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Systems/Circuits

Melanin-Concentrating Hormone Neurons Release
Glutamate for Feedforward Inhibition of the Lateral Septum

Melissa J.S. Chee,! Elda Arrigoni,? and Eleftheria Maratos-Flier!

'Division of Endocrinology and 2Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115

Melanin-concentrating hormone (MCH) regulates vital physiological functions, including energy balance and sleep. MCH cells are
thought to be GABAergic, releasing GABA to inhibit downstream targets. However, there is little experimental support for this paradigm.
To better understand the synaptic mechanisms of mouse MCH neurons, we performed neuroanatomical mapping and characterization
followed by optogenetics to test their functional connectivity at downstream targets. Synaptophysin-mediated projection mapping
showed that the lateral septal nucleus (LS) contained the densest accumulation of MCH nerve terminals. We then expressed
channelrhodopsin-2 in MCH neurons and photostimulated MCH projections to determine their effect on LS activity. Photostimulation of
MCH projections evoked a monosynaptic glutamate release in the LS. Interestingly, this led to a feedforward inhibition that depressed LS
firing by a robust secondary GABA release. This study presents a circuit analysis between MCH and LS neurons and confirms their
functional connection via monosynaptic and polysynaptic pathways. Our findings indicate that MCH neurons are not exclusively GABAe-

rgic and reveal a glutamate-mediated, feedforward mechanism that inhibits LS cells.
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Introduction

Melanin-concentrating hormone (MCH), one product of the
pro-MCH gene, is synthesized exclusively in the lateral hypothal-
amus (Nahon et al., 1989) and has well documented effects on
energy balance (Shimada et al., 1998). MCH neurons are also in-
volved in rapid eye movement sleep regulation (Hassani et al., 2009),
cognition (Monzon et al., 1999), mood (Roy et al., 2006, 2007),
reward (Georgescu et al., 2005), and olfaction (Adams et al., 2011).

Anterograde and retrograde tracing demonstrated widespread
MCH projections throughout the brain (Bittencourt, 2011). MCH
receptor 1 (MCHRI1)-expressing neurons are also widely distrib-
uted (Chee et al., 2013), but because of presynaptic MCHR1 ac-
tions (Zheng et al., 2005; Rao et al., 2008) and low peptide content
at axon terminals, it is difficult to identify active targets of MCH
neurons. Hence, MCH circuitry is not well understood, and syn-
aptic mechanisms controlling downstream neuronal activity re-
main elusive.

MCH neurons coexpress additional neurotransmitters, in-
cluding pro-MCH neuropeptides NEI and NGE (Nahon et al.,
1989; Parkes and Vale, 1992), cocaine and amphetamine-related
transcript (Broberger, 1999), as well as classical neurotransmit-
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ters. They express GABA-synthesizing enzymes GAD65 and
GADG67 (Elias et al., 2001; Harthoorn et al., 2005), and some
MCH varicosities colocalize the vesicular GABA transporter
VGAT (Del Cid-Pellitero and Jones, 2012), suggesting that MCH
neurons release GABA (Jego et al., 2013). Interestingly, some
MCH neurons also contain glutamate (Abrahamson et al., 2001)
and express the excitatory amino-acid transporter EAAT3 (Col-
lin etal., 2003) and vesicular glutamate transporters vVGLUT1 and
vGLUT?2 (Harthoorn et al., 2005; Del Cid-Pellitero and Jones,
2012). However, there is no direct evidence that they release
glutamate.

To better analyze MCH circuitry, we first expressed synaptophys-
in—-mCherry in MCH cells to map their axon terminal distribution.
Next, we tested their functional connectivity at downstream targets
using an optogenetic approach by exclusively expressing and
photostimulating channelrhodopsin-2 (ChR2) in MCH neurons
and axons. We focused on the lateral septal nucleus (LS), which
contained the densest MCH nerve terminals, and tested LS re-
sponses while photostimulating MCH projections.

Materials and Methods

Animals

Mice were treated in accordance with National Institutes of Health Guide
for the Care and Use of Laboratory Animals guidelines. All protocols were
approved by Beth Israel Deaconess Medical Center Institutional Animal
Care and Use Committee.

Pmch—cre mice use the Pmch gene promoter to restrict cre-
recombinase expression in MCH neurons (Kong et al., 2010). Specificity
of cre-expressing MCH neurons was assessed in Pmch—cre;tdTomato
mice (n = 2) obtained by crossing Pmch—cre (stock #014099; The Jackson
Laboratory) and tdTomato reporter (Gt(ROSA)26Sor—loxSTOPlox—td-
Tomato; stock #007905; The Jackson Laboratory) mice (Madisen et al.,
2012).
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Figure 1.  The LS receives dense MCH axon terminals. 4, Merged low-magnification (i) and high-magpnification (ii, outlined from i) confocal photomicrographs showing native synaptophysin—
mCherry fluorescence (red) and MCH immunoreactivity (green) in the lateral hypothalamus of Pmch— cre mice injected with AAV8 —DIO—Ef1ce—synaptophysin—mCherry. White arrowheads mark
some representative double-labeled neurons (yellow). B, Epifluorescence photomicrograph of the LS showing native synaptophysin—mCherry-labeled fluorescent (Figure legend continues.)
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Neurons expressing VGAT (Slc32al) and vGLUT2 (Slc17a6) were
identified in Slc32al-cre;Rpl10-GFP (n = 2) and Slc17a6-cre;Rpl10-GFP
mice (n = 2), obtained by breeding Slc32aI—ires—cre (stock #016962; The
Jackson Laboratory) and Slc17a6—ires—cre (stock #016963; The Jackson
Laboratory) mice (Vongetal., 2011), respectively, to cre-dependent GFP
reporter mice (R26 —loxSTOPlox—L10—GFP) in which cre activates Rpl10
and yields eGFP-fused L10-ribosomal subunit expression (Krashes et al.,
2014).

Stereotaxic viral injections

Pmch—cre mice of either gender (8—12 weeks) were injected unilaterally
with 480 nl of cre-dependent adeno-associated viral (AAV) vectors (Uni-
versity of North Carolina Gene Therapy Center) encoding synaptophys-
in—-mCherry (AAV8—EF1a—DIO-synaptophysin—-mCherry; titer, 2.23 X
101 genomic copies/ml; n = 3 mice) or ChR2-mCherry (AAV8-EFla—
DIO-hChR2(H134R)-mCherry; titer, 3.82 X 10'* genomic copies/ml;
n = 18 mice) to the medial (in mm: anteroposterior, —1.30; mediolat-
eral, —0.50; dorsoventral, —4.50, —5.00) and lateral (in mm: anteropos-
terior, —1.80; mediolateral, —1.20; dorsoventral —4.50, —5.00) MCH
field (Franklin and Paxinos, 1997). In vitro optogenetic experiments were
performed 4 -8 weeks after AAV injections.

Immunohistochemistry

Slc32al-cre;Rpl1I0—GFP and Slc17a6—cre;Rpl10—GFP mice. GABAergic
or glutamatergic MCH neurons were stained for GFP and MCH immu-
noreactivity in Formalin-fixed sections (30 um) and then incubated with
anti-rabbit MCH (1:5000; Chee et al., 2013) and anti-chicken GFP anti-
body (1:3000; Invitrogen) overnight, followed by goat anti-rabbit Alexa
Fluor 594 (1:300; Invitrogen) and goat anti-chicken Alexa Fluor 488
(1:300; Invitrogen) for 2 h.

Pmch—cre mice. Synaptophysin-mCherry- or ChR2-mCherry-
expressing sections were incubated with anti-rabbit MCH (1:5000; 24 h),
followed by goat anti-rabbit Alexa Fluor 488 (1:300; 2 h; Invitrogen).

Distribution of synaptophysin—-mCherry-labeled end terminals were
mapped in brain sections incubated with anti-rabbit Discosoma red
(DsRed) antibody (1:3000; 24 h; Clontech), followed by biotin-
conjugated goat anti-rabbit (1:1000; 1 h; Jackson ImmunoResearch) and
avidin—biotin complex (1:500; Vectastain ABCKkit; 1 h; Vector Laboratories)
before reacting with 3,3’-diaminobenzidine (DAB peroxidase substrate kit;
1.5 min; Vector Laboratories). Sections were treated with xylene (16 h), Nissl
stained with 0.1% cresyl violet (1 min), and then coverslipped with Per-
maslip (Alban Scientific). All incubations occurred at 22°C.

Confocal image stacks were acquired with a Zeiss Imager confocal
microscope using PASCAL software (Carl Zeiss). One-channel epifluo-
rescence and bright-field photomicrographs were acquired with an Im-
ager.Al light microscope using AxioVision software (Carl Zeiss).

Electrophysiology
Slice preparation. Coronal brain slices (250 wm) were prepared in ice-
cold, carbogenated (95% O,, 5% CO,) sucrose-based ACSF [in mm: 250
sucrose, 2.5 KCl, 1.24 NaH,PO,, 10 MgCl,, 10 glucose, 26 NaHCO;, and
0.5 CaCl, (305 mOsm/L)] and then incubated (15 min; 37°C) in carboge-
nated ACSF [in mm: 124 NaCl, 2.5 KCl, 1.24 NaH,PO,, 1.3 MgCl,, 10 glu-
cose, 26 NaHCOj, and 2.5 CaCl, (300 mOsm/L)] to recover (>1 h; 22°C).
Patch-clamp recording. While slices equilibrated (31°C), ChR2-
mCherry expression was assessed using epifluorescence illumination
(Examiner.Al; Carl Zeiss). Individual neurons were visualized for whole-
cell patch using infrared differential interference contrast (IR-DIC).
Voltage-clamp recordings were obtained with a pipette containing the
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(Figure legend continued.) ~ fibers. C, High-magnification bright-field photomicrograph (outlined
ininset) showing punctate DsRed-IR boutons (dark brown) surrounding Nissl-stained LS cells (purple).
Black arrowheads mark some representative LS soma outlined by DsRed-labeled terminals. D, Line
drawings mapping DsRed immunoreactivity distribution within the LS. 3V, Third ventricle; ac, anterior
commissure; Acb, accumbens nucleus; c, corpus callosum; cp, cerebral peduncle; CPu, caudate puta-
men; f, fornix; LSD, lateral septal nucleus, dorsal part; LS|, lateral septal nucleus, intermediate part;
LSV, lateral septal nucleus, ventral part; LV, lateral ventricle; MS, medial septal nucleus; opt, optic tract.
Scale bars: Ai, B, 200 pum; Aii, 100 m; €, 20 pum.
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following (in mm): 125 Cs-methanesulfonate, 11 KCl, 10 HEPES, 0.1
CaCl,, 1 EGTA, 5 MgATP, and 0.3 NaGTP (290 mOsm/L), pH 7.24.
Current-clamp recordings were obtained with a pipette containing the
following (in mm): 137 K-gluconate, 5 KCl, 1 MgCl,, 4 MgATP, 10 cre-
atine, 0.4 NaGTP, 10 HEPES, and 0.1 EGTA (290 mOsm/L), pH 7.24.
Recordings were acquired with a MultiClamp 700B amplifier (Molecular
Devices) digitizing via a Digidata 1440A (Molecular Devices) interface
using pClamp 10 software (Molecular Devices). Cells whose input resis-
tances deviated >10% over time were excluded from analysis.

Photostimulation protocol. Photostimulation was provided by full-
field, 5 ms light pulses (470 nm; power density, 10 mW/mm?) using a 5
W Luxeon blue light-emitting diode (Thorlabs). Optogenetically evoked
currents (oIPSC or oEPSC) were elicited with three light pulses delivered
500 ms apart, repeated for 20 trials every 4 s, and then averaged for
quantification. Delay latency was measured as time between onset of light
pulse and current event. Effects on firing were elicited by three trials of 10
Hz trains lasting 5 s. Experiments using tetrodotoxin (TTX) were per-
formed in 1 mmMm 4-AP (Petreanu et al., 2009).

Chemicals

All drugs were prepared immediately before use and administered by
bath perfusion. All chemicals were from Sigma-Aldrich, except TTX-
citrate (Alomone Labs).

Data and statistical analysis

Unilateral cell counts were obtained from flattened confocal images. Re-
cording data were analyzed using Clampfit 10 (Molecular Devices). Syn-
aptic events were analyzed using MiniAnalysis (Synaptosoft). Graphs
and sample traces were generated with Prism 5 (GraphPad Software) and
Axum 5 (MathSoft). Data are represented as mean = SEM. The number
of cells per group (n) is shown in parentheses in the figures. Means were
compared using the paired ¢ test; ¢ values and degrees of freedom (#4p))
are provided at significant differences of p < 0.05.

Results
The LS is a target of MCH nerve terminals
Using Pmch—cre;tdTomato mice, we observed tdTomato colocal-
ization in 98 %+ 2% of MCH-immunoreactive (IR) cells. We then
identified MCH nerve terminals by injecting AAV-DIO-synap-
tophysin—-mCherry into the lateral hypothalamus of MCH-cre
mice. Synaptophysin-mCherry was expressed in 35 * 14% of
MCH-IR neurons (Fig. 1A). No mCherry-labeled cells were
found outside the MCH region.

mCherry-labeled MCH projections were observed through-
out the brain, including the lateral and posterior hypothalamus,
ventral tegmental area, colliculus, periaqueductal gray, and para-
brachial nucleus. Areas with the highest MCHR1 mRNA expres-
sion (Chee et al., 2013), particularly the striatum, arcuate, and
paraventricular hypothalamic nucleus, contained few mCherry-
labeled fibers. In contrast, dense clusters of mCherry-labeled
nerve terminals accumulated in the LS (Fig. 1B). Punctate
DsRed (mCherry) immunoreactivity in Nissl-stained sections
revealed nerve terminals that closely appose LS neurons (Fig.
1C) and map predominantly to the intermediate part of the LS
(Fig. 1D).

MCH neurons release glutamate in the LS
We examined long-range, functional connectivity between MCH
and LS neurons by GABAergic and/or glutamatergic transmis-
sion. Using Slc32al—cre;RplI0—-GFP and Slcl17a6—cre;Rpl10—
GFP mice, we first identified vGAT- or vGLUT2-expressing
MCH neurons. Almost all MCH-IR cells colocalized with
vGLUT?2 labeling, but none were vGAT positive (Fig. 2).

We then assessed GABA and glutamate release in LS using opto-
genetics. Injection of AAV-DIO-ChR2-mCherry in Prmch—cre mice
resulted in ChR2-mCherry expression at 32 + 9% of MCH-IR neu-
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C Total cell count' Percent (%)
MCH-IR + GFP Colocalized
Mouse MCH-IR (colocalized *) MCH-IR
Sic32al-cre;Rpll10-GFP 529 £ 46 11 0.3£0.1
Slc17a6-cre;Rpl10-GFP 490 =+ 70 463 £79 94.0£2.6

I Quantitation of MCH-IR neurons that are GABAergic or glutamatergic by GFP coexpression in Slc32al-cre;rpll10-GFP
or Slcl7a6-cre;Rpl10-GFP mice, respectively. Cells (mean + SEM, »n = 2 mice) are counted unilaterally.

2 Labeling of vGAT or vGLUT?2 neurons was determined by native GFP fluorescence (green). MCH-IR cells are labeled
with Alexa Fluor 594 (red). Colocalized neurons appear yellow.

3 Ratio describing the percentage of MCH-IR neurons that are vGAT or vGLUT2 positive.

Figure2.  MCH neurons express vGLUT2 but not vGAT. 4, B, Merged low-magpnification (i) and high-magpnification (ii, outlined in i) confocal photomicrographs showing MCH immunoreactivity
(red) in GFP-positive (green) vGAT (A) and vGLUT2 (B) neurons. Insets (outlined in Aii and Bii) showing the colocalization of MCH immunoreactivity with vGLUT2 but not vGAT expression. White
arrowheads indicate double-labeled neurons (yellow). Asterisks mark non-colocalized MCH neurons. Scale bars: i, 200 pum; if, 100 um. €, Unilateral cell count of MCH-IR neurons expressing vGAT
or vGLUT2. ¢p, Cerebral peduncle; DMH, dorsomedial hypothalamic nucleus; opt, optic tract; VMH, ventromedial hypothalamic nucleus.

rons. Recording and photostimulating mCherry-labeled neurons
(Fig. 3 A, B) with single blue light flashes evoked temporally cor-
related action potentials. Light pulse trains up to 20 Hz entrained
MCH cell firing with high spike fidelity (99.8 = 0.2%, n = 12),
which fell substantially at higher light frequencies (50 Hz, 35.4 =

9.0%, n = 12; 100 Hz, 3.6 £ 1.0%, n = 12; Fig. 3C). Photostimu-
lation between 20 and 50 Hz resulted in firing rates of ~20 Hz, the
maximal firing observed by MCH neurons in vivo (Hassani et al.,
2009); stimulations above 50 Hz produced a depolarizing block
(Fig. 3C).
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Figure 3.  Photostimulation of ChR2-expressing MCH terminals evoked glutamate release in the

LS. 4, Experimental design schematic showing patch-clamp recording while photostimulating

ChR2-expressing MCH neurons. B, Merged epifluorescence and IR-DIC photomicrographs of a coronal Pmch— cre brain slice injected with AAV8 —EF1—DI0—hChR2(H134R)—mCherry showing
whole-cell recording from a mCherry-labeled MCH neuron (inset, outlined region). Scale bars: 200 m; inset, 50 m. €, Sample traces of action potential firing from a ChR2-expressing MCH neuron
evoked by 5 s light trains (5 ms pulses) at 1,5, 20, and 100 Hz light frequency (dashed line, 0 mV; left). Percentage change in spike fidelity (black, left axis) and MCH neuronal firing (gray, right axis)
showing effective entrainment up to 20 Hz photostimulation (n = 12). D, Experimental design schematic showing whole-cell recordings from LS neurons while photostimulating ChR2-expressing

MCH projections. E, Merged low-magnification (/) and high-magnification (ii) epifluorescence and |
in the LS (/) and mCherry-fluorescent puncta outlining LS cells (ii). Scale bars: #, 200 m; i, 100 m

R-DIC photomicrographs of a coronal brain slice showing ChR2-expressing MCH axon terminals
. F-1, Overlay of individual (gray) and averaged (black) oIPSCs (V}, of —5mV; F) and oEPSCs (V,

of —60 mV; H) after photostimulation (3 5-ms light pulses in 15, repeated every 5 s for 20 trials). Averaged responses (F, H) magnified in insets (top) and raster plots (bottom; 50 ms bins) showing
event synchronization during photostimulation. Probability plots (50 ms bins) showing that photostimulation increased IPSCand EPSC probability in control (con; n = 14), which is abolished by 20
uMBIC(n = 4; G)and TmmKYN (n = 6; 1), respectively. J, K, Range (line, median; box, 25th to 75th percentiles; whisker, minimum to maximum) of absolute amplitudes (/) and delay latency (K)
of 0IPSCs and oEPSCs averaged from 20 trials. ***p << 0.001. L, Overlay of individual (gray) and averaged (black) oIPSCs (top) and oEPSCs (bottom) in control (i), BIC (i), KYN (iii), 500 nm TTX (iv),
TTX and KYN (v), and washout (vi). M, Effect of KYN and BIC on olPSC and oEPSC amplitude. 3V, Third ventricle; cc, corpus callosum; con, control; CPu, caudate putamen; f, fornix; LHA, lateral

hypothalamic area; LV, lateral ventricle.

To evaluate neurotransmitter release, we recorded LS cells and
photostimulated the surrounding ChR2-expressing nerve termi-
nals (Fig. 3D, E). A dual response was evoked from the same cell
using cesium-filled electrodes. At V;, of —5mV, single light pulses
evoked temporally correlated oIPSCs (Fig. 3F). This increased
baseline IPSC probability from 36.4 = 7.0 to 96.5 = 5.7% (n =
14, t(,3) = 8.14, p < 0.0001), an effect blocked by 20 um bicucul-
line (BIC), a GABA,, receptor antagonist (Fig. 3G). At V, of —60
mV, photostimulation evoked oEPSCs (Fig. 3H) and increased

EPSC probability from 13.7 £ 4.7t0 93.2 £ 6.7% (n = 14, t(,3, =
10.31, p < 0.0001). This was blocked by 1 mm kynurenic acid
(KYN), a broad-spectrum glutamate receptor antagonist (Fig.
3I). This collectively suggested that activating MCH efferents
evoked both GABA and glutamate release.

The amplitude of GABA-mediated oIPSCs (354.9 = 159.5 pA,
n = 11) tended to be larger than glutamate-mediated oEPSCs
(—83.9 £20.9 pA, n = 11; Fig. 3]). The oEPSC delay latency was
3.5 = 0.3 ms (n = 11), consistent with a monosynaptic connec-
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feedforward inhibition of LS neuronal activity.

tion. In contrast, oIPSC delay was nearly twofold longer (6.3 =
0.3 ms, n = 11, t;5) = 11.99, p < 0.0001; Fig. 3K), suggesting a
polysynaptic connection. We next evaluated the effect of BIC and
KYN pretreatment on these optogenetically evoked currents (Fig.
3Li). Expectedly, BIC blocked oIPSCs (—97.4 = 2.6%, n = 4;
Fig. 3Lii, M ) and KYN blocked oEPSCs (—96.1 = 2.1%, n = 6; Fig.
3Liii, M). However, KYN also abolished oIPSCs (—98.8 = 0.7%,

Photostimulation of MCH terminalsinhibited LS cells by glutamate-mediated GABA release. A, B, Sample trace (i) and
mean percentage change (i) in spontaneous LS firing frequency in response to photostimulation (5 ms light pulses, 10 Hz train for
55) before (control), during 1 mm KYN (A) or 20 pum BIC (B), and after washout (wash). *p << 0.05. €, Model of monosynaptic and
disynaptic pathways between MCH and LS neurons. MCH neuronsin the lateral hypothalamicarea (LHA) directly release glutamate
(Glu) onto LS neurons and GABAergic interneurons or afferents. Glutamate release at GABAergic intermediates elicits robust
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n = 6; Fig. 3Liii, M). This indicated that
glutamatergic oEPSCs were independent of
GABA transmission but that GABAergic
oIPSCs require upstream glutamate release.
Furthermore, eliminating activity-dependent
polysynaptic events with 500 nm TTX abol-
ished GABAergic oIPSCs but not glutamater-
gic oEPSCs (Fig. 3Liv,Lv). Aggregate results
indicated that MCH neurons directly release
glutamate onto LS neurons, while producing
feedforward inhibition of LS neurons through
activation of either GABAergic afferents or
interneurons.

(6)

Photostimulation of MCH axons

inhibited LS firing

We next determined whether inputs from

MCH neurons control LS action potential
* firing. Photostimulation of MCH axon
terminals (10 Hz, 5 s train) transiently
suppressed LS firing (2.7 £ 0.8 to 1.6 =
0.7 Hz, n = 11, t,) = 4.80, p < 0.001),
which returned to baseline during lights
off (2.6 = 0.8 Hz, n = 11). KYN abolished
this light-mediated inhibition of LS neu-
rons (control, —49.5 = 14.6%, n = 6;
KYN, —1.7 + 3.8%, n = 6; t5, = 3.36,
p < 0.05; Fig. 4A), consistent with a
glutamate-mediated feedforward inhibi-
tion of this population. Photostimulation
of MCH end terminals in the presence of
BIC increased LS firing by 153.3 = 50.2%
(n = 6; control, —46.7 = 17.1%, n = 6;
t(sy = 3.36, p < 0.05; Fig. 4B), demonstrat-
ing that MCH neurons directly release
glutamate to stimulate LS cells.

Discussion

This is the first demonstration of a func-
tional pathway between MCH and LS
neurons. MCH regulates fundamental
physiological functions, including energy
homeostasis and sleep. It is also involved
in complex behaviors, such as reproduc-
tion, olfaction, aggression (Adams et al.,
2011), and affective disorders (Roy et al.,
2007), but no neuroanatomical substrate
is yet identified as a conduit for these com-
plex behaviors. The LS is an intriguing
candidate. It is implicated in anxiety, de-
pression, and aggression (Sheehan et al.,
2004), consistent with its potential role me-
diating behavioral abnormalities in mice
lacking MCH (Georgescu et al., 2005; Ad-
ams et al., 2011) or MCHRI (Roy et al.,
2006, 2007; Sherwood et al., 2012). It re-
ceives MCH projections (Jego et al., 2013), which we now
demonstrate are active glutamatergic nerve terminals directly
innervating LS neurons. Photostimulation of these axon ter-
minals directly evoked glutamate release, followed by a de-
layed, secondary GABA release onto LS cells. Interestingly, the
net response depressed LS firing. The source of GABA is still
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unknown but may derive from GABAergic afferents or in-
terneurons innervating the LS (Fig. 4C).

Several reports suggest that MCH neurons are GABAergic
because they can synthesize (Elias et al., 2001; Harthoorn et al.,
2005; Jego et al., 2013) and release (Jego et al., 2013) GABA. Here
we show that the majority of MCH neurons are vVGLUT2 positive
but none are vGAT positive. This suggests that they release glu-
tamate and thus are not exclusively GABAergic. Similar to what is
observed in neighboring histaminergic cells (Williams et al.,
2014), MCH neurons can synthesize GABA but might lack the
machinery to package it for synaptic release. Optogenetic stimu-
lation of MCH inputs evoked GABA release in the LS, but GABA
is not directly released by MCH terminals. Rather, it is secondary
to the activation of glutamatergic MCH projections. It is possible
that GABA is packaged by other vesicular monoamine transport-
ers, such as VMAT?2 (Tritsch et al., 2012), for release elsewhere in
the brain (Jego et al., 2013) but not in the LS. Our findings, in
conjunction with those of Jego et al. (2013), suggest the bilingual
nature of MCH cells, akin to some neurons in the ventral tegmen-
tal area that cotransmit glutamate and GABA (Root et al., 2014).

MCH effects are associated typically with neuronal inhibition.
MCH activates inhibitory G;-coupled MCHRI1 receptors (Pissios
et al., 2003), reduces presynaptic activity (Gao, 2009), and sup-
presses neuronal firing (Wu et al., 2009; Sears et al., 2010). Stim-
ulating MCH projections in the LS reduced action potential
firing, but this does not reflect an inhibitory action of MCH but
rather a glutamate-dependent GABA release. We thus propose a
model in which the stimulation of MCH terminals leads to glu-
tamate release and glutamate feeds forward to enable robust
GABAergic inhibition of LS cells. Because LS activity is effectively
regulated by this indirect pathway, our model highlights a role of
MCH neurons to modulate the output of this GABAergic node
(Fig. 4C). The source of this GABA output is not known but is
likely derived locally within the LS. The LS contains GABAergic
cells (Kohler and Chan-Palay, 1983; Onteniente et al., 1986), and
LS cells are known to form collateral projections between LS
subnuclei (Staiger and Niirnberger, 1991).

MCH nerve terminals in the LS comprise functional glutama-
tergic synapses but can also support MCH signaling. MCH-IR
fibers have been reported in the LS (Bittencourt et al., 1992; Bitten-
court and Elias, 1998), and some LS cells express MCHR1 (Chee et
al., 2013). However, our optogenetically evoked responses do not
involve MCH. The pattern of optogenetic-mediated neuropeptide
release differs from fast classical neurotransmitters (Schone et al.,
2014), requiring higher photostimulation frequencies and detection
over longer timeframes (Arrigoni and Saper, 2014). Here, the timing
and kinetics of evoked responses are consistent with that of fast syn-
aptic events. Furthermore, blocking glutamatergic and GABAergic
transmission revealed no residual responses; thus, it is unlikely that
MCH or other neuropeptides are involved in the observed effects.

It is interesting that the LS contains the densest MCH projec-
tions but is not the brain area with the highest density of MCHRI.
MCHRI is expressed throughout the brain, as shown by the dis-
tribution pattern of in situ hybridization (Saito et al., 1999) and
recent mapping and characterization of MCHRI1-expressing cells
using the Mchri—cre;tdTomato mouse (Chee et al., 2013). MCH
effects have also been reported in several neuroanatomical areas.
MCH action in the medial septum (Wu et al., 2009) is consistent
with the high density of MCH nerve fibers. However, other re-
ported sites of MCH action, including the accumbens (Sears et
al., 2010) and arcuate nucleus (Davidowa et al., 2002), contained
only few fibers (Croizier et al., 2010). Furthermore, the accum-
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bens and arcuate nucleus are known to express the highest level of
MCHRI1 (Chee et al., 2013). Mismatches between the distribu-
tion of projections, receptors, and action sites are not unique to
MCH and have been described in peptidergic or nonpeptidergic
transmitter systems (Herkenham, 1987; Tallent, 2008). In the
MCH system, in which MCHRI is plentiful but projections are
sparse, MCH effects may be attributed to the fact that neuropep-
tides can act by volume transmission and diffuse through the
tissue to their target sites (Tallent, 2008; van den Pol, 2012).

Our findings suggest that MCH neurons are not exclusively
GABAergic, as purported, and can release glutamate. These re-
sults contribute fundamental mechanisms that define MCH cir-
cuitry. Furthermore, these studies define a functional synaptic
mechanism at the LS that may underlie affective roles of MCH
neuronal systems.
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