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Decoding a Wide Range of Hand Configurations from
Macaque Motor, Premotor, and Parietal Cortices
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German Primate Center, D-37077 Gottingen, Germany, and 2Department of Biology, University of Géttingen, D-37077 Géttingen, Germany

Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge.
To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual
movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intrapari-
etal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task
while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we
determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian
classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor
execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%;
execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during move-
ment planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during
movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a
large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be
relevant for future neuroprosthetic devices that decode motor plans.
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Introduction

Spinal cord injuries or motor diseases can lead to a disconnection
of the spinal cord from the brain. Such paralyzed patients have
reported that hand and arm functions are very important for
them to recover (Anderson, 2004, Snoek et al., 2004). For these
patients, myoelectric prosthetics are not applicable, because they
depend on activated nerves in limbs or chest (Kuiken et al., 2009).
In comparison, cortical neural interfaces can directly access brain
activity and translate it into assistive control signals (Hatsopoulos
and Donoghue, 2009, Scherberger, 2009). A better understanding of
the cortical motor system together with improved decoding algo-
rithms led to the development of brain interfaces for the control of
computer cursors (Taylor et al., 2002; Ganguly and Carmena, 2009;
Kimetal., 2011; Gilja et al., 2012) and robotic grippers (Hochberg et
al., 2012; Collinger et al., 2013) that allow tetraplegic patients to
regain physical interaction with their environment.
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Despite these impressive advances, the neural guidance of
hand prosthetics remains a major challenge. Although reaching
in space involves three degrees of freedom (DOFs), this number
increases to at least 23 DOFs when all joint angles of an anthro-
pomorphic hand are considered. Controlling so many DOFs ex-
clusively under visual feedback explains the difficulty of the
neuroprosthetic substitution of hand function (Vargas-Irwin et
al., 2010).

Alternatively, movement intentions can be decoded from
higher-order planning signals of premotor and parietal cortices
(Musallam et al., 2004; Townsend et al., 2011). Decoding higher-
order motor plans (i.e., grip types) instead of many individual
DOFs could help reduce the dimensionality problem for such
decoding applications (Andersen et al., 2010). The ventral pre-
motor cortex (specifically area F5) and the anterior intraparietal
cortex (AIP) that show strong bidirectional anatomical connec-
tions (Luppino etal., 1999, Borra et al., 2008) are particularly well
suited for this kind of task. Functionally, they are responsible for
translating visual signals into hand-grasping instructions. Neu-
rons in both areas were identified to reflect visual information
about the object being grasped (Murata etal., 1997, 2000) and the
performed grip type (Baumann et al., 2009; Fluet et al., 2010).
Compared with the primary motor cortex (M1), information in
these areas is already accessible well before movement execution
and has been used to decode vastly different grip types, such as
power and precision grips (Carpaneto et al., 2011; Townsend et
al., 2011). However, the question remains open whether detailed
hand shapes could be differentiated from these areas as well.
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Experimental task. a, Two macaque monkeys were trained to grasp a wide range of objects presented on a personal computer-controlled turntable. b, In total, the animal grasped 48

objects mounted on eight exchangeable turntables. ¢, On each turntable, objects were presented in a pseudorandom order and were grasped within a delayed task consisting of eye-fixation, cue,
planning, movement, and hold epochs. The monkeys performed the task in darkness, except during the cue epoch, when the objects were illuminated. d, Within each recording session, monkeys
also grasped a handle with two additional grips. e, In this task, two supplementary LEDs instructed the animal to perform either a precision (yellow LED) or a power (green LED) grip.

In this study, we demonstrate for the first time that fine dif-
ferences in hand configurations can be decoded accurately from
the cortical areas AIP and F5 during motor planning and execu-
tion. Furthermore, we compared the decoding capabilities of AIP
and F5 with that of M1 and found major differences between
them. Finally, the grip types selected from 27 DOFs of the primate
hand and arm could be translated to an anthropomorphic arm
and hand of 16 DOFs, hence demonstrating the possibility of
converting high-level neural motor commands into neuropros-
thetic robotic grips.

Materials and Methods

Basic procedures

Two purpose-bred macaque monkeys (Macaca mulatta) participated in
this study (animal Z, female, 7.0 kg; animal M, male, 10.5 kg). They were
first trained in a delayed grasping task to grasp a wide range of different
objects while wearing a kinematic data glove (Fig. 1), then a head holder
was implanted on the skull, and electrode arrays were permanently in-
serted in the cortical areas AIP, F5, and M1. In subsequent recording
sessions, neural activity and hand kinematics were simultaneously re-
corded while animals performed the grasping task. All analysis was per-
formed offline. Animal care and all experimental procedures were
conducted in accordance with German and European law and were in
agreement with the Guidelines for the Care and Use of Mammals in Neu-
roscience and Behavioral Research (National Research Council, 2003).

Experimental setup

For behavioral training and experiments, the monkey sat in a customized
primate chair with its head fixed. Graspable objects (handle or objects on
a turntable) were presented in front of the animal at a distance of 25 cm
at chest level (Fig. 1a). The setup design allowed a fast exchange of turn-

tables in <1 min, and individual objects could be lifted vertically by 30
mm. Custom-made software was used to control the turntable position
and the pseudorandom sequence of object presentation. Object lifting
and turntable position was monitored with a photoelectric barrier.

To obtain a high variation of grip types, we designed objects of differ-
ent shapes and sizes (Fig. 1b), including rings (outer diameter, 10, 20, 30,
40,50, and 60 mm), cubes (length, 15, 20, 25, 30, 35, and 40 mm), spheres
(diameter, 15, 20, 25, 30, 35, and 40 mm), cylinders (length, 140 mm;
diameter, 15, 20, 25, 30, 35, and 40 mm), and bars (length, 140 mm;
height, 50 mm; depth, 15, 20, 25, 30, 35, and 40 mm). Furthermore, a
mixed turntable was used, holding mid-sized objects of various shapes
for fast exchange (sphere, 15 mm; horizontal cylinder, 30 mm; cube, 30
mm; bar, 10 mm; ring, 50 mm), and a special turntable was used that
contained objects of abstract forms (Fig. 1b). All objects had a uniform
weight of 120 g (independent of size and shape).

In addition, power and precision grips were performed on a graspable
handle (Baumann et al., 2009; Fluet et al., 2010). On the handle, two
touch sensors were placed in small, clearly visible recessions to detect the
contact of the animal’s thumb and index finger during precision grips,
whereas power grips were detected by an infrared light barrier at the
inside of the handle and a pulling force sensor.

Behavioral paradigm

Monkeys were trained in a delayed grasp and hold paradigm (Fig. 1c).
While in complete darkness, an animal could initiate a trial by pressing a
home button near its chest. Then, it had to fixate a red LED light while
maintaining its hand on the home button. After fixating this red LED for
a variable time (fixation epoch, 500—800 ms; mean, 650 ms) a spotlight
was switched on that illuminated the graspable object for 700 ms (cue
epoch). When the spotlight was switched off, the animal had to withhold
movement execution until the fixation LED blinked (planning epoch,
600—1000 ms; mean, 800 ms), which indicated the animal to grasp and
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Electrode arrayimplantation. a, b, Animals wereimplanted with multiple FMAs in areas AIP, F5,and M1. Each array consisted of 32 individual electrodes of variable length (1.5—7.1mm)

(a) and were placed in the bank of the sulcus (b). In animal Z (b, ¢) and animal M (d), two arrays were implanted in each area: at the lateral end of the intraparietal sulcus (IPS) in AIP, in the posterior
bank of the arcuate sulcus (AS) in area F5, and in the anterior bank of the central sulcus (CS) in the hand area of M1. ¢, d, Schematics of FMA placements also show the FMA numbering for animal Z
(right hemisphere) and animal M (left hemisphere), respectively. The dark edge of each FMA indicates the row of longest electrodes (maximum of 7.1 mm). Annotations as in b. In this study,
individual arrays are labeled as F5lat (#1), F5med (#2), AlPlat (#3), AIPmed (#4), M1lat (#5), and M1med (#6). Scale: the long edge of FMA is 4 mm. A, anterior; L, lateral; M, medial; P, posterior.

lift the object (movement epoch) and hold it for 500 ms (hold epoch) to
receive a liquid reward (small amount of juice). A following trial could be
initiated shortly afterward (intertrial interval, 1000 ms). Error trials were
immediately aborted without providing reward. In case of the graspable
handle (Fig. 1d), an additional yellow LED (or green LED) was turned on
during the cue epoch to instruct the animal to perform a precision grip
(or power grip), as shown in Figure le.

Objects were mounted on eight turntables in groups of six (Fig. 1b,
columns). During each block of trials, the objects of one turntable were
presented in pseudorandom order until all objects were grasped success-
fully at least 10 times. Then, the turntable was exchanged and another
block of trials started until all objects were tested. Finally, power and
precision grip trials were performed with the graspable handle (10 trials
pseudorandomly interleaved). To maintain a high motivation, animals
were restricted from water access up to 24 h before training or testing.

Eye movements were monitored with an infrared camera (ISCAN)
through a half-mirror. All behavioral and task-relevant parameters, i.e.,
eye position, button presses, and stimulus presentations, were controlled
using custom-written behavioral control software that was implemented
in LabVIEW Realtime (National Instruments).

Surgical procedures and imaging

Before surgery, we performed a 3D anatomical MRI scan of the animal’s
skull and brain to locate anatomical landmarks (Townsend et al., 2011).
For this, the animal was sedated (e.g., 10 mg/kg ketamine and 0.5 mg/kg
xylazine, i.m.) and placed in the scanner (GE Healthcare Signa HD or
Siemens TrioTim; 1.5 Tesla) in a prone position, and T1-weighted im-
ages were acquired (iso-voxel size, 0.7 mm?).

Then in an initial procedure, a head post (titanium cylinder; diameter,
18 mm) was implanted on top of the skull (approximate stereotaxic
position: midline, 40 mm anterior, 20° forward tilted) and secured with
bone cement (Refobacin Plus; BioMed) and orthopedic bone screws
(Synthes). After recovery from this procedure and subsequent training
with head fixation, each animal was implanted in a second procedure
with six floating microelectrode arrays (FMAs; MicroProbes for Life Sci-
ence). Specifically, two FMAs were inserted in each area AIP, F5, and M1
(Fig. 2). FMAs consisted of 32 non-moveable monopolar platinum-—irid-
ium electrodes (impedance, 300—600 k() at 1 kHz), as well as two ground
and two reference electrodes per array (impedance, <10 k(2). Electrode
length ranged from 1.5 to 7.1 mm and were configured as in the study by
Townsend et al. (2011).

Electrode array locations are depicted in Figure 2, ¢ and d. In both
animals, the lateral array in AIP (AIPlat) was located at the end of the
intraparietal sulcus at the level of area PF, whereas the medial array
(AIPmed) was placed more posteriorly and medially at the level of area
PFG (Borra et al., 2008). In area F5, the lateral array (F5lat) was posi-
tioned approximately in area F5a (Belmalih et al., 2009; Borra et al.,
2010), whereas the medial array (F5med) was located in F5p in animal Z
and at the border of F5a and F5p in animal M. Finally, both arrays in M1
(M1lat and M1med) were positioned in the hand area of M1 (anterior
bank of the central sulcus at the level of the spur of the arcuate sulcus and
medial to it; Rathelot and Strick, 2009).

All surgical procedures were performed under aseptical conditions
and general anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and
0.05 mg/kg atropine, s.c., followed by intubation, 1-2% isoflurane, and
analgesia with 0.01 mg/kg buprenorphene, s.c.). Heart and respiration
rate, electrocardiogram, oxygen saturation, and body temperature were
monitored continuously. Systemic antibiotics and analgesics were ad-
ministered for several days after each surgery. To prevent brain swelling
while the dura was open, the animal was mildly hyperventilated (end-
tidal CO, <30 mmHg), and mannitol was kept at hand. Animals were
allowed to recover for at least 2 weeks before behavioral training or
recording experiments recommenced.

Hand kinematics

To record the kinematics of the monkey’s hand and arm, we have devel-
oped an instrumented glove for small primates, as described previously
(Schaffelhofer and Scherberger, 2012). This kinematic tracking device is
based on an electromagnetic tracking system (WAVE; Northern Digital)
and consists of seven sensor coils that are placed on all fingertips, the back
of the hand, and at the lower forearm just proximal to the wrist (Fig. 1a).
For calibration purposes, an additional sensor was also temporally placed
on top of each metacarpal phalangeal joint (MCP). Using this instru-
mented glove, the dynamic 3D position of the distal interphalangeal joint
(DIP), the proximal interphalangeal joint (PIP), and the MCP position of
all fingers were determined, as was the 3D position and orientation of the
hand. Furthermore, the wrist sensor provided the orientation of the fore-
arm and hence the 3D position of the elbow. Because the monkey was
head fixed, the shoulder position could be assumed constant. This pro-
vided a full kinematic description of the arm and hand (including 18
joints and 27 DOFs) with a temporal resolution of 100 Hz. Data acquisi-
tion, processing, and visualization were realized in a custom-made
Graphical User Interface in MATLAB (MathWorks).

Electromagnetic sensors could be tracked even when visually oc-
cluded, because they did not depend on line of sight to a camera. How-
ever, they can be influenced by the presence of inductive metals (Raab et
al., 1979). Therefore, ferromagnetic materials had to be mostly avoided
in the setup, including the turntable, all graspable objects, and the pri-
mate chair.

Neural recordings

From the implanted electrode arrays, we recorded spiking activity (single
units and multiunits) simultaneously from a total of 192 electrodes in
AIP, F5, and M1 (Fig. 2). Neural activity was sampled at a rate of 24 kHz
with a resolution of 16 bit and stored to disk together with behavioral
data and hand and arm kinematics using a RZ2 Biosignal Processor
(Tucker Davis Technologies).

Data analysis

Hand kinematics. The trajectories of all 18 joints of the moving hand and
arm as well as of the fingertips were used to drive a 3D musculoskeletal
model (see Fig. 6a) that was scaled to match the primate-specific anat-
omy (Holzbaur et al., 2005; Schaffelhofer et al., 2014). The model was
implemented in OpenSim (Delp et al., 2007) and allowed extracting all
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Neural coding of grasping actions. a, d, g, Firing rate histograms are shown for three simultaneously recorded example neurons from areas AIP, F5, and M1, respectively. Each line

represents the average firing rate for a specific grasping condition (i.e., 50 objects) versus time. The color code matches the object shape asin Figure 16. b, e, h, Cross-modulation depth plots reflect
therelative difference infiring rate between all pairs of grasping conditions (50 X 50 pairs) for all five epochs. Firing rates were normalized relative to the maximum MD found across all epochs. Pixels
toward red represent pairs with maximum MD, whereas pixels toward blue represent pairs without difference in firing rate. ¢, f, i, Furthermore, a multicomparison analysis revealed significant
differences (in red) between condition pairs. The order of columns/rows for cross-modulation depth- and multicomparison plots s the same as in Figure 5a. a— ¢, The AIP neuron showed the highest
MD during the cue epoch and an additional bump during the hold epoch. d—f, The example F5 neuron demonstrated a high MD in the planning epoch and an additional increase during motor
execution. g—i, The M1 motor neuron showed no significant coding during motor preparation (i.e., cue and planning) but became highly active during motor execution (i.e., movement
and hold). Horizontal brackets indicate significant correlation coefficient c of MD maps between epochs.

hand and arm joint angle positions, which included the following: (1)
flexion/extension (MCP, PIP, DIP) and adduction/abduction (MCP) of
all fingers; (2) wrist flexion/extension, adduction/abduction, and prona-
tion/supination; (3) elbow flexion; and (4) shoulder elevation, rotation,
and adduction/abduction (in total, 27 DOFs).

Spike sorting. All spike sorting relevant for analysis was performed
offline. First, we applied WaveClus (Quiroga et al., 2004) for automatic
sorting and then used the OfflineSorter (Plexon) for subsequent manual
resorting. This procedure provided an objective and automatized classi-
fication of neurons and an additional evaluation of cluster quality with
respect to signal stability (e.g., drift) and interspike interval histograms.

Single-unit and population activity. Firing rate histograms were created
to present tuning attributes of example neurons from AIP, F5, and M1
(Fig. 3a,d,g). For this, the spike rates were visualized by replacing each
spike with a Gaussian kernel function (o = 50 ms) that were then aver-
aged across all spikes and trials (Baumann et al., 2009).

Furthermore, we computed the cross-modulation depth of individual
neurons (Fig. 3b,e,h). The modulation depth (MD) between two condi-
tions (e.g., x and y) was defined as the absolute difference of the averaged
firing rate (across all # trials) of the neural activity fbetween condition x
and y:

1
MD(.X', }’) = ;

>

2=

The MD between all condition pairs was computed, and the resulting
matrix was plotted as a color map for individual task epochs. To
obtain information about the significance of the MD of individual
condition pairs, we performed a multicomparison test across all task
conditions (ANOVA and post hoc Tukey—Kramer criterion, p < 0.01;
MATLAB functions anoval and multcompare; Fig. 3¢,f,i). Further-
more, we defined the coefficient of separability (CS) for each neuron
and task epoch as the fraction of significant condition pairs with
respect to all pairs.

Finally, the large number of conditions allowed comparing the encod-
ing properties of individual neurons between different task epochs. For
this, we computed the Pearson’s correlation coefficient between the MD
maps.

For visualizing the population activity during the task, we computed
for each neuron asliding ANOVA (p = 0.01; time steps, 20 ms) across the
six conditions of the mixed turntable. The fraction of significantly mod-
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F5lat, MTmed, and M1lat. The color code for each array is consistent throughout text.

ulated neurons at each time step was then calculated separately for each
area and recording array (Fig. 4).

Decoding. For decoding, our goal was to predict the presented object or
the intended grip type from the recorded neuronal activity as accurate as
possible. For this, the decoding classes (or categories) were defined as the
presented objects (50 classes) or the grips used for grasping these objects
(20 classes; see below, Grip-type classification). For each decoding pro-
cedure, only simultaneously recorded spiking activity from single units
and multiunits were included. This way, real-time decoding could be
simulated as closely as possible. The mean firing rate of all single units
and multiunits were computed for the specific task epochs and used as
the input parameters for the classifier.

We used a naive Bayesian classifier for decoding that has been shown
to reach close to optimal performance within a large family of classifiers
for this kind of data (Scherberger et al.,, 2005; Subasi et al., 2010;
Townsend et al., 2011). (Naively) assuming statistical independence be-
tween the firing rates f; of a set of neurons (i = 1,..., n), the likelihood
function L(c) can be computed as L(c) = I, p(c|f)), where p(c|f;) de-
notes the probability of observing condition c for a given firing rate f; of
neuron i. Using the following Bayes equation,

_p(filo) - p(o)
op(f)

this probability can be expressed with p(f]c), which denotes the proba-
bility of observing the firing rate f, given condition c. Furthermore, the
uniformly distributed term p(c) and the term p(f;), which is independent
of ¢, can be summed as k;, which reduces the equation to p(c|f,) = k; X
p(flc). Because the factor k; is constant across all conditions, the likeli-
hood function can be further reduced to

p(clfy)

L(o) = _1]1 p(filo).

The condition showing the highest likelihood for the observed firing
rates was then selected as the decoded condition:

¢ = argmax(L(c)).

To train the decoder, the probability distributions p(f]c), which were
estimated from the mean firing rates observed in the training data under
the assumption of a Poisson distribution, had to be determined for each
condition. For testing decoding performance, we applied a leave-one-out
cross-validation, which ensured that datasets used for training were not
used for testing.

Neuron-drop analysis. To measure the decoding accuracy as a function
of neurons used for decoding, we performed a neuron-dropping analysis.
This simple algorithm started by training the decoder with a randomly
selected neuron. Then, the number of cells included for decoding was
increased in steps of 1 until all available neurons were included. At each
step u, the random selection of u cells used for decoding was repeated 100
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Population activity. Individual curves describe the percentage of tuned units versus time separately for monkey Z (a) and monkey M (b) for recording arrays AlPmed, AlPlat, F5med,

times. The neuron-drop analysis was applied separately for each micro-
electrode array and allowed a direct and objective comparison between
cortical areas and subareas. Paired ¢ tests (p < 0.01) were applied for
statistical comparison between areas and task epochs.

Grip-type classification. Electrophysiological studies in the macaque
hand areas AIP and F5 revealed not only motor discharges but also re-
sponses to the visual representation of objects, and it was assumed that
such visual cells code attributes of objects, such as shape, size, and/or
orientation (Murata et al., 1997, 2000). To demonstrate that hand con-
figurations (i.e., hand shape) can be decoded independently from such
object information, we classified the performed trials based on the grips
applied to the many objects. This regrouping of trials according to grip
type allowed an object-independent decoding and furthermore could
help reduce redundancies among different objects, e.g., for objects of
different shape that were grasped by the same grip.

For the classification of grip types, we recorded finger, hand, and arm
kinematics in each recording session simultaneously with cortical re-
cordings. The hold epoch revealed the highest variation of grip type
under the most stable kinematic conditions. Therefore, we selected the
hold epoch to extract joint angles for grip-type classification.

To find the similarities or differences in the classification of grip types
across performed trials and kinematic dimensions (i.e., >500 trials and
27 DOFs), we computed the Euclidean distance between each pair of
trials (MATLAB function pdist). Based on this distance measure, a hier-
archical cluster tree was created that described the proximity of trials to
each other (MATLAB function linkage, criterion “ward”). As a final step,
we were searching for natural groupings within the dataset (number of
clusters). Because of the large number of trials and objects used, the
kinematic space represented a natural and nondiscrete distribution of
hand configurations. As a result, the dataset did not reveal an optimal
number of clusters that showed a maximum separation (silhouette test).
Therefore, we set the number of clusters heuristically to a value of 20,
hence demonstrating a good compromise between quantity of grip types
and quality of kinematic separability (see Fig. 6d). Furthermore, the con-
stant number of clusters across multiple recordings allowed a more ob-
jective comparison between the decoding results of sessions and animals.

Offline robotic control

To illustrate the possible translation of the primate arm and hand model
with its 27 DOFs in a lower-dimensional robot arm and hand (here 16
DOFs), we used a 7 DOFs robot arm (WAM Arm; Barrett Technology)
and a five-fingered robotic hand (SCHUNK). To translate the primate
model on the robot arm and hand, we solved the inverse kinematic
problem for the arm and used linear transforms for the fingers. Although
the robot arm had equal DOFs as the primate arm, its rotation axes (3
DOFs for shoulder, 3 DOFs for wrist, and 1 DOF for elbow) differed from
the primate model. We solved this inverse kinematic problem (Paul,
1982) by matching the robot posture to the primate upper arm orienta-
tion with respect to the shoulder and to the primate hand orientation
with respect to the forearm.
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The five-fingered robotic hand had 9 actuated DOFs: (1) thumb ab-
duction; (2) combined carpometacarpal joint, MCP, and DIP flexion of
thumb; (3) index MCP flexion; (4) combined PIP and DIP flexion of the
index finger; (5) middle MCP flexion; (6) combined PIP and DIP flexion
of the middle finger; (7) combined MCP, PIP, and DIP flexion of the ring
finger; (8) combined MCP, PIP, and DIP flexion of the little finger; and
(9) combined spread of digits. Each actuated DOF of the robot hand was
linearly coupled to the corresponding DOF of the primate hand, such
that the movement range of the primate DOF was mapped linearly on the
robotic movement range.

Results
The data in this study present in total 20 recording sessions from
two macaque monkeys (10 recordings per monkey). Both ani-
mals were implanted with six 32-channel FMAs in the hand-
grasping areas AIP, F5,and M1 (two FMAs per area; 192 channels
in total). This facilitated simultaneous recording from 355 = 20
and 202 = 7 (mean * SD) single units and multiunits in monkeys
M and Z, respectively. All implanted arrays were functional and
allowed recording of stable neuronal populations. Across areas,
the acquired single units and multiunits were distributed as follows:
25.2% for AIP, 32.3% for F5, and 42.5% for M1 in animal M; and
29.2% for AIP, 37.3% for F5, and 33.5% for M1 in animal Z.
Simultaneous to the neural recordings, we tracked finger,
hand, and arm movements across all recording sessions using an
instrumented glove (Schaffelhofer and Scherberger, 2012) and fit
a musculoskeletal model of the primate hand and arm that con-
sisted of 27 DOFs at 18 joints (Schaffelhofer et al., 2014). From
these movement kinematics, we then classified and decoded a
wide range of hand configurations that the animal applied to
grasp the 50 heterogeneous objects of our task.

Neuron tuning properties

Neurons recorded in this study presented attributes consistent
with previous studies of area AIP (Murata et al., 2000; Baumann
et al., 2009), F5 (Rizzolatti et al., 1988; Raos et al., 2006; Fluet et
al., 2010), and the hand area of M1 (Schieber, 1991; Schieber and
Hibbard, 1993; Vargas-Irwin et al., 2010).

In AIP, neurons showed a strong response and tuning during
the cue epoch of the task, when the objects were illuminated.
These attributes are illustrated by the example neuron in Figure
3a. It demonstrated a rapid increase in firing rate after cue pre-
sentation and a high selectivity for grasping conditions (i.e., for
specific objects). Visually presenting the horizontal cylinders and
the bar objects resulted in the highest response. These object
groups shared similar visual attributes (i.e., being long and hori-
zontal) but also required similar kinds of grips (enclosure of big
objects with flexed digits and wide aperture between the index
finger and thumb). Figure 3b visualizes the relative differences in
firing rate (i.e., the MD) between all pairs of conditions (i.e.,
objects) in the considered task epochs (see Materials and Meth-
ods). For this neuron, MD was maximal (34.4 Hz) in the cue
epoch. Neural tuning was consistent throughout the task, as in-
dicated by the high correlation coefficient between the MD ma-
trix of the cue and hold epochs (¢ = 0.92). Furthermore, we
performed a multicomparison analysis within each task epoch to
identify those task condition (object) pairs for which the neural
firing rate was significantly different (Tukey—Kramer criterion,
p < 0.01; see Materials and Methods). Pairs of conditions with
significant differences are shown in red in Figure 3¢. Overall, 57.5
and 51.83% of all condition pairs had significantly different firing
rates in the cue and planning epochs, respectively (CS; see Mate-
rials and Methods), thus demonstrating a high object selectivity
of this AIP neuron.
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Figure 3d illustrates an example neuron of F5. It was activated
during cue presentation (CS, 33.95%), reached its maximum se-
lectivity (Fig. 3f) in the planning epoch (CS, 42.9%), and was
followed by a strong response in the movement epoch (CS,
42.2%). Maximum MD was observed during movement execu-
tion (39.8 Hz; Fig. 3f). Furthermore, not only was the CS similar
during motor preparation and execution but so was neural tun-
ing, as demonstrated by the high correlation between the MD
maps of the planning and movement epochs (¢ = 0.76).

Not surprisingly, M1 neurons demonstrated the strongest re-
sponse during movement execution (Fig. 3g). None of the con-
dition pairs were significantly tuned before or during the
preparation epoch (Fig. 3h). However, in the movement and hold
epochs, when the monkey grasped and held the objects, 38.2 and
54.8% of the condition pairs were significantly different (CS; Fig.
3i). The illustrated M1 neuron showed a maximum MD of 72.3
Hz during the hold epoch (Fig. 3h).

All example neurons showed a high selectivity during motor
execution, especially neurons recorded from M1 and F5. They
demonstrated a surprisingly high differentiation between a wide
range of grip-type conditions. In AIP and F5, these attributes
were also represented during the motor preparation epochs (cue
and planning). The multicomparison analysis and the correlation of
MD matrices between planning and motor epochs highlight that
these neurons represent movement well before execution, which
makes them potentially suitable for the decoding of intended hand
configurations, i.e., well before movement execution.

Individual neurons could demonstrate tuning already in
the fixation epoch. This effect is explained by the blockwise
task design required for presenting the large number of con-
ditions (i.e., grips on handle and individual turntables). In
Figure 3g, the example neuron showed an increased firing rate
when the handle was mounted in front of the animal; there-
fore, the presented cell could differentiate between the handle
and the turntable task (Fig. 3i). However, none of the neurons
showed significant tuning in the fixation epoch within the
group of the handle or the turntables, which demonstrates the
nonpredictability of individual conditions within each block
of trials.

The attributes of single units could be confirmed at the pop-
ulation level (Fig. 4). Similar to the example cell in AIP, the pop-
ulation of AIP units showed a strong response to the presentation
of objects. However, we found important differences between
AlPlat and AIPmed. Whereas AIPmed showed its strongest re-
sponse in the cue epoch with a fraction of 42% (monkey Z) and
30% of significantly tuned units (monkey M), the population
from AIPlat had a peak activation during motor execution with a
fraction of 36% (animal Z) and 23% of tuned units (animal M,
sliding window ANOVA; p < 0.01). These consistent results from
both animals suggest a more visual role of AIPmed, whereas
AlPlat might be rather motor related (Fig. 4).

Similar to AIP, we also found substantial differences between
the medial and lateral arrays of F5. In both animals, F5lat showed
a higher fraction of tuned units during the planning epoch than
the F5med population. However, in contrast to AIPmed that
showed its strongest contribution during the cue epoch, F5lat
demonstrated an additional increase of tuned units during move-
ment execution. Although F5med had a weaker planning activity
than F5lat, its contribution to our task was essential, as indicated
by the fraction of 51% (animal Z) and 32% of tuned cells (animal
M) during movement execution.

In M1, the main population response occurred during the
movement epoch with a fraction of 78% of tuned units in M1med
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of monkey Z and of 69% in M1lat of monkey M, whereas only a
small fraction of units represented planning activity. Also, M1
motor responses showed their peak activity aligned to the begin-
ning of the hold epoch, which further supports the important role
of M1 for hand-movement generation. Together, the F5 and AIP
populations both showed strong planning activity at the single-
unit level, which underscores the potential significance of these
areas for decoding applications.

Object-based decoding

Previous studies have investigated higher cortical regions, such
as area AIP and/or F5, to decode grip types before movement
execution (Subasi et al.,, 2010; Carpaneto et al., 2011, 2012;
Townsend et al., 2011). However, these studies focused exclu-
sively on large differences in hand configurations, such as preci-
sion and power grips, applied to handles of different orientations
(up to 10 conditions) or when grasping objects of highly different
shape. In contrast, here we investigated the possibility of decod-
ing fine differences of grips performed on a large number of
objects. In total, the monkeys grasped ~50 objects that caused a
high variability of hand shapes. Note that small differences in
object size, while sharing the same object shape, elicited fractional
difference in hand shape (see below, Grip type-based decoding).
Similar to previous studies (Baumann et al., 2009; Fluet et al.,
2010; Townsend et al., 2011; Lehmann and Scherberger, 2013),
we focused on the planning and hold epochs that were performed
in darkness. This way, visual responses were avoided, whereas
preparatory and motor signals became disambiguated.

Decoding results of one example session are presented in
Figure 5. Using maximum likelihood decoding with cross-
validation (see Materials and Methods), we found a high corre-
lation between the real conditions and the decoded conditions in
both the planning and hold epochs, as illustrated in the confusion
matrices (Fig. 5a). Error trials did not spread across all conditions
but were most likely attributed to neighboring condition classes
(e.g., cylinders of 30 mm in diameter could be confused with
cylinders of 35 mm diameter). Objects were arranged in the ma-
trix according to their similarity (shape and size). These effects
were further visualized in Figure 5b, in which success and error
rates were plotted on a logarithmic scale against distance from the
confusion matrix diagonal. For the recording session displayed in
Figure 5a, 53.0 and 62.4% of all trials were assigned correctly
during the planning and hold epochs, respectively. However, the
majority of error trials (58 and 64% for planning and hold,
respectively) were assigned to a class that was neighboring the
correct (true) class. To evaluate the total error distribution, we
additionally averaged the confusion matrices across all ses-
sions from both animals. In this population, the majority of
trials were correctly decoded with 51.3 and 60.7% during the
planning and hold epochs, respectively, similar to the pre-
sented example session (Fig. 5a). Again, most of the errors
were assigned to an adjacent class. Of all errors, 59% (plan-
ning) and 62% (hold) were classified incorrectly to a neigh-
boring class. Therefore, allowing the assignment to such an
adjacent class would boost the decoding performance to 80.2
and 85.2% (planning and hold, respectively), whereas chance
level would increase only to 6% (3 of 50 conditions). These
“relaxed” accuracies are highlighted for the example session in
Figure 5b (green bars).

Across the entire dataset of 10 decoding sessions per animal,
the 50 object conditions could be decoded from the planning
epoch with an accuracy of 48.7 * 3.6 and 51.9 * 3.4% (mean =
SD) in animals M and Z, respectively. This performance was
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23.9X and 26X above chance (2%). During motor execution
(i.e., from the hold epoch), the average decoding accuracy was
even larger: 62.9 * 3.6 and 61.4 * 4.1% (monkeys M and Z,
respectively), corresponding to 31.5X and 30.7X above chance
(2%). This means that decoding accuracy in the hold epoch was
on average 14.2 and 9.5 percentage points higher than in the
planning epoch (animals M and Z, respectively). This improve-
ment was significant (p < 0.001, two-way ANOVA) in both
animals.

Furthermore, we explored the functional differences of the
various cortical areas and recording sites separately in each elec-
trode array: (1) F5lat; (2) F5med; (3) AlPlat; (4) AIPmed; (5)
Mllat; and (6) M1med (array numbering as in Fig. 2). To make
the analysis fair, we applied a neuron-drop procedure that eval-
uated the decoding performance as a function of the number of
randomly selected neurons included in the analysis (Fig. 5¢). This
analysis allowed the following key observations: in the motor
preparation epochs (i.e., cue and planning epochs), AIPmed and
F5lat achieved the best decoding results in both animals, which
was reflected in the steepest performance increase as a function of
number of neurons included for decoding. Therefore, the infor-
mation content on these arrays was significantly higher than on
the supplemental arrays (AIPlat and F5med; ¢ test, p < 0.01).
Please note that no statistical comparison was possible for the
array AIPlat in animal Z because of the small number of neurons
detected. However, mean values were still smaller than in
AlIPmed, as shown in Figure 5¢ (animal Z, cue). In animal M, the
decoding performance of F5med was even lower than in the M1
arrays. This was surprising because the recording quality on this
array was quite high.

Additional interesting observations were made for the M1
arrays. First, both arrays achieved performances above chance
already during the planning epoch, indicating the presence of
preparatory activity in M1. However, in both animals, the more
lateral array (M1lat) provided significantly better decoding accu-
racies during motor preparation than its medial counterpart
(M1med). However, surprisingly, we found that the F5lat array
performed better than both M1 arrays not only during motor
planning but also during motor execution (movement epoch). In
the hold epoch M1lat, M1med, and F5lat achieved best accura-
cies, but with different order in both animals.

When comparing the decoding performances across task ep-
ochs, we observed a strong role of AIPmed in motor preparation
(cue and planning epochs), whereas decoding performance de-
creased strongly during motor execution (movement and hold-
ing epochs). In contrast, M1 showed a continuous increase in
decoding performance over time, with best performance during
the hold epoch, as expected.

Together, higher motor cortical areas in premotor and pari-
etal cortices could be used to decode a wide range of grasping
actions in 50 different object conditions. Decoding results from
these areas were almost as high during motor preparation as dur-
ing motor execution. Conversely, decoding from M1 was stron-
gest during grasp execution. Furthermore, we found strong
differences between the subareas of F5 and AIP. Recording sides
F5lat and AIPmed demonstrated most informative planning sig-
nals consistently in both animals. In particular, F5lat was best
suited for decoding during both motor preparation and execu-
tion. Therefore, this area might be a good target for a hybrid
brain—computer interface that is capable of exploiting both grasp
planning and movement execution.
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Grip-type decoding

One major goal of this study was to decode motor signals rather
than visual object attributes. For this reason, we focused on the
planning and hold epochs of the task that were performed in

minimal number of recorded neurons across all sessions.

darkness. Furthermore and importantly, we also decoded the grip
types applied to the objects based on the kinematic measures
from the instrumented glove. This way, trials were assigned to
specific grip types rather than individual objects.
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Grip-type clustering. a, Recorded joint positions of the upper limb were used to drive a 3D musculoskeletal model. Applying the kinematics to the primate-specific model allowed

extracting joint angles of the hand and arm (27 DOFs). A selection of features is shown in b. Presented are from top to bottom: thumb and index angles (carpometacarpal adduction/abduction in
black, carpometacarpal flexion/extension in red, proximal interphalangeal flexion/extension in blue, and distal interphalangeal flexion/extension in green), wrist angles (deviation in black,
flexion/extension in red, and pronation/supination in blue), elbow angle (flexion in black), and shoulder angles (adduction/abduction in black, elevation in red, and rotation in blue). The hold epoch
(used for classification) is highlighted in blue for grasping a horizontal bar, ring, and small ball. Subplot cillustrates the joint angles of the hold epoch as principal component (PC) transforms. Each
symbol reflects anindividual and correctly performed trial within the space of the first three principal components. Different symbols represent different object shapes, whereas their size reflects the
object size. Applying hierarchical clustering to the multidimensional kinematic data allowed us to recluster the trials based on the applied grip type (d). The 20 most different hand configurations
of the example session are numbered consecutively, and trials from the same grip-type class share the same color.

For the classification of grip types, we recorded the 3D trajec-
tories of 18 joint locations of the hand and arm with an electro-
magnetic tracking glove (Fig. 1a; Schaffelhofer and Scherberger,
2012) in parallel to the neural data. This technology allowed us to
record the movements continuously, even when fingers were hid-
den behind an object or obstacle. Furthermore, we used the
recorded marker trajectories to drive a primate-specific muscu-
loskeletal model (Fig. 6a; Schaffelhofer et al., 2014). The model
allowed extracting 27 DOFs of the primate’s upper extremity
(Fig. 6b) that were subsequently used to classify the applied grips.
For this analysis, we focused on the hold epoch, because it showed
the highest variability of hand shapes under the most stable con-
ditions. Figure 6¢ presents the hand configurations of the hold
epoch as principal component transforms with each of the cor-
rectly performed trials represented as a single marker in principal

component analysis (PCA) space (marker symbols as in Fig. 15,
with marker size reflecting object size).

Using hierarchical cluster analysis, we then identified the 20
most different grip types from the multidimensional hand con-
figuration dataset (27 DOFs) of holding the 50 objects 10 times
(see Materials and Methods). The resulting separable grip-type
clusters are differentiated by color in Figure 64 and demonstrate
highly variable hand configurations.

Furthermore, the hand configuration that each cluster repre-
sents is shown in Figure 7a. Apparently, the high quality of the
hand-tracking data allowed differentiating quite small grip dif-
ferences. For example, grip types 1 and 2 were very similar in
shape. However, they showed a minor but relevant difference:
grip type 1 was applied to the small balls, which were the smallest
objects of the set, whereas grip type 2 was applied to the small
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rings and required a slightly larger thumb—index aperture. Grips
3—6 represented whole-hand grips of different apertures, requir-
ing one (i.e., grip 3) to four (i.e., grip 6) digits. Grasping the large
balls (i.e., grip 7) additionally required support from the little
finger and a strong spread to enclose these large round objects.
Grips 8—11 were applied to the long horizontal objects including
bars and horizontal cylinders that needed variable apertures, not
only of the digits 2-5 but also of the thumb. For example, grip 8
was applied to a cylinder of smallest diameter, whereas grip 11
was applied to the thickest bar. Also, there was a high similarity
between the classes 9 and 10. Both required similar apertures of
thumb and index, but the proximal and distal phalanges had to be
more flexed for enclosing a cylinder (i.e., grip 10) than for the
bars that required more extended fingers. A special hand config-
uration was applied to the average-sized rings. In this case, the
monkey was using a hook grip with the index finger to lift the
object (i.e., grip 12). Grips 13-20 required a variable amount of
wrist rotation (Fig. 6d, 1st PC). Minimal wrist rotation was ap-
plied when grasping the large cubes (i.e., grip 13), whereas the
wrist was rotated to almost 180° when the big cylinders were lifted

from below (i.e., grip 20). Furthermore, grips 16 and 17 reflected
precision and power grips applied to the handle. The index
finger and thumb were used to perform the precision grip
(grip 17), whereas all digits were used to enclose and pull the
handle (grip 16). Finally, classes 18 and 19 reflect the grips
performed onto the vertical cylinders, which were similar to
grips 8 and 10 for the horizontal cylinders, but with the wrist
supinated by ~90°.

Categorizing the trials based on the performed grips instead of
the presented objects not only improved the separation between
visual and motor features but also reduced redundancies within
objects. For example, different objects that required the same or
similar grips could be merged into the same cluster. Training the
decoder on these hand—configuration classes readily allowed de-
coding these 20 grip types highly accurately. Figure 7a shows an
example session in which hand configurations were decoded with
an accuracy of 86 and 92% from the planning and hold epochs,
respectively.

The independence of grip types from visual features was ap-
parent particularly in two specific grip-type classes: grip types 10
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and 20 were applied to the same object, the big cylinder. The
monkey decided to grasp this object in some instances from
above with the hand pronated or in some trials from below with
the hand in supination. Another example is the pair of grips 16
and 17. Again, these grips were applied to the same object (the
handle), but these grip types could be predicted with high accu-
racy already during the planning epoch (motor preparation).
Both examples demonstrated that the decoder can differentiate
these grips, although they were performed on the same objects,
thereby demonstrating object-independent decoding. However,
a complete independent classification of objects and grips is not
possible in general, because the shape of the hand is highly linked
to the shape of the object being grasped (Fig. 6d). Therefore,
individual grip-type classes often reflected particular objects.

Similar to object decoding, the results of grip-type decoding
across all recording session (Fig. 7b) demonstrated that decoding
accuracy was highest when data from all cortical areas were con-
sidered, during both the planning (73 =% 6.2 and 74.7 = 3.5% for
animals Z and M, respectively) and hold (82.15 = 5.0 and 89.2 *
1.7% for animals Z and M, respectively) epochs. Again, AIPmed
and F5lat contributed most during the planning epoch, whereas
Mi1lat and M1med predicted in both animals the grip types best
during movement execution. However, across all electrode ar-
rays, F5lat achieved the highest performance when considering
both planning and execution epoch.

These results demonstrate that higher cortical areas can in-
deed be used to decode complex hand configurations already
during motor planning and with only slightly lower decoding
performance than in the motor execution phase. This is impres-
sive because grip types were classified during the hold epoch and
should therefore reflect the decoded hand configurations best.
Nevertheless, the contribution of AIP and F5 during motor prep-
aration led to a decoding performance that was on average only
8.6 and 14.5 percentage points smaller than during the hold ep-
och (animals Z and M, respectively).

Spike sorting affects decoding performance
For future real-time applications, the instantaneous processing of
action potentials in large populations, i.e., spike sorting, might be
difficult. The classification of action potentials to individual neu-
rons can cause extensive computations, such as principal compo-
nent transformation or template-matching algorithms across a
large number of channels. Previous studies have demonstrated
minimal loss of decoding performance when advanced spike-
sorting methods were replaced by simple thresholding tech-
niques (Gilja et al., 2011) or when spikes recorded from the same
channel were merged to a single multiunit (Gilja et al., 2012;
Hochberg et al., 2012; Collinger et al., 2013). These procedures
limit the number of available units to the number of electrodes
and mostly avoid the computational cost of spike sorting.
When comparing both methods in our decoding analysis, we
found, as expected, better decoding accuracies when applying
spike sorting instead of simple thresholds (Fig. 8): decoding ac-
curacy increased on average by 9.9 and 8.8 percentage points
during the planning and hold epochs, respectively, across all ses-
sions and animals. Although these differences were significant
(ANOVA, p < 0.01), the clusters were still located close to the
unity line in the scatter plot, suggesting that simple thresholding
could be used to decode a wide range of conditions with a nega-
tive effect of decoding accuracy of <10 percentage points.
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formance using sorted (y-axis) and unsorted (x-axis) spiking activity. Symbols indicate decoding
results during the planning (red) and hold (blue) epochs for both animals.

Offline robotic control

Finally, for future robotic applications, we also tested the trans-
lation of the decoded hand configurations into postures of an
anthropomorphic arm and hand (Fig. 9). Because of noncongru-
ent architectures and common under-actuation of currently
available robotic hands (one motor actuates several DOFs), such
transformations are often nontrivial. Using a simple transforma-
tion method (see Materials and Methods), we could demonstrate
the translation of the 20 grip-type classes (defined by 27 DOFs) in
a 16 DOFs robotic arm and hand (Barrett Technology arm, 7
DOFs; SCHUNK hand, 9 DOFs; Fig. 9). Two problems were
encountered in translating the grip. One was that the thumb
abduction of the robot rotated about a different axis than the
primate thumb (Fig. 9a, inset, b). Our approach was to visually
match the ranges in which both thumbs coincided in orientation
and restricting the robot movement to this range. The second
problem concerned the execution of the ring and little fingers,
because both robotic fingers were actuated by only 1 DOF. This
was solved by averaging the little and ring finger joint angles of
the primate model (Fig. 9c—e). Together, although this robotic
illustration was performed offline and rather qualitatively, it nev-
ertheless demonstrates the feasibility of the primate hand model
for future neuroprosthetic applications.

Discussion

The extensive experimental task design has let us record kinematics
of the primate hand together with neural activity of the cortical areas
AIP, F5, and M1 that are known to be involved in hand-movement
generation. From the planning and execution signals of these
areas, we demonstrated accurate decoding of a wide range of
hand configurations that animals used to grasp 50 different
objects.

Object-based decoding
As a firstapproach, we evaluated the decoding capabilities of AIP,
F5, and M1 on the full set of 50 objects. This number of condi-
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Execution of arm pose and grip type by a low-dimensional prosthetic device. Execution was compared with the primate skeletal model. To infer the frame of reference of the device from

photographs, an oval (red) was drawn matching the circumference of its upper arm or wrist. The direction of the robot axis was estimated with a secant (black) cutting the oval in two equal parts
and touching a physical marker painted on the robot. The model was manually aligned to set the x-axis of the skeletal model (red) parallel to the secant and the y-axis of the skeletal model (yellow)
parallel to the upper or lower arm of the robot. a, Reproduction of grip 20 (see Fig. 7) by the prosthetic device. The device can enact the hand and arm pose as rendered by the skeletal model. Inset,
Medial view. b, ¢, Arm and hand during grip 17. Digits 2—5 represent the grip well except at the distal phalanges that have no separate control on the robot. Inset, Superposition of both grips. d, e,
Frontal and lateral views of grip 16 (as in Fig. 7). The grip is well represented except for the distal phalange angles.

tions was larger than in previous studies (Vargas-Irwin et al.,
2010; Carpaneto et al., 2011, 2012; Aggarwal et al., 2013) and
caused a high variability of hand shapes, ranging from precision
to power grips, as well as many different grasp apertures (Fig. 6d).
Grasp-planning areas AIP and F5 were capable of resolving the
many grip-type conditions even during movement preparation.
Decoding performances during the planning phase were only
moderately lower (<15%) than in the movement epoch. Selec-
tive responses at the population level (Fig. 4) and distinct modu-
lations of individual neurons (Fig. 3) are able to explain the
planning quality of the AIP and F5 population.

Although the decoding performance was on average ~30
times larger than chance (execution epoch), the actual correla-
tion between real and decoded conditions was even higher. Most
of the decoding errors were made to adjacent objects of similar
shape and size (Fig. 5). This closeness of grip conditions was
intended: in contrast to previous studies that classified a few
vastly different grip types (Townsend et al., 2011; Carpaneto et
al., 2012), we have introduced object similarities to evaluate the
nature of the neural signals at the various recording sites.

Training the Bayesian classifier separately with neuronal en-
sembles from each individual electrode array revealed significant
differences across the recorded populations. In both animals, the
arrays F5lat and AIPmed carried significantly more information
about the upcoming grip than their complementary array in the
same area (F5med and AIPlat). Interestingly, we also found dif-
ferences in terms of planning activity between the two M1 arrays.
Mllat, located at the level of the principle sulcus, achieved higher
decoding performances during grasp planning than MImed.
However, these effects were marginal compared with the activity
during movement execution, when the majority of neurons at
both sites (M1lat and M1med) showed strong selective responses
(Fig. 4), in line with the known direct cortico-motoneuronal con-
nections of M1 to the distal limb musculature (Rathelot and
Strick, 2009). These results highlight clearly the importance of

M1 for hand-movement control and its suitability for potential
neuroprosthetic applications with larger number of objects.

Grip type-based decoding

Areas AIP and F5 are part of the frontoparietal network that is
highly relevant for transforming visual attributes of objects into
motor commands for grasping (Jeannerod et al., 1995; Luppino
et al., 1999; Rizzolatti and Luppino, 2001; Brochier and Umilta,
2007). In both areas, preparatory neuronal activities have been
reported that reflected context-specific object information, as
well as 2D and 3D object features (Murata et al., 2000; Raos et al.,
2006; Baumann et al., 2009; Fluet et al., 2010; Theys et al., 2012a;
Theys etal., 2012b; Romero et al., 2014). In agreement with these
findings, neurons from AIP and F5 responded selectively to the
presentation of various objects (Fig. 4).

To demonstrate the capability to decode motor plans rather
than visual attributes, we evaluated the preparation activity dur-
ing the planning epoch when animals were in complete darkness.
Furthermore, we classified neural activity based on the applied
grip type rather than the observed object. For this, we tracked
finger, hand, and arm movements with an instrumented glove
equipped with electromagnetic sensors (Schaffelhofer and Scher-
berger, 2012). From the 3D marker trajectories, we then extracted
the joint angles in 27 DOFs and classified them into 20 grip-type
classes. This classification method not only created classes based
on the applied grip but also reduced redundancies among condi-
tions, because some objects were grasped with the same grip. We
have selected a relatively high number of grip types to test the
limits of the decoder and signals. However, a lower number of
hand configurations would be sufficient in daily life and could
potentially increase the decoding performance (Bullock et al.,
2013).

The rather good performance for these grip-type conditions
demonstrated clearly, to our knowledge for the first time, that a
large number of hand configurations can be decoded precisely
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from both motor planning and motor execution signals: whereas
AIPmed and F5lat contributed strongest during movement prep-
aration, M1 showed the best performance during object grasping.

Because animals were allowed to grasp the objects intuitively,
some objects, such as the horizontal cylinders, were sometimes
grasped with alternative grips (e.g., with pronated vs supinated
hand). Although the object attributes were identical in such cases,
we were able to classify the correct grip, therefore demonstrating
the decoding of a motor plan rather than objects.

However, a strict separation between visual and motor attri-
butes is generally not possible. This conclusion is supported by
the PCA that demonstrated a clear link between object shape and
the applied grip type (Fig. 6d). This statement is relevant for
decoding applications and for our general understanding of grasp
coding in AIP and F5. Clearly, the simple neuronal responses and
decoding analysis presented here cannot reveal the real nature of
the neural signals in terms of their object or motor representa-
tions. Because either visual object features or the intended motor
plan could generate the observed object selectivity, additional
investigations of the neural state space are necessary to address
these questions.

Implications for neuroprosthetics

Previous work has presented striking examples of neural inter-
faces for the control of arm prosthetics. However, most of these
studies did not consider dexterous control of an anthropomor-
phic hand. Instead, they implemented 1D controls for simple
grippers that essentially could be opened and closed (Velliste et
al., 2008). Whereas hand orientation was not or was only manu-
ally controlled in the past (Hochberg et al., 2012), a recent study
achieved an additional neural control of the wrist (Collinger et
al., 2013). Although some offline studies demonstrated a contin-
uous reconstruction of finger and hand movements (Vargas-
Irwin et al., 2010; Bansal et al., 2012; Aggarwal et al., 2013), none
of them demonstrated the capability for closed-loop applica-
tions, because they were decoded in parallel to the actual move-
ment. Therefore, the neural control of the many DOFs of the
hand under visual guidance remains the major challenge. Access-
ing higher cortical areas that reflect motor intentions rather than
individual joint angle control might help reduce the dimension-
ality problem for real-time applications (Carpaneto et al., 2011;
Townsend et al., 2011). Here, we demonstrated the decoding of a
wide range of complex hand configurations from motor prepa-
ratory activity, ranging from precision grips to power grips.

Furthermore, as a test for prospective real-time applications,
we illustrated the possibility of translating hand postures to an-
thropomorphic 16 DOFs hand and arm. Inverse kinematics and a
linear translation of hand configurations allowed executing a to-
tal of 20 grip types on the robotic device. This offline test dem-
onstrated the possibility of physically executing complex hand
configurations as decoded from neuronal planning and execu-
tion signals.

Although decoding motor intensions significantly reduced
the decoding complexity of the primate hand, it is important to
note that such an open-loop approach could not work as a stand-
alone application. For real-time applications, the instant process-
ing of neural activity for aperture control and error correction
would be required. One possibility would be a hybrid neural
interface that accesses both planning and motor execution signals
for grasping. Such an approach could consist of three major steps:
(1) detecting the planning state before movement onset (Aggar-
wal et al., 2013); (2) decoding the intended grip type from prepa-
ratory activity; and (3) closing the aperture of the decoded hand
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configuration with continuous decoders (e.g., Kalman filter) in
closed-loop applications under visual guidance (Collinger et al.,
2013). In our study, the ventral premotor cortex showed similar
or even better performance during movement execution than
M1. The redundancy between both interconnected areas (Dum
and Strick, 2005) was already reported in previous decoding stud-
ies (Aggarwal et al., 2013). However, driving a hybrid neural
interface with access to planning and motor activity could benefit
from both areas and lead to a significant increase in decoding
performance and usability. Therefore, motor execution signals
may not necessarily have to originate from the motor cortex. As
shown in Figure 5¢, the lateral part of F5 demonstrated the best
performance across planning and motor epochs and hence might
be well suited for this kind of applications.
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