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Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9
and Monocyte Chemoattractant Protein-1 Promote Recovery
after Rat Spinal Cord Injury by Altering Macrophage Polarity

Kohki Matsubara,1 X Yoshihiro Matsushita,1 Kiyoshi Sakai,1 Fumiya Kano,1 Megumi Kondo,1 X Mariko Noda,4

Noboru Hashimoto,3 Shiro Imagama,2 Naoki Ishiguro,2 Akio Suzumura,4 Minoru Ueda,1 Koichi Furukawa,3

and Akihito Yamamoto1

1Department of Oral and Maxillofacial Surgery, 2Orthopedic Surgery, and 3Biochemistry II, Nagoya University Graduate School of Medicine, Showa-ku,
Nagoya 466-8550, Japan, and 4Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Chikusa-ku, Nagoya
464-8601, Japan

Engrafted mesenchymal stem cells from human deciduous dental pulp (SHEDs) support recovery from neural insults via paracrine
mechanisms that are poorly understood. Here we show that the conditioned serum-free medium (CM) from SHEDs, administered
intrathecally into rat injured spinal cord during the acute postinjury period, caused remarkable functional recovery. The ability of
SHED-CM to induce recovery was associated with an immunoregulatory activity that induced anti-inflammatory M2-like macrophages.
Secretome analysis of the SHED-CM revealed a previously unrecognized set of inducers for anti-inflammatory M2-like macrophages:
monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9). Depleting
MCP-1 and ED-Siglec-9 from the SHED-CM prominently reduced its ability to induce M2-like macrophages and to promote functional
recovery after spinal cord injury (SCI). The combination of MCP-1 and ED-Siglec-9 synergistically promoted the M2-like differentiation
of bone marrow-derived macrophages in vitro, and this effect was abolished by a selective antagonist for CC chemokine receptor 2 (CCR2)
or by the genetic knock-out of CCR2. Furthermore, MCP-1 and ED-Siglec-9 administration into the injured spinal cord induced M2-like
macrophages and led to a marked recovery of hindlimb locomotor function after SCI. The inhibition of this M2 induction through the
inactivation of CCR2 function abolished the therapeutic effects of both SHED-CM and MCP-1/ED-Siglec-9. Macrophages activated by
MCP-1 and ED-Siglec-9 extended neurite and suppressed apoptosis of primary cerebellar granule neurons against the neurotoxic effects
of chondroitin sulfate proteoglycans. Our data suggest that the unique combination of MCP-1 and ED-Siglec-9 repairs the SCI through
anti-inflammatory M2-like macrophage induction.
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Introduction
Severe inflammation hinders functional recovery after spinal
cord injury (SCI). It has been shown that divergent activation
states of monocyte/macrophage lineages play central roles in the
pathophysiology of SCI (Kigerl et al., 2009; Shechter et al., 2009;
David and Kroner, 2011; Shin et al., 2013). The proinflammatory

M1-type cells and anti-inflammatory M2-type cells are thought
to represent the extreme activation states on each end of a con-
tinuum (Gordon and Martinez, 2010; Mantovani et al., 2013;
Murray et al., 2014). Because activated microglia and macro-
phages cannot be distinguished by their morphology or expres-
sion of antigenic markers, they are here referred to as microglia/
macrophages. M1-like cells initiate inflammation by releasing
high levels of proinflammatory cytokines, glutamate, reactive ox-
ygen species, and nitric oxide. These neurotoxic factors accelerate
glial scar formation (Fitch et al., 1999), neuronal cell death (Col-
ton and Gilbert, 1987), and the retraction of damaged dystrophic
axons (Horn et al., 2008). M1-like cells also play important roles
in cell debris clearance and in the recruitment and activation of
astrocytes, activities that prepare the space for tissue regenera-
tion. In contrast, M2-like cells counteract the proinflammatory
M1 conditions and promote tissue repair by secreting anti-
inflammatory cytokines (Edwards et al., 2006), phagocytizing
cellular debris (Nauta et al., 2003), enhancing axonal elongation
(Kigerl et al., 2009), and promoting the proliferation and differ-
entiation of oligodendrocyte progenitor cells (Miron et al., 2013).
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In general wound repair, M1- and M2-like cells are important in
the initial inflammatory response and in the subsequent late res-
olution, respectively. However, in acute-phase SCI, it has been
suggested that the lesion is continuously filled with large numbers
of M1-like cells that do not transit to M2-like cells (Kigerl et al.,
2009), leading to irreversible tissue destruction.

Human adult dental pulp stem cells (DPSCs) and stem cells
from human exfoliated deciduous teeth (SHEDs) are self-
renewing mesenchymal stem cells (MSCs) residing within the
perivascular niche of the dental pulp (Gronthos et al., 2000;
Miura et al., 2003). They are thought to originate from the cranial
neural crest, which expresses early markers for both MSCs and
neuroectodermal stem cells (Gronthos et al., 2000; Miura et al.,
2003; Sakai et al., 2012) and can differentiate into functional
neurons and oligodendrocytes under appropriate conditions
(Arthur et al., 2008; Király et al., 2009; Sakai et al., 2012). Engraft-
ing these DPSCs promotes functional recovery from various
acute and chronic insults of the CNS through paracrine mecha-
nisms that activate endogenous tissue-repairing activities (de
Almeida et al., 2011; Leong et al., 2012; Sakai et al., 2012;
Taghipour et al., 2012; Inoue et al., 2013; Yamagata et al., 2013;
Yamamoto et al., 2014).

Here, we show that the serum-free cultured conditioned me-
dium (CM) from SHEDs (SHED-CM) contains factors that pro-
mote marked functional recovery after rat SCI by inducing an
M2-dominant neurorepairing microenvironment. We further
identified a set of M2 inducers contained in the SHED-CM,
monocyte chemoattractant protein-1 (MCP-1) and the secreted
ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9),
that promoted functional recovery after SCI.

Materials and Methods
Isolation of stem cells from human deciduous teeth. SHEDs were isolated
from individuals (aged 6 –12 years), and their primary characteristics
were analyzed by flow cytometry as described previously (Sakai et al.,
2012). SHEDs expressed a set of MSC markers [i.e., cluster of differenti-
ation 90 (CD90), CD73, and CD105], but not endothelial/hematopoietic
markers (i.e., CD34, CD45, CD11b/c, or human leukocyte antigen
HLA-DR), and exhibited adipogenic, chondrogenic, and osteogenic dif-
ferentiation. The majority of SHEDs coexpressed Nestin, Doublecortin,
�III-tubulin, GFAP, S100, A2B5, and CNPase but not adenomatous pol-
yposis coli or MBP. MSCs from human bone marrow lines (BMSCs;
from 20- to 22-year-old individuals) at passage 5 and human skin-
fibroblast lines (Fibro; from 36- to 40-year-old individuals) at passage 5
were obtained from Lonza and the Health Science Research Resources
Bank (Sakai et al., 2012), respectively. Ethical approval was obtained
from the ethics committee of Nagoya University (permission 8-2). All
participants provided written informed consent.

Preparation of CM. At passage 3–9, SHEDs, BMSCs, or Fibros at 70 –
80% confluency were washed with PBS, and the culture medium was
replaced with serum-free DMEM. After a 48 h incubation, the medium
was collected and centrifuged for 4 –5 min at 440 � g. The supernatant
was collected and centrifuged for 1 min at 4°C at 17,400 � g. The super-
natant was used for assays or measured for protein concentration using
the BCA protein assay kit (Pierce). CM protein concentrations were
adjusted to 3 �g/ml with DMEM. The survival rates of the three cell lines
were examined with the trypan blue exclusion test after 48 h of serum-
free culture (data not shown).

Isolation of mouse and rat bone marrow macrophages and cell culture.
Bone marrow cells were isolated from the femurs of adult Sprague Daw-
ley rats, C57BL/6 mice, or B6.129 (Cg)-Ccr2 tm2.1Ifc/J mice (The Jackson
Laboratory). They were differentiated into the macrophage lineages in
DMEM supplemented with 20 ng/ml macrophage colony-stimulating
factor (Peprotech) at 37°C in 5% CO2 for 7– 8 d.

Isolation of rat cerebellar granule neurons. Sprague Dawley rats at post-
natal day 7 were killed, and the cerebella were collected. The tissues were

minced and digested using a Papain Dissociation System (Worthington).
Dissociated cells were applied to a 35/60% two-step Percoll gradient and
centrifuged at 3000 � g for 15 min. Cerebellar granule neurons (CGNs)
at the interface were collected. Cells were suspended in Neurobasal
medium (Invitrogen) supplemented with 2% B27 (Invitrogen), 2 mM

glutamine, and an additional 20 mM KCl.
Rat contusion model and surgical procedure. Eight-week-old adult fe-

male Sprague Dawley rats weighing 200 –230 g were used. The animals
were anesthetized with an intraperitoneal injection of ketamine (60 –90
mg/kg) and xylazine (100 –150 mg/kg). After Th9 laminectomy, the dura
mater was exposed and a 200 kdyn injury force was induced with a
commercially available SCI device (Infinite Horizon Impactor; Precision
Systems and Instrumentation). Using this protocol, we obtained a con-
sistent degree of spinal cord contusion injury. The Basso, Beattie, and
Bresnahan (BBB) score at 8 weeks after injury was 4 – 6 in a previously
published paper independent of ours (Imagama et al., 2011; Wakao et al.,
2011; Tauchi et al., 2012), as well as in this study. Immediately after the
spinal cord contusion, a Th12 partial laminectomy was performed, and a
thin micro silicone tube (0.3 mm inner diameter, 0.5 mm outer diame-
ter) was inserted intrathecally under a surgical microscope. The tube was
connected to an iPRECIO SMP-200 pump (Primetech) filled with CMs
or 1 �g/ml MCP-1/Siglec-9. The tube was sutured to the spinous process
to anchor it in place, and the pump was placed under the skin on the
animal’s axilla. For SHED transplantation, 1 � 10 6 cells were drawn into
a glass pipette (tip diameter, 50 –70 �m), which was mounted on a 10 �l
Hamilton syringe attached to a micromanipulator. First, the cells were
deposited into two injection sites at the rostral and caudal stumps, 2 mm
from the lesion and 0.5 mm lateral to the midline, at a depth of 1.5 mm.
A 2.5 �l sample containing 2.5 � 10 5 cells in PBS was injected into each
site (injection rate, 0.8 �l/min). Next, 1 � 10 5 cells in fibrin glue were
implanted into the lesion epicenter. All of the treated rats were given
cyclosporine (Novartis) at 10 mg � kg �1 � d �1 on the day before trans-
plantation and then every day afterward. As postoperative care, the blad-
der was compressed by manual abdominal pressure twice a day until
bladder function was restored. The rats were examined for damage in-
duced by the intrathecal insertion of the catheter. Those undergoing
catheter insertion without contusion (Ca�/Co�; n � 5) exhibited little
or no deficit in locomotor function, whereas rats subjected to contusion
without catheter insertion (Ca�/Co�; n � 7) rats exhibited functional
deficits similar to the control groups shown in Figures 1A, 6B, 7A, and
8D. The Ca�/Co� spinal cord exhibited no obvious atrophy or histo-
logical damage, whereas that from Ca�/Co� exhibited severe atrophy
caudal to the injury site (data not shown). Together, these findings dem-
onstrated that the SCI was generated by contusion damage and not by the
catheter insertion. For the analysis of hindlimb locomotor function, only
animals showing complete paralysis (BBB score of 0) the day after the
operation were used. Animals that could move their hindpaw were ex-
cluded, as were animals that died immediately after the surgery. In this
study, the rate of hindpaw movement the day after the operation was
9.44%, and the rate of death was 22.78% in all the operated rats over the
entire recovery period (8 weeks of observation). Animal studies were
conducted in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were approved by the Animal
Research Committee of Nagoya University. Extracted teeth were col-
lected at the Nagoya University School of Medicine, under approved
guidelines set by Nagoya University (H-73, 2003).

BBB open-field locomotor score. The 22-point (from 0 to 21) BBB loco-
motor rating scale (Basso et al., 1995) was used to assess hindlimb
locomotor recovery, including joint movements, stepping ability, coor-
dination, and trunk stability. A score of 21 indicates unimpaired loco-
motion as observed in uninjured rats. Two examiners who were blinded
to the animals’ treatment performed the tests. The duration of each
session was 4 min/rat. The scores were analyzed by repeated-measures
ANOVA with Tukey’s multiple comparison tests at each time point.

M2-like bone marrow macrophage induction assay. Differentiated rat
bone marrow macrophages (BMMs) were plated on 6 cm dishes (2.0 �
10 6 cells per dish) for real-time quantitative PCR (qPCR) or 48-well
tissue culture plates (2.0 � 10 5 cells per well in triplicate) for immuno-
histochemical analysis with serum-free DMEM, SHED-CM, BMSC-CM,
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100 ng/ml recombinant human MCP-1/CC chemokine ligand 2 (CCL2;
300-04; Peprotech), 100 ng/ml MCP-1/recombinant human Siglec-9
(1139-SL; R&D Systems), or 20 ng/ml IL-4 (R&D Systems). After a 24 h
incubation, the mRNA expressions of markers and the CD206 (rabbit
IgG, 1:1000; ab64693; Abcam) or CD68 (mouse IgG, 1:300; MAB1435;
Millipore) protein expression were examined. CD206/DAPI-positive
cells were counted in five random sites per well and divided by the num-
ber of DAPI-positive total cells in the site. For neutralization, 2.5 �g/ml
anti-human CCL2/MCP-1 antibody (mouse IgG; MAB279; R&D Sys-
tems), anti-human Siglec-9 antibody (mouse IgG; ab89484; Abcam), or
anti-human IL-6 antibody (mouse IgG; MAB206; R&D Systems) was
used. The SHED-CM was incubated for 30 min with the Abs at 37°C
before the assay. For sialidase treatment, rat BMMs were incubated for
2 h at 37°C in 5% CO2 with serum-free DMEM supplemented with 10
mU/ml Neuraminidase (Roche) before applying the SHED-CM. For CC
chemokine receptor 2 (CCR2) inhibition, rat BMMs were incubated for
30 min at 37°C in 5% CO2 with serum-free DMEM containing 50 �M

RS504393 (6-methyl-1�-[2-(5-methyl-2-phenyl-4-oxazolyl)ethyl]-spiro
[4 H-3,1-benzoxazine-4,4�-piperidin]-2(1 H)-one; Tocris Bioscience)
before applying MCP-1 or ED-Siglec-9 or MCP-1/ED-Siglec-9.

Neurite outgrowth and apoptosis assays. Forty-eight-well tissue culture
plates were coated with 10 �g/ml poly-L-lysine (PLL) and then with or
without 300 ng/ml chondroitin sulfate proteoglycan (CSPG; Millipore).
The CGNs were seeded at 1.8 � 10 5 cells per well. They were then cul-
tured at 37°C in 5% CO2 with serum-free DMEM, 100 ng/ml recombi-
nant human MCP-1/ED-Siglec-9, or rat macrophage-CMs, which were
generated by the overnight culture of BMMs in MCP-1/ED-Siglec-9 or
IL-4. After a 24 h incubation, the CGNs were fixed in 4% paraformalde-
hyde/PBS and stained with TUNEL (In Situ Cell Death Detection kit;
Roche) and anti-neuron-specific �-tubulin (mouse IgG, 1:200; MAB1195;
R&D Systems). The cell processes were defined as neurites when they
were longer than the diameter of the cell body. Neurite length was eval-
uated by manual tracing using the software NIH ImageJ (version 1.29)
and referenced to a known length. For each experiment, at least 100
CGNs were randomly counted and measured. To calculate the percent-
age of cell apoptosis, TUNEL/DAPI-positive cells were counted in five
random sites per well and divided by the number of DAPI-positive total
cells in the site. Each experiment was conducted in triplicate, and images
were taken containing �300 cells per site.

Measurement of cytokines in CMs and protein depletion assays. MCP-1,
Siglec-9, and IL-6 in CMs were determined by the ELISA kit (Quantikine
ELISA Human CCL2/MCP-1 and Human IL-6 from R&D Systems;
RayBio Human Siglec-9 ELISA Kit from Raybiotech). To deplete the
SHED-CM of MCP-1 and Siglec-9, anti-MCP-1 and anti-Siglec-9 anti-
bodies preattached to Protein G Sepharose (GE Healthcare) were added
to the SHED-CM, the mixture was incubated overnight at 4°C, and the
antibody beads were removed by centrifugation. The loss of MCP-1 and
Siglec-9 from the SHED-CM was confirmed by ELISA.

Cytokine antibody array. The cytokine antibody array experiments
were performed using the RayBio Human Cytokine Antibody Array G
Series 4000 (applied arrays; Raybiotech) at Filgen. Using laser scanning,
cytokines in SHED-CM, BMSC-CM, and serum-free DMEM were de-
tected by 274-human-cytokine array plates. All scans were performed in
duplicate, and data were calculated as the ratio of the level in SHED-CM
to that in BMSC-CM or serum-free DMEM.

Real-time qPCR. Total RNA was quantified by a spectrophotometer,
and RNA integrity was checked on 1% agarose gels. RT reactions were
performed with Superscript III reverse transcriptase (Invitrogen) using
0.5 �g of total RNA in a 25 �l total reaction volume. Real-time qPCR was
performed using the THUNDERBIRD SYBR qPCR Mix (Toyobo)
driven by the StepOnePlus Real-Time PCR System (Applied Biosys-
tems). Primers were designed using primer 3 (Table 1).

Histology and immunohistochemical analysis. For histological exami-
nation of the treated spinal cords, the animals were anesthetized and
transcardially perfused with 4% paraformaldehyde in 0.1 M PBS. The
spinal cords were embedded in OCT compound (Sakura Finetek) and
sectioned in the sagittal or axial plane at 20 �m on a cryostat (Leica). The
spinal cord region with the greatest damage is referred to as the “lesion
epicenter.” We isolated the spinal cord �10 mm from the epicenter and

prepared serial axial sections. Based on the total length of the sectioned
specimen, we estimated the position of the epicenter. For immunohisto-
chemical analysis, spinal cord sections were permeabilized with 0.1%
(v/v) Triton X-100 in PBS for 20 min, blocked with 5% (v/v) bovine
serum albumin for 30 min, and incubated overnight with the following
primary Abs: 5-hydroxytryptamine (5-HT; rabbit IgG, 1:500; S5545;
Sigma-Aldrich), ionized calcium-binding adapter molecule 1 (Iba1; goat
IgG, 1:500; ab5076; Abcam), CD206 (rabbit IgG, 1:1000; ab64693;
Abcam), and IL-10 (mouse IgG, 1:250; ab25073; Abcam). The following
secondary Abs were used: anti-mouse IgG–Alexa Fluor 488, anti-rat IgG–
Alexa Fluor 488, anti-rabbit IgG–Alexa Fluor 546, anti-goat IgG–Alexa
Fluor 546, and anti-rabbit IgG–Alexa Fluor 647. After counterstaining
with DAPI (Sigma-Aldrich), tissue images were obtained with a universal
fluorescence microscope (BZ9000; Keyence). CD206/Iba1-positive cells
were counted in five random sites per section surrounding the injured
region (�1 mm from the epicenter, five sagittal sections per animal) and
divided by the number of Iba1-positive cells at the site. 5-HT-positive
nerve fibers were counted in each region of five sagittal sections per
animal and divided by the 5-HT-positive nerve fiber number in the
sham-operated animal. To evaluate the tissue damage, axial planes 3 mm
caudal to the injury epicenter were stained with Sudan black B (Wako),
and the residual gray- and white-matter areas were measured by a BZ-
Analyzer (Keyence). All tissue staining evaluations were performed for at
least three animals per group.

Western blot, lectin blot, and coimmunoprecipitation. To detect ED-
Siglec-9 in CMs, the CMs were concentrated 50 times by acetone precip-
itation. The CM pellets were then resuspended with lysis buffer (1%
Triton X-100, 150 mM NaCl, 20 mM Tris-HCl, and 2 mM CaCl2), sepa-
rated by SDS-PAGE, and electroblotted onto an Immobilon-P PVDF
membrane. An antibody against human Siglec-9 (goat IgG, 1:1000;
AF1139; R&D Systems) was used to probe the membranes.

To detect the CD206 protein in vivo, rat spinal cords (�2 mm from the
injury epicenter) were collected 72 h after SCI and probed with an anti-
body against rat CD206 (rabbit IgG, 1:1000; ab64693; Abcam). The pro-
tein bands were detected with ECL prime (GE Healthcare) and analyzed
by an LAS-4000 mini lumino-image analyzer (GE Healthcare). To eval-
uate the CD206 protein expression intensity, each CD206 band was mea-
sured by Image Quant TL (GE Healthcare) and divided by the �-actin
intensity.

The lectin blot analysis was performed as described previously (Geisler
and Jarvis, 2011). Briefly, CCR2 protein, immunoprecipitated from
THP-1, a human monocytic cell line derived from an acute monocytic
leukemia patient (RIKEN Cell Bank), lysate with an anti-CCR2 Ab (rab-
bit IgG, 1:50; ab32144; Abcam), was separated by SDS-PAGE. After blot-
ting, the membranes were blocked with MAL buffer (10 mM HEPES, pH
7.5, 150 mM NaCl, 0.2% BSA, and 0.2% Tween 20) for 12 h at 4°C and
subsequently probed with 5 mg/ml biotinylated MAL (Vector Laborato-

Table 1. Rat and mouse primers for real-time qPCR

Origin Primer Sequence (forward 5�-3�) Sequence (reverse 5�-3�)

Rat Gapdh AACTTTGGCATCGTGGAAGG CGGATACATTGGGGGTAGGA
Rat Il-6 TTGCCTTCTTGGGACTGATG ACTGGTCTGTTGTGGGTGGT
Rat Il-1� CAGGATGAGGACCCAAGCAC TCAGACAGCACGAGGCATTT
Rat Tnf-� CTCGAGTGACAAGCCCGTAG CCTTGAAGAGAACCTGGGAGTAG
Rat iNos GGCAGGATGAGAAGCTGAGG CCGCATTAGCACAGAAGCAA
Rat Il-10 GCCTGCTCTTACTGGCTGGA TCTGGCTGACTGGGAAGTGG
Rat Tgf-�1 CCGCAACAACGCAATCTATG GCACTGCTTCCCGAATGTCT
Rat Vegf ACCAAAGCCAGCACATAGGA GGGGCATTAACTGCATCTGG
Rat Cd206 GCAGGTGGTTTATGGGATGTTT TTTGGGTTCAGGAGTTGTTGTG
Rat Arginase1 CACCTGAGTTTTGATGTTGATGG TCCTGAAAGTAGCCCTGTCTTGT
Rat Ym1 TGCCAACATCAGCAACAACA CCATCCTCCAACAGACAGCA
Rat Ccr2 AGAGGCATAGGGCTGTGAGG CCTGGAAGGTGGTCAGGAAG
Rat Bdnf CGTCCCTGGCTGACACTTTT TCCGCGTCCTTATGGTTTTC
Rat Hgf GCAAGACATGTCAGCGCTGG CCAAGGGGTGTCAGGGTCAA
Mouse Gapdh AACTTTGGCATTGTGGAAGG GGATGCAGGGATGATGTTCT
Mouse Cd206 TCTCCCGGAACCGACTCTTC AACTGGTCCCCTAGTGTACGA
Mouse Il-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG

Hgf, hepatocyte growth factor.
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ries) in MAL buffer for 12 h at 4°C. The MAL was detected with avidin–
HRP (Vector Laboratories) and ECL.

To analyze the physical interaction between ED-Siglec-9 and CCR2,
THP-1 lysate was incubated overnight at 4°C with 0.15 nM ED-Siglec-
9-Fc or Fc and was then immunoprecipitated with Protein A Sepharose
(GE Healthcare). The total cell lysate and resuspended precipitate were
immunoblotted with an antibody against murine CCR2 (rabbit IgG,
1:500; ab32144; Abcam).

In vivo CCR2 inhibition assay. To investigate the relationship between
CCR2 and MCP-1/ED-Siglec-9 signaling, 2 mg/kg RS504393 was given
to rats orally every 12 h for 1 week, starting 36 h after SCI. Three days after
SCI, the expressions of Iba1 and CD206 were evaluated immunohisto-
logically. Eight weeks after SCI, the tissue damage and 5-HT-positive
fibers were evaluated.

Statistics. An unpaired two-tailed Student’s t test was used for single
comparisons. To analyze more than three independent groups, we used
repeated-measures ANOVA with Tukey’s post hoc test (SPSS version
19.0). A p value �0.05 was considered significant.

Results
Treatment with SHEDs or SHED-CM promotes functional
recovery after SCI
We first examined the effects of SHEDs or their CM on functional
recovery in a rat contused SCI model. Throughout the observa-
tion period, animals receiving transplanted SHEDs or intra-
thecally administered SHED-CM showed significantly better
recovery than those treated with PBS, BMSC-CM, or cell-culture

Figure 1. Therapeutic benefits of SHEDs or SHED-CM for SCI. A, Hindlimb functional recovery after spinal cord contusion. Top, SHED transplantation, n � 7; PBS, n � 5. Bottom, SHED-CM, n �
15; BMSC-CM, n � 7; serum-free DMEM, n � 10. ANOVA with Tukey’s post hoc test. B, Sudan black B staining of axial spinal cord sections 3 mm caudal to the epicenter 8 weeks after SCI and
quantification of gray and white matter areas 3 mm caudal to the epicenter. ANOVA with Tukey’s post hoc test (n � 3 rats per group). C, Quantification of the 5-HT-positive nerve fibers in sagittal
sections of the spinal cord, 8 weeks after SCI. x-Axis indicates specific locations along the spinal cord rostrocaudal axis. Results are expressed relative to the value in sham-operated rats at the Th9 level.
ANOVA with Tukey’s post hoc test (n � 3 rats per group). D–K, qPCR analysis of the indicated mRNAs in CM-treated spinal cords over time. Results are expressed relative to the level in the
sham-operated model. ANOVA with Tukey’s post hoc test (�2 mm from epicenter, n � 3 rats per group). L, Representative images of immunohistological staining of microglia/macrophages
surrounding the lesion (�1 mm from epicenter) 72 h after SCI. Antibodies used and treatment groups are indicated at top and left, respectively. CD206 � cells in SHED-CM-treated spinal cord highly
coexpressed IL-10. Arrowheads indicate CD206 �/Iba1 � cells. M, Quantification of CD206 �/Iba1 � cells in treated spinal cords. ANOVA with Tukey’s post hoc test (n � 3 rats per group and 5
sections per animal). Scale bars: B, 500 �m; L, 100 �m. Mean � SD (A–C and M ) and mean � SEM (D–K ). *p � 0.05, **p � 0.01, ***p � 0.001.
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medium (DMEM; Fig. 1A). Eight weeks after SCI, the rats treated
with SHEDs or SHED-CM could support their weight through
the plantar paw surface and could coordinate forelimb and
hindlimb steps appropriately (p � 0.01). In contrast, rats treated
with BMSC-CM or vehicle could not support their weight (p �
0.01). Rats treated with SHEDs or SHED-CM exhibited less tissue
loss and more 5-HT-positive descending raphe spinal axon fibers
over the epicenter in the spinal cord compared with the control
rats (Fig. 1B,C). Together, these results demonstrated that SHED
transplantation and SHED-CM administration exhibit similar
neurorepairing activities in the treatment of SCI.

Effect of CMs on the SCI inflammatory response
During the acute phase of SCI, the expressions of proinflamma-
tory cytokines (Il-1� and Tnf-�) and of inducible nitric oxide
synthases (iNos) were transiently upregulated at 12 and 72 h.
Treatment with SHED-CM or BMSC-CM similarly suppressed
these proinflammatory mediators for 1 week after the injury (Fig.
1D–F). Notably, SHED-CM but not BMSC-CM upregulated the
expression of the M2 genes Il-10, Tgf-�1, Vegf, Cd206, and Argi-
nase1 (Fig. 1G–K). Immunohistochemical analysis showed an

accumulation of IL-10-expressing CD206� M2-like cells around
the epicenter in SHED-CM-treated spinal cords (Fig. 1L). Quan-
titative analysis revealed that, of the microglia/macrophages in
the SHED-CM and BMSC-treated spinal cords, 59.44 � 12.7 and
18.12 � 8.1% were CD206� M2-like cells, respectively (Fig. 1M).
These data indicated that SHED-CM has an M2-inducing activity.

Factors in SHED-CM that induce macrophage differentiation
To identify factors responsible for the therapeutic effects of
CMs, we characterized the soluble factors in SHED-CM and
BMSC-CM by cytokine antibody array analysis. SHED-CM and
BMSC-CM contained 79 and 43 proteins, respectively, at levels
1.5-fold or higher than those found in the control DMEM back-
ground, which is the threshold for a significant difference accord-
ing to the manual of the company (Raybiotech). Of these, 40
proteins were preferentially expressed in SHED-CM, whereas 39
were present in both SHED-CM and BMSC-CM (Fig. 2A). Of the
79 proteins expressed in SHED-CM, 28 were known to be in-
volved in neuroregenerative processes, such as anti-apoptosis/
neuroprotection, axonal elongation, anti-inflammation, and the
regulation of macrophage properties (Fig. 2B–D).

Figure 2. SHED-CM contains more neuroregenerative factors than BMSC-CM. A, Summary of the cytokine antibody array analysis of SHED-CM and BMSC-CM. B, Cluster analysis of the SHED-CM
and BMSC-CM based on reported function. C, Cluster analysis of the SHED-CM soluble factors. SHED-CM contained 28 proteins known to be involved in neuroregenerative processes, including
anti-apoptosis/neuroprotection, axonal elongation, anti-inflammation, and the regulation of macrophage properties. Red, Factors detected only in SHED-CM. Black, Factors present in both SHED-CM
and BMSC-CM. D, Factors expressed in SHED-CM at levels 	1.5 times those in BMSC-CM. The y-axis indicates the relative intensity in SHED-CM compared with BMSC-CM.

2456 • J. Neurosci., February 11, 2015 • 35(6):2452–2464 Matsubara et al. • Factors for Recovery after Spinal Cord Injury



Based on the differential expression profiles of the soluble
factors and the previously described functional properties of each
protein, we ascertained that MCP-1, Siglec-9, and IL-6 might be
involved in the M2-like macrophage differentiation. MCP-1 is a
classically identified member of a chemokine superfamily that
recruits immune cells into tissue lesions (Shachar and Karin,
2013). The Siglecs are a large family of sialic acid-binding I-type
transmembrane Ig-like lectins that modulate the immune signal-
ing on various types of immune cells (Crocker et al., 2007; Linn-
artz and Neumann, 2013). The role of the secreted ED-Siglec-9 in
inflammation and other cellular responses is unknown.

ELISAs revealed that the levels of MCP-1 and Siglec-9 were
higher in SHED-CM than in BMSC-CM (Fig. 3A). Immunoblot
analysis with antibodies specific for ED-Siglec-9 detected two
proteins with different molecular weights in SHED, BMSC, and
fibroblast cell lysates (Fig. 3B); the larger and smaller bands ap-
peared to represent the full-length transmembrane and secreted
ED forms of Siglec-9, respectively. The full-length Siglec-9 was
found in both BMSC-CM and SHED-CM and might be secreted
into the CM through exosome-mediated exocytosis. However,
although the secreted ED-Siglec-9 was present in SHED-CM, lit-
tle or none was present in BMSC-CM or the CM from fibroblasts.
According to the GenBank data, full-length human Siglec-9 and
predicted ED-Siglec-9, respectively, consist of 464 and 331 aa and
have a molecular weight of 50 and 35 kDa on SDS-PAGE. Our
immunoblot analysis uniquely detected the 35 kDa band in the
SHED-CM (Fig. 3B). These findings suggest strongly that the
ED-Siglec-9 in SHED-CM was the full ED of human Siglec-9,
which may be generated by ED shedding by a specific protease on
the cell surface of SHEDs.

The M1- and M2-like macrophages derived from BMMs dis-
play distinct cell shapes: M2-like cells are elongated compared
with M1-like cells (McWhorter et al., 2013). We found that rat
BMMs maintained a spherical cell shape under the DMEM con-
trol conditions or in BMSC-CM, whereas BMMs in SHED-CM
were elongated and expressed a high level of CD206 (Fig. 3C).
SHED-CM significantly increased the expression of the M2
markers Cd206 and Il-10 (Fig. 3D). Notably, neutralizing anti-
bodies against MCP-1 and Siglec-9, but not against IL-6, inhib-
ited the SHED-CM-mediated induction of the M2 markers (Fig.
3C,D). Pretreating BMMs with sialidase abolished the SHED-
CM-mediated M2 induction, supporting the role of Siglec-9 in
this activity (Fig. 3C,D). These results indicated that both MCP-1
and ED-Siglec-9 are essential for the SHED-CM-mediated induc-
tion of M2-like macrophages in vitro.

MCP-1 and ED-Siglec-9 synergistically induce M2
through CCR2
We next examined whether MCP-1 and ED-Siglec-9 were suffi-
cient to induce the M2 differentiation of BMMs in vitro. Al-
though neither MCP-1 nor ED-Siglec-9 alone could induce
BMMs to express the M2 genes, combined, they induced M2 gene
expression and an elongated morphology in the BMMs (Fig.
4A,B). MCP-1/ED-Siglec-9 also increased the expression of Ccr2
(Fig. 4C). These data indicated that MCP-1 and ED-Siglec-9 syn-
ergistically promote M2 differentiation.

Next, we examined whether CCR2, the MCP-1 receptor, is
required for the MCP-1/ED-Siglec-9-mediated M2 induction of
BMMs. Treatment with a selective CCR2 antagonist, RS504393,
inhibited the MCP-1/ED-Siglec-9-induced expression of M2

Figure 3. MCP-1 and Siglec-9 are essential for SHED-CM-mediated M2-like macrophages induction. A, Quantification of MCP-1, Siglec-9, and IL-6 in CMs. B, Immunoblot analysis with an
ED-Siglec-9-specific antibody. Full, Full-length Siglec-9; ED, ectodomain of Siglec-9. C, D, In vitro M2 induction assay with rat primary BBMs. C, Representative images of BMMs treated with DMEM,
BMSC-CM, SHED-CM, or SHED-CM with three different antibodies or sialidase. Top, Optical-microscopy images; bottom, CD206/CD68/DAPI immunostaining. D, qPCR analysis of Cd206 and IL-10
mRNA expression. Results are relative to DMEM treatment. Sialidase treatment suppressed the SHED-CM-mediated M2 induction. ANOVA with Tukey’s post hoc test (n � 3 separate experiments).
Scale bar: C, 50 �m. Mean � SD (A) and mean � SEM (D). **p � 0.01; ***p � 0.001.
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markers (Fig. 4C). In addition, MCP-1/ED-Siglec-9 promoted
the M2 differentiation of BMMs isolated from wild-type, but not
from CCR2 knock-out (KO), mice (Fig. 4D). These results dem-
onstrated that CCR2 is required for the MCP-1/ED-Siglec9-
dependent induction of M2-like macrophages.

We next examined the physical interaction between CCR2
and ED-Siglec-9 using the human monocyte cell line THP-1,
which expresses abundant endogenous CCR2. Immunoblot
analysis revealed that THP-1 cells expressed multiple CCR2 pro-
teins with different molecular weights (Fig. 4E; total lysate, lane
1). The immunoprecipitation of THP-1 lysate with an anti-CCR2
antibody revealed two major species of CCR2 protein of 55 and
42 kDa (lane 6). Maackia amurensis hemagglutinin (MAH) spe-
cifically recognizes carbohydrates containing �2–3-linked sialic
acids, a major target of Siglec-9. We found that MAH bound to
the larger CCR2 protein (MAH blot, lane 8), and sialidase treat-
ment abolished the MAH–CCR2 binding (MAH blot, lane 9),
indicating that the larger 55 kDa protein represented the sialy-
lated, mature CCR2 protein. Similarly, sialidase treatment de-
creased the amount of larger CCR2 immunoprecipitated with
anti-CCR2 mAb (lane 7). Importantly, ED-Siglec-9 interacted
preferentially with the larger CCR2 protein (lane 4), and sialidase
treatment inhibited the larger CCR2–ED-Siglec-9 interaction
(lane 5). These findings indicated that ED-Siglec-9 could interact
with CCR2 and that this interaction depended on sialylated car-
bohydrates on CCR2. Quantification of the intensities of the sia-
lylated mature CCR2 bands under each condition also confirmed
that silalidase treatment reduced the amount of larger CCR2

immunoprecipitated with ED-Siglec-9 or anti-CCR2 mAb
(Fig. 4F ).

Neurorepair and neuroprotective activities of M2-like
macrophages induced by MCP-1/ED-Siglec-9
We next analyzed the trophic actions of the M2-like macrophages
induced by MCP-1/ED-Siglec-9 or IL-4 in neurite outgrowth and
anti-apoptosis. CSPG, a major component of reactive glial scar
surrounding the injured spinal cord, suppresses axonal regener-
ation (Silver and Miller, 2004). CGNs isolated from newborn rats
extended neurites on PLL but not on CSPG. The direct addition
of MCP-1/ED-Siglec-9 to CSPGs elicited little or no extension or
anti-apoptosis activity (Fig. 5A–C). In contrast, the CMs derived
from the M2-like cells induced by MCP-1/ED-Siglec-9 or IL-4
similarly extended the CGNs neurites on CSPG (Fig. 5A,B). Fur-
thermore, these CMs significantly suppressed the CSPG-induced
apoptosis of CGNs (Fig. 5A,C). qPCR analysis revealed that the
M2-like BMMs induced by MCP-1/ED-Siglec-9 exhibited in-
creased expressions of various types of neurotrophic and growth
factors (Fig. 5D). Together, these results demonstrate that the
M2-like cells induced by MCP-1/ED-Siglec-9 elicit significant
neurorepair and protective activities that override the anti-
neuroregenerative activity of CSPG.

SHED-CM lacking both MCP-1 and ED-Siglec-9 fails to
induce M2 or to restore locomotor function after SCI
We next examined the role of MCP-1 and ED-Siglec-9 in the
SHED-CM-mediated functional recovery after SCI. Both

Figure 4. MCP-1 and ED-Siglec-9 synergistically induce M2-like macrophages via CCR2. A, Representative images of rat primary BMMs treated with DMEM, 100 ng/ml MCP-1/ED-Siglec-9, or 20
ng/ml IL-4. Top, Optical-microscopy images; bottom, CD206/CD68/DAPI immunostaining. B, Quantification of CD206 �/DAPI macrophages. ANOVA with Tukey’s post hoc test (n � 3 separate
experiments). C, D, Quantitative mRNA expression analysis of the indicated genes. BMMs treated with MCP-1/ED-Siglec-9 or IL-4. Results are relative to DMEM treatment. C, BMMs treated with or
without CCR2 antagonist RS504393 (50 �M). D, BMMs from adult CCR2 KO mouse. CCR2 inhibition suppressed the MCP-1/ED-Siglec-9 mediated M2 differentiation but did not affect IL-4-mediated
M2-induced signaling. ANOVA with Tukey’s post hoc test (n � 3 separate experiments). E, THP-1 cell lysates were immunoprecipitated using antibodies against ED-Siglec-9 or CCR2, and the
precipitates were immunoblotted with anti-CCR2 antibody or MAH lectin (see Results). ED-Siglec-9 physically interacted with the larger, sialylated CCR2 (lane 4). Sialidase treatment suppressed the
physical interaction between larger CCR2 and ED-Siglec-9 (lane 5). F, Quantitative analysis showing that sialidase treatment inhibited the interaction of larger CCR2-ED-Siglec-9 (lane 5). ANOVA with
Tukey’s post hoc test (n � 3 separate experiments). Scale bar: A, 50 �m. Mean � SD (B, F ) and mean � SEM (C, D). *p � 0.05; **p � 0.01; ***p � 0.001.
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MCP-1 and ED-Siglec-9 were specifically immunodepleted from
SHED-CM (dSHED-CM; Fig. 6A). Eight weeks after SCI, rats
treated with dSHED-CM exhibited less functional recovery (Fig.
6B) and more tissue damage than rats given whole SHED-CM, as
indicated by the residual areas of white and gray matter and of
5-HT fibers (Fig. 6C,D). Seventy-two hours after SCI, rats treated
with dSHED-CM did not show the induction of IL-10-producing
CD206� M2-like macrophages or the increased expression of
M2 genes (Fig. 6E–H), whereas the depletion of IL-6 from
SHED-CM (�IL-6) had little or no effect on the M2 production
(Fig. 6E). These results demonstrated that MCP-1 and ED-
Siglec-9 are required for the SHED-CM-mediated M2 induction
and functional recovery from SCI in vivo.

MCP-1/ED-Siglec-9 activates an anti-inflammatory M2
response in vivo and promotes functional recovery after SCI
Next, we examined the therapeutic benefit of MCP-1/ED-
Siglec-9 treatment in promoting functional recovery after rat
SCI. Eight weeks after SCI, rats treated with MCP-1/ED-Siglec-9
exhibited less tissue loss and more 5-HT-positive fibers in the
lesion epicenter than the controls, were able to walk, and placed
weight on their hindlimbs (Fig. 7A–E). The MCP-1/ED-Siglec-9
treatment suppressed proinflammatory cytokine expression but
increased the levels of anti-inflammatory cytokines and M2
markers and Ccr2 (Fig. 7F). The number of CD206� M2-like
cells in the rats treated with MCP-1/ED-Siglec-9 was three times
that in the controls (Fig. 7G–I). Immunoblot analysis showed
that the level of CD206 expression in the spinal cord treated with

MCP-1/ED-Siglec-9 was twice that in the control (Fig. 7J, K).
These results indicated that MCP-1/ED-Siglec-9 induces anti-
inflammatory/tissue-repairing M2-like macrophages and pro-
motes substantial functional recovery after SCI.

MCP-1/ED-Siglec-9-stimulated M2 induction required for the
functional recovery of rat SCI
Finally, we examined whether the M2-like microglia/macro-
phages induced by MCP-1/ED-Siglec-9/CCR2 signaling played
a central role in the functional recovery of rat SCI. We prevented
the increase in M2-like cells by inhibiting the CCR2 function.
The genetic deletion of CCR2 is reported to abolish the re-
cruitment of all monocyte/macrophage lineages, which would
not be useful for examining the role of M2-like cells in SCI
improvement (Little et al., 2014). Therefore, we inactivated
the CCR2 function by RS504393 treatment 36 h after SCI,
when most of the microglia/macrophages have been recruited.
RS504393 treatment suppressed the induction of CD206 �

M2-like cells by SHED-CM or MCP-1/ED-Siglec-9 treatment
without affecting the number of Iba1 � cells (Fig. 8A–C). Fur-
thermore, rats treated with RS504393 exhibited less functional
recovery (Fig. 8D) and more tissue damage than rats given
whole SHED-CM or MCP-1/ED-Siglec-9, as indicated by the
residual areas of white and gray matter and 5-HT fibers (Fig.
8E–G). Together, these results demonstrated that MCP-1/ED-
Siglec-9-induced M2-like macrophages are essential for the
functional recovery from rat SCI.

Figure 5. MCP-1/ED-Siglec-9-induced M2 exhibits neurorepairing and neuroprotective activities in vitro. A, Rat primary CGNs were placed on PLL-coated or PLL/CSPG-coated (300 ng/ml) plates
and incubated for 24 h with serum-free DMEM, SHED-CM, 100 ng/ml MCP-1/ED-Siglec-9, or rat BMM-CMs and stained for tubulin or TUNEL. BMM-CMs were prepared by culturing in each condition
(DMEM, IL-4, or MCP-1/ED-Siglec-9). B, C, Quantification of CGN neurite length and TUNEL � apoptotic cells. Notably, CGNs plated with BMM-CM harvested from IL-4 or MCP-1/ED-Siglec-9-induced
M2-like cells significantly extended their neurites and showed suppressed apoptosis in CSPG-coated wells, whereas the direct addition of MCP-1/ED-Siglec-9 to CGNs did not cause these effects. D,
Quantification of the mRNA expression of the indicated genes in rat BMMs. M2-like macrophages induced by MCP-1/ED-Siglec-9 showed significantly increased expressions of neurotrophic/growth
factors, such as Bdnf, hepatocyte growth factor (Hgf ), and Vegf. ANOVA with Tukey’s post hoc test (n � 3 separate experiments). Scale bar: A, 50 �m. Mean � SD (B, C) and mean � SEM (D). *p �
0.05; **p � 0.01; ***p � 0.001.
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Discussion
We reported previously that SHED transplantation promotes re-
markable functional recovery of the transected rat spinal cord (Sakai
et al., 2012). In the present study, we extended our previous findings
by identifying tissue-repairing factors secreted from the SHEDs.

We first found that the transplantation of SHEDs or intrathe-
cal administration of SHED-CM promoted remarkable func-
tional recovery in rats after SCI. This recovery was associated with
an immunoregulatory activity that induced anti-inflammatory
M2-like macrophages. We then identified a previously unrecog-
nized set of M2 inducers, MCP-1 and ED-Siglec-9, by secretome
analysis of the SHED-CM. Neither MCP-1 nor ED-Siglec-9 alone
could recapitulate the SHED-CM activity. Notably, however,
the combination of MCP-1 and ED-Siglec-9 recapitulated the
SHED-CM activity for M2-like macrophage induction and pro-
moted substantial functional recovery from rat SCI. Together,
our data suggest that MCP-1/ED-Siglec-9 may provide therapeu-
tic benefits for treating acute-phase SCI by activating endogenous
tissue-repairing mechanisms.

MSCs exhibit unique immunoregulatory properties that con-
tribute to their tissue-repairing activities. It was reported previously
that BMSC transplantation into SCI or brain ischemia models leads
to M2 induction (Ohtaki et al., 2008; Nakajima et al., 2012). How-
ever, here we found that the administration of BMSC-CM induced
no or little M2-like cells. This may be explained by the restricted
conditions that are required for BMSC-mediated M2 differentia-

tion; both the presensitization of BMSCs by proinflammatory fac-
tors, such as IFN-�, TNF-�, and LPS, and direct cell-to-cell contact
are prerequisite for the BMSC-mediated M2-like macrophage in-
duction (Németh et al., 2009; Singer and Caplan, 2011). These stim-
ulations increase the BMSC expression of cyclooxygenase 2 and
indoleamine 2,3-dioxygnase, and the products of these enzymes,
prostaglandin E2 and kynurenine, promote the repolarization of
proinflammatory M1-like to anti-inflammatory M2-like macro-
phages (Le Blanc and Mougiakakos, 2012). In contrast, SHEDs in-
duced M2-like cells through the secretion of MCP-1/ED-Siglec-9.
We found similar expressions of the full-length transmembrane
form of Siglec-9 in the cell lysates of fibroblasts, BMSCs, and SHEDs;
however, the secreted ED-Siglec-9 was uniquely present in the
SHED-CM. This finding suggests that SHED-CM, but not BMSC-
CM, contains the protease(s) responsible for the shedding of
Siglec-9. Thus, although M2 induction is an important common
strategy in MCS-mediated tissue repair, the mechanisms for M2
induction, and thus the M2-related therapeutic activities, vary for
different stem cell types.

SCI involves concurrent and interacting pathological pro-
cesses; therefore, its treatment must have multifaceted effects
(Schwab et al., 2006; Rowland et al., 2008; Snyder and Teng,
2012). We found that treatment with MCP-1/ED-Siglec-9 alone
established anti-inflammatory M2 conditions, reduced tissue
damage, preserved the descending 5-HT-positive axons, and pro-
moted functional recovery. Notably, MCP-1/ED-Siglec-9 had lit-

Figure 6. MCP-1 and ED-Siglec-9 are essential for SHED-CM-mediated functional recovery after SCI. A, Quantification of MCP-1, Siglec-9, and IL-6 in dSHED-CM. B, Recovery of hindlimb
locomotion after SCI. SHED-CM, n � 11; DMEM, n � 10; dSHED-CM, n � 10. ANOVA with Tukey’s post hoc test. C, Quantification of 5-HT-positive nerve fibers from 5 mm rostral to 5 mm caudal.
ANOVA with Tukey’s post hoc test (n � 3 rats per group and 5 sections per animal). D, Sudan black B staining of axial spinal cord sections 3 mm caudal from the epicenter 8 weeks after SCI, and
quantification of gray and white matter areas 3 mm caudal from epicenter. ANOVA with Tukey’s post hoc test (n � 3 rats per group). E, qPCR analysis of the indicated genes in spinal cord treated with
dSHED-CM 72 h after SCI. Results are expressed relative to the level in the sham-operated model. ANOVA with Tukey’s post hoc test (n � 3 rats per group). F–H, Representative images of sagittal
spinal cord sections and quantification of CD206 �/Iba1 � M2-like cells treated with dSHED-CM 72 h after SCI. R, Rostral; C, caudal; arrowhead, epicenter. G, Left, High-power view of the boxed area
in F. Right, Images of the IL-10 immunostaining. H, Quantitative analysis. Unpaired two-tailed Student’s t test (n � 3 rats per group and 5 sections per animal). Scale bars: D, F, 500 �m; G, 100 �m.
Mean � SD (B–D, H ) and mean � SEM (E). *p � 0.05; **p � 0.01; ***p � 0.001.
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tle or no direct trophic effect on the primary neurons (CGNs);
however, the M2-like BMMs induced by them promoted neurite
extension in these neurons and suppressed their CSPG-induced
apoptosis. Furthermore, the BMMs treated with MCP-1/ED-
Siglec-9 exhibited increased expressions of various neurotrophic
factors. All these data collectively suggest that M2-like cells in-
duced by MCP-1/ED-Siglec-9 exert multifaceted neurorepairing
activities besides suppressing inflammation, thus enabling MCP-
1/ED-Siglec-9 alone to promote functional recovery after SCI.

MCP-1 is known to contribute strongly to the proinflammatory
M1 response by recruiting macrophages to inflammation sites (Tsou
et al., 2007). Thus, the targeted neutralization of MCP-1 activity has
been examined in many clinical trials for acute and chronic inflam-
matory disease treatments (Shachar and Karin, 2013). In contrast,
we here present a unique anti-inflammatory function for MCP-1, in
which it acts via its cognate receptor CCR2, in concert with ED-
Siglec-9, to induce the M2-like macrophages. Although MCP-1
treatment alone is reported to be sufficient to induce the M2-like
macrophage phenotype (Roca et al., 2009), we were unable to con-
firm this MCP-1 function using BMM-derived native macrophages.
In this report, we found that a synergistic action of MCP-1 and
ED-Siglec-9 was required to induce M2-like macrophages.

Sialic acids are terminal acidic monosaccharides that influ-
ence the chemical and biological features of glycoconjugates.

Their removal, catalyzed by sialidase, modulates various biolog-
ical processes through conformational changes and through the
creation or loss of binding sites for functional molecules (Miyagi
and Yamaguchi, 2012). In this study, we found that sialidase
treatment completely abolished the M2-like property of BMMs,
indicating that sialic acids play a substantial role in determining
the characteristics of monocytes/macrophages. Siglec-9 is a
type-I transmembrane protein that functions as a receptor;
Siglec-9 negatively regulates immune cell function through its
cytoplasmic immunoreceptor tyrosine-based inhibitory motif
(Linnartz and Neumann, 2013), although a role for its secreted
ectodomain, ED-Siglec-9, has not been identified. Here we showed
that secreted ED-Siglec-9 functions as a ligand to modulate the
ability of MCP-1 to induce M2-like macrophages. Although the
detailed mechanism of the MCP-1/ED-Siglec-9-mediated M2
differentiation remains to be elucidated in future studies, our
present findings suggest that ED-Siglec-9 binds to sialylated car-
bohydrates on CCR2, thereby modifying the MCP-1 signaling
through CCR2.

Together with our previous reports (Sakai et al., 2012;
Yamagata et al., 2013), we have demonstrated three modes of
therapeutic intervention using tooth-derived stem cells for the
treatment of acute CNS injury: cell transplantation, CM admin-
istration, and factor administration. Cell-transplantation therapy

Figure 7. MCP-1/ED-Siglec-9 activates an anti-inflammatory M2 response and promotes functional recovery after SCI. A, Recovery of hindlimb locomotion after SCI. PBS, n � 10; MCP-1/ED-
Siglec-9, n � 9. ANOVA with Tukey’s post hoc test. B, Immunohistological images of 5-HT-positive nerve fibers in sagittal sections of the injured spinal cord 4 mm caudal from the epicenter, 8 weeks
after SCI. C, Quantification of 5-HT-positive nerve fibers from 5 mm rostral to 5 mm caudal. Unpaired two-tailed Student’s t test (n � 3 rats per group). D, E, Sudan black B staining of axial spinal cord
sections 3 mm caudal from the epicenter 8 weeks after SCI, and quantification of gray and white matter areas 3 mm caudal from epicenter. ANOVA with Tukey’s post hoc test (n � 3 rats per group).
F, Levels of the indicated mRNAs in the spinal cord 72 h after SCI. ANOVA with Tukey’s post hoc test (n � 3 rats per group). G, H, Immunohistological images of sagittal spinal cord sections 72 h after
SCI. Left, Treatment; top, antibodies used. I, Quantification of CD206 �/Iba1 � cells in the spinal cord. An unpaired two-tailed Student’s t test (n � 3 rats per group and 5 sections per animal). J,
Immunoblot analysis for CD206 protein 72 h after SCI. K, Expression intensity analysis of CD206 protein bands. Scale bars: D, G, 500 �m; B, H, 100 �m. Mean � SD (A, C, E, I ) and mean � SEM (F ).
*p � 0.05; **p � 0.01; ***p � 0.001.
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is a promising treatment for SCI (de Almeida et al., 2011; Sakai et
al., 2012; Taghipour et al., 2012); however, for clinical use, the
cells must be expanded by a reliable cell culture system that pro-
duces sufficient cell numbers for clinical effects, while also meet-
ing safety requirements, and tumorigenesis and strong immune
reactions must be avoided. In contrast, the administration of
preserved CM is convenient for immediate application and min-
imizes the surgical invasiveness. Theoretically, allogenic CM can
be used without immune rejection. However, for clinical use, the
factors providing therapeutic benefits must be isolated from ad-

verse factors in CM, including residual cell culture materials.
Moreover, the pharmacokinetic analysis of CM, which contains
multiple factors, is extremely difficult. Therefore, the administra-
tion of defined factors eliciting the benefits of CM may be the
most clinically practical strategy.

In conclusion, we identified a novel set of M2 inducers,
MCP-1 and ED-Siglec-9, from SHED-CM. The induced M2-like
cells activated multifaceted endogenous neurorepair mecha-
nisms, by which the locomotor function of SCI rats was substan-
tially restored. Our study revealed that MSC-derived secreted

Figure 8. Effects of CCR2 depletion on MCP-1/ED-Siglec-9-stimulated M2 induction. A selective inhibitor for CCR2, RS504393 (2 mg/kg), was given to rats orally every 12 h for 1 week starting 36 h
after SCI. A, B, Representative immunohistological images of axial plane spinal cord sections 3 mm caudal to the epicenter 72 h after SCI. Left, Treatment; top, antibodies. D, Dorsal; V, ventral; L, left;
R, right. Asterisks in the left indicate the central canal of the spinal cord. B, High-power view of the boxed area in A. C, Quantitative analysis. ANOVA with Tukey’s post hoc test (n � 3 rats per group
and 5 sections per animal). SHED-CM or MCP-1/ED-Siglec-9 failed to induce CD206 � M2-like cells in the SCI rat treated with RS504393. D, Recovery of hindlimb locomotion after SCI. Top, SHED-CM,
n � 9; DMEM, n � 8; SHED-CM � RS504393, n � 6. Bottom, MCP-1/ED-Siglec-9, n � 7; PBS, n � 7; MCP-1/ED-Siglec-9 � RS504393, n � 6. ANOVA with Tukey’s post hoc test. E, Quantification
of 5-HT-positive nerve fibers from the epicenter to 5 mm caudal. ANOVA with Tukey’s post hoc test (n � 3 rats per group and 5 sections per animal). F, G, Sudan black B staining of axial spinal cord
sections 3 mm caudal to the epicenter 8 weeks after SCI, and quantification of gray and white matter areas 3 mm caudal to the epicenter. ANOVA with Tukey’s post hoc test (n � 3 rats per group).
Scale bars: A, 200 �m; B, 100 �m; F, 500 �m. Mean � SD. *p � 0.05; **p � 0.01; ***p � 0.001. RS, RS504393.
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factors directly convert the proinflammatory conditions preva-
lent in the damaged CNS to tissue-repairing ones by modulating
the microglia/macrophage phenotype.
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