone, CTAP enabled potentia-
tion of evoked IPSCs in CeM neurons.
This suggests that either tonic or phasic
(TBS-evoked) release of endogenous opi-
oids usually inhibits plasticity within this
circuitry. The authors speculate that excit-
atory input to ITCs is potentiated during
TBS, but is opposed by MOR-mediated
inhibition of ITCs, thereby preventing
otherwise exaggerated inhibition of CeM
neurons. In support of this idea, BLA syn-
apses onto ITCs can undergo activity-
dependent plasticity (Royer and Paré,
2002).

Since BLA neurons monosynaptically
excite CeM neurons, excitatory and inhib-
itory postsynaptic currents onto CeM
neurons temporally overlap. To detect
any effects of MORs on BLA-evoked exci-
tation of CeM neurons, the authors ap-
plied ionotropic and metabotropic GABA
receptor antagonists. DAMGO failed to
change evoked EPSCs, providing conclu-
sive evidence that inhibitory rather than
excitatory transmission mediates the ef-
fects of MORs.

Blaesse et al. (2015) focused on how
MOR activation of ITCs decreased feed-
forward inhibition of CeM neurons, but

ITCs have recently been shown to provide
feedback inhibition of BLA principal neu-
rons as well: that is, BLA neurons excite
and are subsequently inhibited by some
ITCs (Asede et al., 2015; Fig. 1). In fact, by
filling individual neurons, Asede et al.
(2015) identified collaterals to the BLA
in a subset of CeM-projecting neurons.
Therefore, in addition to influencing ITC-
mediated inhibition of the CeM, MORs
might also modulate feedback to BLA
neurons. By decreasing feedforward inhi-
bition of CeM neurons and feedback inhi-
bition of BLA neurons, MORs might
enhance overall CeM neuronal output.
Alternatively, MORs might be selectively
expressed by CeM-projecting ITCs that
do not have collateral projections to the
BLA. This remains to be tested.

Another question for future research is
which input(s) release the opioids that
activate MORs in ITCs? Identifying the
neural population would be critical in
relating the input’s function to that of
opioid transmission in ITC circuitry
and hence, in extinction. Enkephalin-
expressing neurons of the lateral and me-
dial subdivisions of the CeA are adjacent
to ITCs (Cassell et al., 1986). Given the
density of CeL microcircuitry (i.e., local
terminals) as well as localization of dense-
core vesicles to dendrites (Ludwig and
Leng, 2006; Haubensak et al., 2010; Li et
al., 2013), enkephalin could perhaps reach
ITCs via volume transmission (Banghart
and Sabatini, 2012). This may occur un-
der conditions like TBS, where high-
frequency BLA excitatory input to CeL
and/or CeM neurons would result in the
release and volume transmission of en-
kephalin. As previously mentioned, this
would guard against CeM neurons being
overly inhibited by ITCs. Of course, there
could also be extra-amygdala input of
opioids.

ITCs are not the only node whereby
MORs can scale input to the CeA. Blaesse et
al. (2015) also observed direct inhibition ofa
subset of CeM neurons during DAMGO
application. This is consistent with CeM
neurons being inhibited by neurons of the
CeL that coexpress protein kinase C 8 and
enkephalin (Haubensak et al., 2010; Fig. 1).
Moreover, CeL-projecting excitatory neu-
rons of the parabrachial nucleus express
MORs (Chamberlin et al., 1999). The CeL
also receives strong input from excitatory
neurons of the paraventricular thalamus,
which express moderate levels of MORs
(Ding et al., 1996; Penzo et al., 2015). As
parabrachial or thalamic input would excite
CeL neurons that in turn would inhibit
CeM neurons, MOR activation in either
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these upstream populations should reduce
downstream CeM neuron inhibition, like
MOR activation in ITCs. Hence, there are
multiple routes by which MORs can influ-
ence CeM activity, either individually or in
parallel.

Lastly, MORs are only one of the many
types of receptors expressed by ITCs. For
example, ITCs also express D1 dopamine
receptors and tonic-conductance GABA
receptors containing 6 and a-4 subunits
(Marowsky et al., 2005; Marowsky and
Vogt, 2014). Therefore, opioid action
likely interacts with other forms of neuro-
modulation to shape ITC activity and
consequently fear extinction. Gaining a
complete picture of ITC function may
therefore benefit from testing how differ-
ent receptors together affect ITCs as an
inhibitory input to the CeA.
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