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Categorization refers to the ability to re-
duce the potentially unlimited number of
objects an animal might encounter to a
smaller number of discrete groups, or cat-
egories. Animals adaptively form catego-
ries to exploit similarities and differences
between objects that aid communication,
prediction, and decision-making. For ex-
ample, a human must recognize a person
as friend or stranger, a monkey must de-
termine whether a conspecific is a foe, and
a rodent must decide whether the large
animal roaming nearby is a predator. The
goal of categorization is therefore to ab-
stract a decision rule that permits rapid
recognition of category-relevant features
while ignoring or suppressing category-
irrelevant features.

To properly understand a theory of in-
formation processing such as categoriza-
tion, Marr (1982) proposed that we must
understand its operation at multiple levels
of analysis: the abstract goal of the com-
putation and why it is environmentally
appropriate (computational level), how
the computational theory is represented
as an input—output process and the algo-
rithms that perform this transformation
(representational or algorithmic level),
and how the representations and algo-
rithms are embodied in the neural hard-
ware—the physical realization of the
process (implementational level). Most
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theories of categorization are proposed at
the implementational level in the neurosci-
ences, and at the algorithmic or computa-
tional level in the psychological literature.
Marr’s (1982) levels provide a natural
framework to link theories proposed in dif-
ferent disciplines.

Across disciplines, categorization is most
often studied at the algorithmic level in the vi-
sual domain. Visual categories are acquired
through extraction of category-specific fea-
tures following repeated exposure to a set
of training items. Generalization is tested
with novel items sampled from the same
generating distribution (i.e., population) as
the training stimuli. Successful generaliza-
tion requires identification of category-
relevant features in the novel visual items.
Thus, categorization training and general-
ization testing is used to examine the ca-
pabilities of the visual system of animals
by manipulating the visual detail of the
training and test items from simple, arti-
ficially constructed shapes to complex
natural scenes. This general procedure has
provided many insights, demonstrating,
for instance, that visual processing in the
primate is a useful model for the human
visual system. Relative to nonhuman pri-
mates, much less is known about higher-
level visual processing and categorization
in the rodent, even though rats and mice
are the most easily accessible animal
model in scientific research. Since catego-
rization is necessary for adaptive func-
tioning in many species, it is plausible
that the underlying mechanisms are
phylogenetically well preserved, sug-
gesting the presence of universal catego-
rization mechanisms.

In an article recently published in The
Journal of Neuroscience, Vinken et al.
(2014) studied the ability of rats to catego-
rize natural movies as a proxy to higher-
level visual processing of naturalistic
stimuli in rodents. Six rats were trained in
a two-alternative forced choice task to dis-
criminate 5 s movies of rats of the same
strain from distractor movies of various
items (toy train, gloved hand, moving
stuffed sock) that were rigorously matched
on low-level visual properties (pixel inten-
sity, root-mean-squared contrast, average
change in pixels across frames). Five of the
six rats learned to categorize training
items from distractor items to a criterion
level of performance after 3.5-4.5 months
of practice.

Generalization of categorization train-
ing was tested in three qualitatively dis-
tinct test sets, each with five novel movies
that, relative to the training set, had (1)
dissimilar low-level stimulus properties
but qualitatively similar high-level con-
tent (similar amount of motion energy,
same rat strain); (2) rats (target) and ob-
jects (distractor) that displayed less mo-
tion; and (3) rats with visually dissimilar
markings. The rats generalized to the
novel items in the three test sets, suggest-
ing that they abstracted a decision rule
from the training set that might involve
integration of complex features of the vi-
sual stimuli. However, performance was
poorer when the subject of the movie was
less active (test set 2). Control conditions
using deviant movies led Vinken et al.
(2014) to conclude that the diminished
performance was due to confounding stim-
ulus properties and that motion energy was
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not a salient cue for categorization. There is
reason to be cautious of this conclusion,
however. The authors’ control conditions to
demonstrate that motion was not the salient
cue for generalization used modified movies
from test set 1 with reduced frame rate (V4
speed) and single-frame snapshots. The po-
tential problem is in the sequential testing
protocol: generalization testing began with
test set 1 followed by test sets 2 and 3, and
then the control conditions using modified
movies from test set 1. Improved perfor-
mance in the control conditions could be
the result of previous exposure to these
stimuli, since the experimental protocol
cannot eliminate the possibility that learn-
ing continued throughout the generaliza-
tion phase. Further testing is required,
though it remains possible that motion cues,
when available, moderate categorization
performance.

Vinken et al. (2014) presented empiri-
cal evidence for performance of the fun-
damental cognitive task of categorizing
naturalistic stimuli in rats. These findings
add to the body of research demonstrating cat-
egorization in humans, nonhuman primates,
pigeons, and other species. Cross-species sim-
ilarities in categorization performance allow
development and empirical testing of theoret-
ical accounts in a comparative cognition
framework. Such analyses allow consideration
of the outstanding question: how did the rats
learn to categorize?

Vinken et al.’s (2014) results suggest
that visual categorization might be fruit-
fully studied in implementational-level
models (Marr, 1982) in lower-order ani-
mals. To unify theories of categorization,
models proposed at the implementational
level must generate flow-on predictions
for models proposed at other levels. For
instance, some primate models of object
recognition assume a hierarchical feedfor-
ward architecture that builds progressive
feature representations through modules
in striate and extrastriate visual areas
(Serre et al., 2007). However, it is unclear
when these representations become cog-
nitively accessible to the decision-maker
in the form of an abstract decision rule.
Vinken et al. (2014) suggested a role for
contrast templates, a combination of con-
trast cues arising from low-level spatial
frequencies of the stimulus, in the rodent
ventral stream, but how did rats use or
manipulate such templates to decide
whether a movie contained a target or
distractor?

Categorization decision rules have
been studied in the psychological litera-
ture as algorithmic level theories. Many
algorithmic-level explanations assume
that objects can be characterized on the
basis of multiple features (e.g., dogs have
fur, four legs, bark, etc.). Any particular
object has defined values for each feature
that can be represented as a point in mul-
tidimensional feature space with axes de-
fined by the features. The generalized
context model (GCM; Nosofsky, 1986),
for example, formalizes an object’s most
likely classification as the category to
which it has greatest similarity with all
previously encountered exemplars stored
in memory as points in the multidimen-
sional feature space.

It may be that a feedforward hierarchy
in the ventral stream subserves higher-
level similarity comparisons among ex-
emplars. However, without explicit and
testable linking propositions, where cog-
nitive states are hypothesized to map to
measurable neural states (Schall, 2004), it
is difficult to reconcile theories of catego-
rization proposed at different levels of ex-
planation. As an example in a related
domain, the drift diffusion model (Ratcliff,
1978) assumes that speeded perceptual
decision-making involves integration of
noisy evidence from the environment until
an evidence counter crosses a boundary,
triggering a response. This algorithmic
level account has been implemented, via
linking propositions, to the instantaneous
firing rates of neurons from the lateral in-
traparietal area in Macaca mulatta (Roit-
man and Shadlen, 2002), among others,
which seem to behave like diffusion mod-
els. This approach has led to mutual con-
straint on theories across algorithmic and
implementational levels of analysis, and
across disciplines.

In visual categorization, a simple algo-
rithmic-level model that draws on the
results of Vinken et al. (2014) and the au-
thors’ previous work (Vermaercke and
Op de Beeck, 2012) might categorize on
the basis of the similarity between a novel
object and the contrast templates of ex-
emplars in memory, and motion energy
when available. This could be instantiated
within the GCM as a two-dimensional
feature space with weights given to each
dimension dependent on the bias of the
animal. Atan implementational level, one
might hypothesize that observed activa-
tion in the ventral stream (e.g., inferotem-
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poral cortex) and dorsal stream (e.g., middle
temporal area) is proportional to the weight
placed on the contrast template and motion
energy dimensions of the GCM, respec-
tively. Such concurrent investigations at the
algorithmic and implementational levels,
and linking propositions to combine the
two, will move the field toward a unified
theory of categorization.

Finally, Vinken et al. (2014) pave the
way for analyzing data in a principled and
efficient manner, drawing all conclusions
from hierarchical Bayesian analyses. Hierar-
chical Bayesian analysis models the depen-
dencies between observations from the
same subject, and uncertainty in subject-level
estimates appropriately inform population-
level conclusions. Bayesian inferential statisti-
cal tests, therefore, are not overly confident
with respect to small numbers of subjects,
which can occur with t tests that do not model
the dependence between multiple observa-
tions from the same subject (Aartsetal., 2014).
The Bayesian approach to data analysis is gen-
eral and not restricted to behavioral or neural
data, and the field will benefit from more
widespread use of such rigorous analyses.
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