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Abstract

We develop an agent-based computational simulation to investigate the complex behavior 

exhibited by an initially regularly spaced train of immiscible droplets passing through a simple 

two-branch microfluidic network wherein a channel splits into two asymmetric branches that 

reconnect downstream. As observed by Fuerstman et al. (M. J. Fuerstman, P. Garstecki and G. M. 

Whitesides, Science, 2007, 315, 828–832), variations in the flow rates within each segment 

induced by the droplets cause complex droplet spacing patterns to occur in the outlet, leading to 

periodic and aperiodic behavior. Our model utilizes a highly efficient agent-based modeling 

approach, where the flow-rates in each section of the network are determined using fundamental 

concepts of viscous and interfacial flows. Simulations spanned physical parameter space that 

includes variation in droplet spacing, surface tension, viscosity, and geometry. These simulations 

demonstrate qualitative agreement with the findings of Fuerstman et al1, including the prediction 

of interspersed periodic and aperiodic domains. We predict that decreasing droplet contribution to 

the overall pressure drop (reducing the tube radius or surface tension, increasing the viscosity) 

would result in increased complexity. The geometric configuration of the system is also critical to 

pattern formation; a greater disparity in branch length generally results in higher-order 

periodicities in the outflow channel. The aperiodic results indicate the likelihood of chaotic 

behavior arising from this purely deterministic system. The consideration of fundamental fluid 

mechanical principles coupled to the agent-based simulation technique may provide a highly 

efficient means for the design and analysis of more complex systems.

Introduction and Background

In recent years droplets have been employed in microfluidic devices to contain reactions on 

a sub-picoliter scale, allowing the precise control of composition and reaction times for 

applications including PCR2, 3, cellular screening4, and protein crystallization5. Such 

systems offer high-throughput, low-cost alternatives to full-scale experimentation because 

droplets provide an ideal environment for compartmentalizing precisely metered quantities 

of reagents in a tightly-controlled environment. An enormous variety of applications exist 

for droplet-based systems, as described in ref.6–9. Since the efficacy of these designs 
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depends upon the careful control of the fluid mechanics within the system, it is important to 

establish accurate and efficient simulation approaches for evaluating design characteristics.

In this paper, we develop and analyze an agent-based theoretical model of droplet motion 

through a microfluidic network. Our algorithm builds on the work of Jousse et al10, 

Schindler and Ajdari11, and Sessoms et al12. We extend these studies by exploring pattern 

formation in the outflow channel and offer a comprehensive discussion of the mechanisms 

responsible for this nonlinear behavior. We use this approach to simulate the experiments of 

Fuerstman et al1, who explored the complex behavior that can result when a train of 

immiscible drops migrates through a two-branch network wherein a channel splits into two 

asymmetric branches that reconnect downstream.

Fuerstman’s experimental apparatus, shown in Figure 1, consists of interconnecting 

microchannels of width W = 100 μm. The bulk fluid, driven by a constant pressure, consists 

of hexadecane and 3% mass Span-80 (a non-ionic surfactant), which maintains a low 

constant surface tension interface that promotes droplet stability. Downstream of the 

hexadecane inlet, the first T-intersection (labeled ‘Droplet Generator’) provides the input 

location wherein droplets of ink are introduced at equal time intervals. From this point the 

bulk fluid and immiscible droplet mixture travels through the inlet to an asymmetric loop 

that reunites to form the outlet channel.

Interesting fluid mechanical phenomena are observed due to the asymmetry of the loop 

structure (L1 = 1.98 mm, L2 = 1.78 mm). As each droplet reaches the up-stream loop T-

junction it migrates through the segment with the lowest fluidic resistance (and hence 

greatest flow rate). This modifies the relative resistances to flow in each segment of the 

system. As droplets travel through the loop the resistances in each segment evolve 

dynamically to compensate for the population and distribution of droplets that exist in the 

system. As a result, even though droplets enter the system at fixed intervals, the droplets 

exiting the flow loop may emerge with unequal spacing

Fuerstman et al1 found that despite the regular spacing of the droplets in the inlet, 

fascinating higher-level periodic and aperiodic trains of droplets were observed to exist in 

the outlet leg. This occurs because of nonlinear flow relationships that arise from temporal 

variations in the fluidic resistance in each segment of the loop due to the distribution of 

droplets throughout the network. Hence, each droplet modifies the flow rates in the entire 

system, influencing the path decisions of subsequent droplets as they enter the upstream 

loop T-junction. By conservation of mass, this flow alteration also causes variation in the 

droplet spacing in the outlet channel. For this reason, sequential droplets may reside in each 

segment of the flow loop for varying time intervals depending upon the distribution of 

droplets within the network.

This paper has two goals: 1) to develop an efficient computational algorithm based upon 

fundamental fluid mechanical principles that can accurately simulate the complex pattern 

formation of droplets emanating in the outflow channel of the microfluidic network of 

Fuerstman et al1, and 2) to use this computational approach to provide insights into the 

parameters that govern pattern formation in that system. We believe that an understanding 
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the contributions of these parameters to the dynamic behavior of the system is critical to 

improving the design and implementation of more complex microfluidic systems. 

Furthermore, it is expected that the approach developed herein may be generalized for the 

analysis of more complex systems of microfluidic and biological relevance.

Model Formulation

Conceptual Framework

We have developed a continuous and spatially explicit agent-based model with mobility in 

which pressure-flow relations for the different segments of the network are solved 

simultaneously. The resulting flow rates are used to determine droplet velocities in each of 

the segments using fundamental principles of fluid mechanics and droplet motion. Updating 

of droplet position occurs very efficiently using large variable-duration time-steps that 

resolve the transition from one network droplet distribution to another. This approach is 

similar to the works of Jousse et al10, Schindler and Ajdari11, and Sessoms et al12, utilizing 

the same time-stepping technique while employing a different set of governing equations. 

Such droplet-tracking models10–12 fundamentally differ from earlier average-viscosity 

investigations13, 14 by providing a detailed description of individual particle trajectories. We 

first validate the capabilities of this technique by modeling the experiments of Fuerstman et 
al1. Next, we explore the effects experimental parameters such as channel radius R, surface 

tension γ, viscosity μ, and the ratio of the length of the legs in the flow loop (α = LShort/

LLong) on droplet periodicity in the outlet channel.

In order to model this system we calculate the pressures and flow rates in each of the 

segments in our model domain (Figure 2), which is an idealization of the experimental 

apparatus employed by Fuerstman et al (Figure 1). The flow system is pressure-driven; 

therefore, the pressure differential between Node 1 and Node 4 is held constant. Although 

the total pressure drop is held constant, as detailed below, the number of droplets in each 

segment determines the time-dependent pressure drop (and hence the flow distribution) in 

each segment of the network. From a global perspective, the sum of the flows in the longer 

top leg (QT) and shorter bottom leg (QB) of the flow loop must equal the flow rate in the 

inflow and outflow channels (Q). The pressure drop across the short and long legs of the 

flow loop (between Nodes 2 and 3) must be equal; however, the flow-rates in each segment 

are not equal because of the variable droplet-distribution-dependent resistance that exists 

within each leg. As droplets migrate from segment 1 (the inlet channel) to the flow loop 

bifurcation, a ‘decision’ is made to travel down the flow segment with the least resistance 

(higher flow rate). In this process, the pressure drop in each segment changes dynamically, 

affecting the motion of subsequent droplets.

This approach is considered to be ‘agent-based’ because each droplet (agent) operates 

independently, directed by environmental constraints determined by all members of the 

agent population. Specifically, each droplet (the agent) satisfies the criteria for weak agency 

described by Wooldridge and Jennings15:
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1. Autonomy – Agents operate without direct intervention. In our model the 

droplets operate according to deterministic governing equations and pre-

established decision rules at the channel intersections.

2. Social Ability – Agents interact via an agent-communication language. In this 

study the agent-communication language is fluid velocity, droplets communicate 

by modifying the flow rate.

3. Reactivity – Agents perceive their environment and respond to changes. The 

droplets react to changing environmental conditions, specifically the local flow 

rate, by altering their velocity w.r.t. the fluid and the laboratory coordinate 

system. Furthermore, environmental conditions at the bifurcation affect the 

droplet decision to travel down the short or long leg of the flow loop.

4. Pro-activeness – Agents do not simply act in response to their environment, they 
are able to exhibit goal-directed behavior. The droplets do not simply modulate 

their velocity in accordance with the flow rate; the decisions made at the 

bifurcation pro-actively reduce the time necessary for an individual droplet to 

traverse the domain.

Below, we formalize our modeling technique and present an efficient ‘agent-based’ 

algorithm that is used to explore the non-linear interactions that exist in the idealized system.

Modeling Assumptions

We make a number of assumptions to facilitate the modeling of this complex system. First, 

the system is modeled as a microfluidic network of tubes with circular cross-sections instead 

of the rectangular geometry used in Fuerstman’s experiments. We also assume that the 

droplets do not split as they enter into a bifurcation; instead each droplet will travel down the 

leg of the flow loop with the greater flow rate, no matter how small the difference in fluidic 

resistance may be.

In the experimental investigation, a hexadecane/Span-80 mixture carries aqueous droplets, 

providing an interfacial tension γ = 3.6 dyn cm−1 (16). Additionally, the viscosity of the bulk 

fluid μ = 0.0295 g cm sec is significantly greater than the viscosity of the droplets μD = 0.01 

g cm−1 sec−1. Hodges et al17 showed the behavior of a low-viscosity drop may be 

approximated by that of a gas bubble if λ << Ca−1/3, where λ = μD/μ, Ca = μU/γ and U is 

the mean fluid velocity. Since the velocity of the droplets is approximately 0.3 cm sec−1, in 

the system under investigation λ = 0.34 and Ca−1/3 ≈ 8. As such, we represent the low-

viscosity droplets as bubbles of air. Corrections for viscous droplets could be incorporated 

using the relationships described by Jousse et al14. Furthermore, we consider the droplets to 

have a volume V > 4πR3/3, an assumption that allows the use of established pressure drop 

representations for semi-infinite bubbles18.

The Reynolds number Re = ρUR/μB ≈ 10−4 << 1, where ρ is the density and R is the tube 

radius, indicates that inertial forces play a minor role in comparison to the viscous effects. 

Because of the extremely low Reynolds number and because the tube radius is significantly 

smaller than the radius of curvature of the flow loop (RC) the Dean number De = Re(R/

RC)1/2 ≈ 5×10−5, indicating that channel curvature plays an insignificant role in determining 
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the fluid velocity. Furthermore R/Rc ≈ 0.1, which suggests that channel curvature will not 

significantly alter the relationship between bulk fluid and droplet velocities19. Finally, we 

assume Poiseuille flow in the bulk fluid between droplets; as such, we do not consider 

interactions between adjacent droplets.

Governing Equations

We first consider the pressure-flow relationship occurring in any portion of the model 

system, shown in Figure 3. Equation (1) describes the pressure drop (ΔPA) across the length 

(LA) of an arbitrary channel A (denoted with the subscript A) as the combination of the 

Poiseuille pressure drop in the bulk fluid (ΔPA
Poiseuille) and the pressure drop across each of 

the N droplets (ΔPA
Droplet, obtained from Ratulowski and Chang18),

ΔPA = ΔPA
Poiseuille + NΔPA

Droplet . (1)

At low Re, the single-phase pressure drop is a function of the flow rate QA, the effective 

length LA
e f f , viscosity μ, and tube radius R:

ΔPA
Poiseuille =

8μBQALA
e f f

πR4 = AAQA

AA =
8μBLA

e f f

πR4 .

(2)

In a channel of length LA containing N droplets we apply the Poiseuille pressure drop over 

the bulk fluid region and reduce the length of the Poiseuille region by assuming that each 

droplet has a length 4R so that LA
e f f = LA − 4NR.

The pressure drop across a single isolated droplet is represented as the pressure drop due to a 

semi-infinite bubble because the bulk fluid is significantly more viscous than the droplets 

and the volume of the droplet is sufficiently large. We describe the droplet pressure drop 

with Ratulowski & Chang’s18 result

ΔPA
Droplet = 9.4Ca2/3 − 12.6Ca0.95, (3)

shown here in dimensionless form. We dimensionalize this relationship with the pressure 

scale γ/R and Ca ≡ μBU /γ = μBQ/πR2γ:
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ΔPA
Droplet = B9 ⋅ QA

2/3 − B12 ⋅ QA
0.95

B9 = 9.4
μB

2/3γ1/3

π2/3R7/3 , B12 = 12.6
μB

0.95γ0.05

π0.95R2.95 .

(4)

Substituting (4) and (2) into (1) yields the pressure-flow relationship for an arbitrary section 

of tube containing N droplets:

ΔPA = AQ + N ⋅ B9 ⋅ QA
2/3 − N ⋅ B12 ⋅ QA

0.95 . (5)

Next, we consider the specific geometry used in our simulations, show in Figure 2. The top 

and bottom legs of the flow loop connect nodes 2 and 3; because of this connectivity the 

pressure drop across these segments is identical. The pressure drop across the flow loop is

ΔPT = ΔPB = ΔPLoop (6)

ATQT + NT ⋅ B9 ⋅ QT
2/3 − NT ⋅ B12 ⋅ QT

0.95 = …
ABQB + NB ⋅ B9 ⋅ QB

2/3 − NB ⋅ B12 ⋅ QB
0.95,

(7)

where the subscripts T and B indicate the top and bottom legs of the flow loop, respectively. 

Because the model fluid is incompressible, the flow in the inlet and outlet channels (Q) is 

equal to the sum of the flow rates in top and bottom legs of the loop (QB = Q - QT). This 

relationship allows the elimination of QB, yielding one of the two equations solved at each 

time step:

QT AT + AB + B9 NTQT
2/3 − NB(Q − QT)2/3 …

+ B12 NB(Q − QT)0.95 − NTQT
0.95 − ABQ = 0 .

(8)

The pressure drop from Node 1 to Node 4 is defined as ΔPTotal = ΔPI + ΔPT + ΔPO, where 

the subscripts I and O demarcate the inlet and outlet channels. We apply the equation (5) and 

simplify to obtain the second equation describing the system:

−ΔPTotal + Q AI + AO + B9Q2/3 NI + NO …
− B12Q0.95 NI + NO + ATQT + NTB9 − NTB12QT

0.95 = 0 .
(9)
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Solving equations (8) and (9) simultaneously yields the instantaneous flow rate in each 

segment of the model for a given ΔPTotal and the number of droplets N in each segment. 

Because of the thin film between the droplet and the wall, the velocity of the droplet (UDrop) 

will always be greater than the mean velocity in the channel (U). For Ca < 3×10−3, we use 

Bretherton’s 1961 relationship to compute the droplet velocity:

UDroplet − U
UDroplet

= 2.675
μUDroplet

γ

2/3
. (10)

However, this relationship is not valid for higher Ca > 3×10−3, in this regime we employ 

values of UDroplet obtained from the boundary element computations described in Smith and 

Gaver20, interpolating with cubic splines as necessary. This is a novel feature of our 

implementation, previous investigations10–12 have employed fixed relationships between 

bulk fluid and droplet velocities.

Agent-Based Algorithm

Here we describe our agent-based algorithm (Figure 4) for simulating the flow system, the 

beauty of which lies in its simplicity, computational economy, and ease of implementation. 

First, the flow rates in each segment of the model are computed from equations (8) and (9). 

We then solve equation (10) to determine the droplet velocity in each segment of the 

network. Each time-step is chosen explicitly as the time increment associated with a 

redistribution of droplets from one segment to another within the system. As such, the time-

step is chosen as the minimum duration necessary for either a droplet to intersect a node or a 

new droplet to be injected into the system. This time-step is used to convect each droplet in 

the system according to their local velocities, a concept described in previous studies of 

droplet motion10–12.

To identify the periodicity (pn, where n is the level of periodicity) in the outlet channel we 

employ the algorithm shown in Figure 5, which iteratively searches for repeating time 

increments between droplets in the outlet channel over the range n = 1 to 25. We consider 

patterns longer than 25 droplets to be aperiodic. To determine the existence of a periodic 

output of level n, first, a stencil of the time increment (Δt) between the first n droplets in the 

outlet channel is created. This is the first ‘instance’ of pn, composed of a family of n 
droplets. This stencil is then applied to the next 5 downstream instances of the potential 

pattern (5n droplets). If the pattern of Δt repeats for each of the 5 instances at a tolerance of 

10−5, we consider the pattern converged. As each droplet exits the system, this approach is 

used for n = 1 to 25, thereby capturing a wide range of periodicities.

Our computational technique, although simple in concept, is formulated to provide fast, 

accurate resolution of the pattern dynamics in the outlet channel. A multitude of methods are 

currently employed for simulating two-phase flows, the numerical techniques applicable to 

LOC applications are discussed in ref.21, 22. These methods, such as finite element23, 24 and 

boundary element20, 25, 26, discretize both the spatial and temporal domain at high resolution 

and provide a detailed description of the flow-field throughout the entire domain. However, 
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the complete description comes at a steep computational price. Since our interest lies in the 

outlet channel periodicities, we employ an agent-based particle tracking technique, solving 

for the bulk fluid and droplet velocities based on the fixed driving pressure and the number 

of droplets currently in the system. This highly efficient approach allows us to capture the 

complex pattern dynamics occurring in the outlet channel without solving for the flow-field 

in the entire system. Furthermore, more complete CFD analyses must resolve the flow-field 

in temporal regions that are bypassed with our agent-based technique. By neglecting the 

microscale flow-field and interim time-steps, our technique operates at rates that are orders 

of magnitude faster than complete CFD approaches while capturing the complex pattern 

dynamics in the outlet channel.

Results and Discussion

We first describe the behavior of the system with a baseline parameter set derived from the 

experiments of Fuerstman et al1, as shown in Table 1. Here, we detail the sequence of events 

leading to the development of complex outflow patterns. In the ‘Parameter Variation’ 

sections, we consider the effects of altering the fluid properties (γ and μ) and model 

geometry (R and α) under conditions of I) fixed driving pressure, and II) fixed transition 

region inlet spacing from period-1 to higher-order periodicity (we term this ‘fixed T in
P +‘). 

Finally, we discuss the importance of the transition regions and describe the limitations of 

our model.

Baseline Case Behavior

In this section we qualitatively describe the dynamics of the system over a range of 

incoming droplet spacing (Tin) for the baseline parameter set shown in Table 1. To facilitate 

this explanation, we first define a nomenclature providing a kinematic snapshot of the 

system-state at the instant when a droplet enters the flow loop. This description has four 

components:

1. the droplet number within the pattern. For example, in a pn case the droplets are 

labeled as D1 through Dn. So, D3 would refer to the third droplet in the pattern;

2. the leg that the droplet enters in the loop (S=short, L=long);

3. the number of droplets already occupying the long leg at the instant the droplet 

enters the loop (e.g. L2 represents two droplets in the long leg);

4. the number of droplets already occupying the short leg at the instant the droplet 

enters the loop (e.g. S1 represents one droplet in the short leg).

So, D3S-L2S1 refers to the third drop of a sequence entering the Short leg at the moment 

when two droplets are in the Long leg and one droplet exists in the Short leg.

The simplest behavior occurs when droplets are introduced at large time intervals (Tin ≥ 1.04 

sec). In this period-1 (p1) mode droplets traveling down the inlet arrive at the flow loop after 

the previous droplet has passed through the short leg and into the outlet (D1S-L0S0), shown 

schematically in Figure 6a and categorized in state-space in Figure 7b. Because the flow 

loop is devoid of droplets, the short leg will always have a lower resistance at the time when 
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subsequent droplets arrive at the bifurcation. Therefore, all droplets follow the same short-

leg route, yielding the p1 behavior represented in Figure 7b (Tin ≥ 1.04 sec).

As droplet spacing in the inlet channel is reduced (0.70 < Tin < 1.04 sec), the system evolves 

from p1 into a p2 regime (Figure 7b). In this mode one or more droplets always occupy the 

flow loop (Figure 6b). The first droplet in an instance (D1L-L0S1) begins to travel down the 

long leg while D2 from the previous instance remains in the short leg of the flow loop. 

Subsequently, D2 arrives before D1 has cleared the long leg and will travel down the short 

leg (D2S-L1S0). Clearly, as this nomenclature demonstrates, all droplets have exited the 

short leg prior to the arrival of D2, and droplets alternate between the short and long legs in a 

simple p2 pattern.

Reducing the inlet spacing to 0.44 < Tin ≤ 0.70 sec introduces p3 behavior; however, within 

this range three distinct droplet patterns are predicted. For 0.60 < Tin ≤ 0.70 sec, the pattern 

commences with only one droplet from the previous instance (D3) in the short leg. Droplet 1 

then enters the long leg of the flow loop (D1L-L0S1); the following droplet satisfies D2S-

L1S0. Subsequently, D3S-L1S1 comes to the bifurcation to find one droplet in each branch of 

the loop and therefore D3 travels down the short leg, as depicted in Figure 7a. This comes in 

contrast to the p2 case discussed above where this droplet (D3S-L1S1) would have been D1L-

L0S1. This difference occurs because the reduced inlet spacing causes the droplet to arrive 

before a previous droplet has exited the long leg.

As Tin is decreased further within the p3 mode, the transient behavior is changed without 

altering the outflow periodicity. For 0.48 < Tin ≤ 0.60 sec the sequence of droplets is D1L-

L0S2, D2S-L1S1, and D3S-L1S1. Finally, for 0.44 < Tin ≤ 0.47 sec the droplet sequence has 

changed to D1L-L1S2, D2S-L1S1, and D3S-L1S1. We have included this information to 

demonstrate the degree of complexity present within state-spaces which appear stable when 

considering the outlet channel periodicity.

For even more closely spaced incoming droplets (0.40 < Tin ≤ 0.44) the system enters what 

we refer to as a ‘transition region’, highlighted in gray in Figure 7b. These regions are ranges 

of Tin where higher-order periodicities (p9, p11, p16) separate larger regions of lower-order 

behavior (in this case p3 and p5). Because of the complex nature of these patterns we will 

not include a detailed description of the sequence; it will suffice to say that the rapid 

increase in periodicity comes from D3L-L1S2 entering the long leg (as opposed to D3S-L1S1 

in p3), instigating a chain of flow-rate alterations that yield p9.

Comparison to Experimental Results

Figure 8 demonstrates the qualitative similarities between our simulation results and the 

experimental results of Fuerstman et al1, it is evident that our model reproduces the complex 

patterns in the outlet. Both systems operate in p1 for large inlet droplet spacing and move 

into higher-order regimes for Tin < 1.04 -- the total pressure drop across our model is 

defined to match this experimental observation. For 0.70 < Tin < 1.04, the experimental 

findings show transitions from low-order to higher-order periodicities, and vice-versa. In 

comparison, our simulations indicate a stable p2 regime. The transition to a stable region of 
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p3 behavior occurs in both the computational experimental models at Tin = 0.70 sec, which 

finds then models in good agreement down to the minimum Tin experimentally investigated.

Parameter Variation I (Fixed ΔP)

The surface tension (γ), viscosity (μ), and tube radius (R) play a critical role in determining 

the behavior of the system. In this section, we consider the effect of these parameters (as 

detailed in Table 1) on the outlet periodicity when the driving pressure ΔP is held constant. 

We consider the effect of these parameters on the fluidic resistance of the system Ω = ΔP/Q 
(evaluated in the inlet channel) and the droplet pressure drop ΔPDroplet (4) which, in turn, 

changes the inlet time spacing at which the outflow behavior transitions from p1 to higher 

orders (T in
P +). The changes in Ω and ΔPDroplet occurring in the cases investigated are detailed 

in Table 2.

Decreasing the surface tension γ (Figure 9) is a logical place to begin our explanation as the 

droplet pressure drop (4) is reduced without altering the fluidic resistance in the Poiseuille 

regions (2), as shown in Table 2. For the system to transition from period-1 (p1) to higher-

order periodicities the combined droplet pressure drop in the short leg NΔPB
Droplet must be 

sufficient to overcome the flow differential resulting from length differences between the 

legs. In the baseline case described above, a single droplet provides a sufficient pressure 

drop to cause the transition in outlet behavior. However, in the reduced surface tension case 

the associated reduction in ΔPDroplet necessitates that two droplets be present in the short leg 

in order for a transition to higher order outputs to exist (at the prescribed ΔP). Because of 

this, the inlet spacing must be reduced to Tin = 0.525 sec (from 1.04 sec in the baseline case) 

to cause the transition from p1 to higher orders.

In contrast to the low-γ case, the high-μ case (Figure 10) does not alter ΔPDroplet, despite the 

presence of viscosity in the formulation shown in Eq. (4). This occurs because the increased 

viscosity causes a corresponding decrease in the flow-rate - these two factors cancel so that 

ΔPDroplet remains unchanged. However, because the driving pressure remains unchanged 

while the flow-rate has been halved, Ω in the high-μ case is twice that of the baseline. 

Furthermore, the decreased fluid velocity yields a corresponding 50% drop in the droplet 

velocity. Because the droplets are introduced at regular time intervals and the droplet 

velocity has decreased, the transition to higher-order outflows occurs at Tin = 2.18 sec. This 

is primarily a result of increasing the Poiseuille resistance while holding ΔPDroplet and ΔP 
fixed.

We next consider the R = 25 μm case (Figure 11), the 50% reduction in radius affects both 

the viscous and droplet contributions to the total pressure drop in the system. The result is 

that the transition to higher-order periodicity increases to T in
P + = 4.50 sec. This large value 

occurs because the droplet velocity is 0.24 times that of the baseline case. Because the 

disparity in flow rates hinders comparison, in the next section we consider the behavior of 

the system when varying parameters and holding the inlet droplet spacing at

which the system transition to higher orders constant at T in
P + = 1.04 sec.
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Parameter Variation II (Fixed T in
P +)

In this section, we discuss the influence of γ, R, μ and α on the behavior of the system when 

the driving pressure ΔP is simultaneously adjusted so that the transition from p1 behavior to 

higher orders occurs atT in
P += 1.04 sec. Defining the pressure in this manner provides further 

insight into the basic mechanisms responsible for the highly non-linear outlet behavior 

inherent to the system. We explore the range of parameters shown in Table 1 and consider 

the fundamental principles dictating the degree of outflow complexity, namely the relative 

influence of individual droplets. Additionally, we consider the ramifications of parameter 

variation on the relative positioning of droplets in the outlet channel and droplet reordering, 

wherein droplets exit the flow loop in a different order than introduced.

The surface tension γ plays a critical role defining ΔPDroplet (4) as well as the relative speed 

of the droplet w.r.t. the bulk fluid velocity (10). The surface tension obviously has no effect 

on the Poiseuille pressure drop (2); therefore decreasing the surface tension will reduce the 

net effect of each droplet. The outlet periodicities for the baseline (R = 50 μm, γ = 3.6 dyn 
cm−1), low surface tension (γ = 1.8 dyn cm−1), and reduced radius (R = 25 μm) cases are 

presented in the bifurcation map shown in Figure 12. Decreasing γ by 50% necessitates a 

40% reduction in ΔP in order to retain T in
P += 1.04 sec. This, in turn, results in a 23% 

decrease in ΔPDroplet compared to the low-γ fixed ΔP case (as shown in Table 2). Comparing 

the reduced R and the reduced γ cases it is clear that both parameters have a markedly 

similar effect, demonstrating increased complexity in the outlet (at a given Tin) and more 

prominent transition regions. It is also notable that aperiodic behavior is predicted to exist, 

indicating the possible existence of chaotic responses in this purely deterministic system.

The similar behavior found when reducing R and γ while holding T in
P + = 1.04 sec may come 

as a surprise given the disparate effects of these parameters when ΔP is fixed, as shown in 

Figure 9 and Figure 11. With T in
P + fixed, halving R causes a 16-fold increase in the fluidic 

resistance of the Poiseuille regions while ΔPDroplet is 2.27 times larger. Despite the increase 

in ΔPDroplet, a reduction in R has the net effect of decreasing the relative influence of each 

droplet because of the simultaneously increased Poiseuille resistance. This behavior is 

identical to that predicted when reducing γ, where the significance of ΔPDroplet is reduced in 

comparison to the viscous contributions. This similarity is not observed for fixed ΔP because 

the disparity in the overall resistance of the system results in an order of magnitude 

difference in the flow rates that dramatically affects T in
P +.

Figure 13 shows the effect of altering the bulk fluid viscosity (μ) on outlet channel 

periodicity for T in
P + = 1.04 sec. The viscosity is linearly related to the Poiseuille resistance 

and ΔPDroplet increases only slightly with μ when T in
P + is held fixed. Therefore, increasing μ 

reduces the influence of each droplet, so higher-order periodicities and transition-region 

behavior is favored. This is in contrast to the behavior witnessed with a fixed ΔP, where an 

increase in viscosity yields larger Tin and a delayed development of higher-order 

periodicities.
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Altering the ratio of the leg lengths (α = LShort/LLong) while fixing T in
P + = 1.04 sec produces 

a dramatic effect as demonstrated in the bifurcation map that relates the inlet to outlet 

spacing (Figure 14a and c) and the outlet periodicities shown in Figure 14b and d. Figure 

14a and c show the relationship between the inlet and outlet channel droplet spacing, each 

value of Tin represents an independent run of the simulation. Grey symbols denote droplets 

traveling trough the short leg of the flow loop and black symbols indicate passage through 

the long leg. The slight asymmetry between the legs of the flow loop (less pronounced than 

in the baseline case) results in outlet spacing near the identity line and p3 behavior is not 

found until Tin < 0.57 sec (Figure 14b). Reducing α (increasing the disparity in length) 

requires the presence more droplets within the short leg to sufficiently reduce the flow in 

that leg and force droplets into the long branch, producing higher-order periodicities (Figure 

14d). Therefore, low values of α are conducive to higher-order periodicities soon after 

making the transition from p1 to higher-order periodicities (as reported by Jousse et al10).

Increasing the asymmetry of the loop also serves to increase the irregularity of the pattern in 

the outflow channel. The irregular outlet spacing is demonstrated in the bifurcation diagram 

for α = 0.75 (Figure 14c) by the wide range of ΔTout occurring at a given Tin. The range of 

time between droplets is inversely related to α - more unequal leg lengths produce a greater 

variation in droplet spacing in the outlet channel. Additionally, the lower band of ΔTout is 

close to zero for α = 0.75 at Tin = 0.8 sec, indicating that droplets in the outlet channel are 

immediately adjacent to each other. Successful passive droplet fusion relies on positioning 

the two droplets adjacent to each other, this behavior is exhibited in the α = 0.75 case. Also 

note that in the lower band droplets arrive from the long leg for Tin ≥ 0.8 sec and the short 

leg for Tin < 0.8 sec, this occurs because these droplets are now emerging from the flow loop 

in a reversed order.

Reordering of droplets in the outlet channel, a potentially important design characteristic, is 

promoted with decreasing values of α. Reducing the length of the short leg increases the 

likelihood of a droplet remaining in the long leg while a subsequent droplet moves through 

the short leg and emerges into the outlet. Reordering of drops in the outlet occurred for all 

Tin < 1.05 sec for α = 0.75, whereas this phenomenon was not observed in the α = 0.98 

simulations. However, decreasing α while holding the other parameters constant increases 

the number of droplets necessary to sufficiently change the flow rate and drive a droplet into 

the long leg. This results in increased transition region prominence and promotes higher-

order periodicities, akin to the reduced droplet influence responsible for such phenomenon 

when varying R, μ, and γ.

Transition Regions

We have found that transition regions (highlighted in gray in Figure 7b and indicated by 

large symbols in Figures 8–13) occur between large, established zones of stable periodicity. 

These higher-order regions arise when the Δt separating droplets arriving at the flow loop 

bifurcation and outlet channel is small. For example, Figure 10 shows the outlet channel 

periodicity for the baseline, low R, and low γ cases for fixed T in
P +. It is clear that the 

reduction in R favors the existence of the transition regions occurring between the p1-p3, p4-

p5, and p5-p6 (low R) or p5-p7 (low γ) regimes whereas higher-order behavior is not 

Smith and Gaver Page 12

Lab Chip. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed in these regions for the baseline case. Generally, we find that decreasing the 

relative influence of a droplet while holding T in
P + fixed will increase the prevalence of 

transition regions.

Transition regions must be considered when utilizing droplet periodicity in device design. If 

the application specifies that a certain spacing, order, or pattern of droplets is present in the 

outlet then the parameters (R, μ, γ, and α) should be selected to place the device output in a 

region of stable periodicity away from transition regions. This will reduce the effect of 

fluctuations in the operating parameters (including the driving pressure ΔP) or variations in 

the device itself from significantly affecting the output.

Limitations

Because of the simplifying assumptions used in creating our model, we do not expect to 

exactly match the experimental results of Fuerstman et al. For example, we consider a 

cylindrical tube, as opposed to a rectangular cross section – this allows us to use well-

established pressure-flow relationships (3), but may deviate slightly from rectangular duct 

models. Furthermore, the dynamics of droplet transitions from channel to channel are 

neglected and we assume that a Poiseuille flow field exists between droplets, disregarding 

the transition to this fully-developed flow. However, despite these shortcomings our model 

allows understanding of the effects of parameter variation on the outlet periodicity in this 

system. Future versions of this model may employ relationships describing flow through 

square channels, and well as the effects of junctions and closely-spaced droplets.

Conclusions

We have created an agent-based model of droplet flow through a two-branch microfluidic 

network in order to investigate pattern formation in the outlet channel. This model is capable 

of qualitatively reproducing the experimental findings of Fuerstman et al1. We elucidate the 

behaviors responsible for pattern formation and explore the effects of parameter variation on 

outlet periodicity. This study is intended to facilitate the design and development of more 

complex droplet-based microfluidic networks by providing an improved understanding of 

the fluid-mechanical forces responsible for the complex behaviors observed experimentally.

When holding the driving pressure ΔP fixed the droplet spacing at which the system 

transitions from p1 to higher orders (T in
P +) is strongly dependent on the fluidic resistance Ω 

and the droplet pressure drop ΔPDroplet. Increased Ω logically results in larger values of T in
P +

because the flow-rate in the channel (and the droplet velocity) will decrease. Reducing 

ΔPDroplet from that of the baseline case (such as decreasing γ) may influence the number of 

droplets necessary to overcome the difference in flow-rates due to the unequal length of the 

legs. When this occurs, T in
P + will be dramatically reduced and the system will tend to go 

from p1 to p3 or higher, bypassing the p2 mode.

We have found that the magnitude of the pressure differential associated with each droplet 

relative to the viscous pressure drop in the bulk fluid is critical in determining the outflow 
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behavior of the system. This influence decreases when the droplet pressure drop (ΔPDroplet) 

decreases (such as reduced γ) or the viscous pressure drop in the bulk fluid is increased 

(such as decreasing R or increasing μ). When the influence of an individual droplet is low 

higher-order periodicities are achieved at a given inlet droplet spacing Tin.

The length ratio of the two legs of the flow loop (α = LShort/LLong) also plays a critical role 

in determining the behavior of the system. When α ~ 1 (similar leg lengths), lower-order 

periodicities are common and this results in even droplet spacing in the outlet. As 

demonstrated by Figure 14, decreasing α (increasing leg asymmetry) leads to higher-order 

periodicities, increased the variation in the distance between droplets in the outlet, and 

results in droplet reordering since more droplets are required to overcome the disparity in 

flow rate between the short and long legs of the flow loop.

Finally, we predict the existence of localized regions of higher-order periodicities, termed 

transition regions, that are favored by a reduced droplet influence (i.e. reduced ΔPDroplet or 

increased Poiseuille pressure drop). These transition regions occur because of the small Δt 
separating droplets entering and departing the flow loop, and fluctuations in the flow rate 

caused by transient droplet dynamics that alter droplet timing to create higher-order 

periodicities in the outlet. This behavior is a striking demonstration of the fascinating system 

responses that can arise from simple deterministic systems.

Acknowledgements

This research was supported in part by NIH (R01-HL8126), NSF (EPS-0701491) and the Louisiana Board of 
Regents Support Fund (NSF/LEQSF(2007–10)-CyberRII-05).

References

1. Fuerstman MJ, Garstecki P and Whitesides GM, Science, 2007, 315(5813), 828–32. [PubMed: 
17204610] 

2. Williams RP, G. S, Miller OJ, Magdassi S, Tawfik DS and Griffiths AD, Nat. Methods, 2006, 3, 
545–50. [PubMed: 16791213] 

3. Beer NR, Hindson BJ, Wheeler EK, Hall SB, Rose KA, Kennedy IM and Colston BW, Anal. Chem, 
2007, 79, 8471–5. [PubMed: 17929880] 

4. Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L, Blouwolff J, Humphry KJ, 
Köster S, Duan H, Holtze C, Weitz DA, Griffiths AD and Merten CA, Chem Biol, 2008, 15(8), 
427–37. [PubMed: 18482695] 

5. Zheng B, Tice JD and Ismagilov RF, Anal. Chem, 2004, 76, 4977–82. [PubMed: 15373431] 

6. Huebner A, Sharma S, M. S-A, Hollfelder F, Edel JB and deMello AJ, Lab Chip, 2008, 8, 1244–54. 
[PubMed: 18651063] 

7. Stone HA, Stroock AD and Ajdari A, Annu. Rev. Fluid Mech, 2004, 36.

8. Tan Y-C, Fisher JS, Lee AI, Cristini V and Phillip A, Lab Chip, 2004, 4, 292–8. [PubMed: 
15269794] 

9. Khandurina J and Guttman A, J. Chromatogr. A, 2002, 943, 159–83. [PubMed: 11833638] 

10. Jousse F, Farr R, Link DR, Fuerstman MJ and Garstecki P, Phys. Rev. E, 2006, 74(036311), 1–5.

11. Schindler M and Ajdari A, Phys. Rev. Lett, 2008, 100.

12. Sessoms DA, Belloul M, Roche M, Courbin L and Panizza P, Phys. Rev. E, 2009, 80(016317), 1–
10.

13. Engl W, Roche M, Colin A, Panizza P and Ajdari A, Phys. Rev. Lett, 2005, 95, 208–304.

14. Jousse F, Lian G, Janes R and Melrose J, Lab Chip, 2005, 5, 646–56. [PubMed: 15915257] 

Smith and Gaver Page 14

Lab Chip. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Wooldridge M and Jennings N, Knowl Eng Rev, 1995, 10(2), 115–52.

16. Adzima BJ and Velankar SS, J. Micromech. Microeng, 2006, 16, 1504–10.

17. Hodges SR, Jensen OE and Rallison JM, J. Fluid Mech, 2004, 501, 279–301.

18. Ratulowski J and Chang H-C, Phys. Fluids A, 1989, 1, 1642–55.

19. Muradoglu M and Stone HA, J. Fluid Mech, 2007, 570, 455–66.

20. Smith BJ and Gaver DP, J. Fluid Mech, 2008, 601, 1–23. [PubMed: 19081756] 

21. Boy DA, Gibou F and Pennathur S, Lab Chip, 2008, 8, 1424–31. [PubMed: 18818794] 

22. Cristini V and Tan Y-C, Lab Chip, 2004, 4, 257–64. [PubMed: 15269790] 

23. Giavedoni MD and Saitia FA, Phys. Fluids, 1997, 9, 2420–8.

24. Shen EI and Udell KS, ASME J. Appl. Mech, 1985, 52, 253–6.

25. Halpern D and Gaver DP III, J. Comput. Phys, 1994, 115, 366–75.

26. Lu W-Q and Chang H-C, J. Comput. Phys, 1988, 77, 340–60.

Smith and Gaver Page 15

Lab Chip. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Experimental apparatus employed by Fuerstman et al1 to investigate the behavior of a train 

of immiscible droplets in a microfluidic channel.
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Figure 2: 
Model domain, consisting of an inlet segment leading to a bifurcation where the flow is 

divided into two legs of unequal length. The flow loop then reunites in the outlet channel, 

where pattern formation is observed.
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Figure 3: 
Pressure drop occurring across an arbitrary section A of the model. The total pressure drop 

is equal to the sum of the droplet and Poiseuille pressure drops 

ΔPA = ΔPA
Poiseuille + NΔPA

Droplet, where N is the number of droplets.
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Figure 4: 
Agent-based program structure
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Figure 5: 
Pattern recognition subroutine which is used to determine pattern convergence.
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Figure 6: 
Graphical representation of the system behavior for p1 (a) and p2 (b).
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Figure 7: 
Bifurcation (b) and Poincaré maps (c) for the baseline case (μ = 0.0295 g/cm sec, γ = 3.6 

dyn/cm, R = 50 μm, α = 0.9, and ΔP = 32547 dyn/cm2). The Poincaré map shows overlaying 

inter-droplet time-spacing for many instances of p3 behavior occurring at Tin = 0.7 sec, as 

shown in (a).

Smith and Gaver Page 22

Lab Chip. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Bifurcation map comparing baseline case simulation results (μ = 0.0295 g cm−1 sec−1, γ = 

3.6 dyn cm−1, R = 50 μm, α = 0.9, and ΔP = 32547 dyn cm−2) to Fuerstman’s1 experimental 

results. The simulation parameters are defined so that the transition from p1 to p3 occurs at 

an identical Tin to the experiments.
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Figure 9: 
Outlet channel periodicity for the baseline (R = 50 μm, γ = 3.6 dyn cm−1) and low γ (R = 

50 μm, γ = 1.8 dyn cm−1) cases with the driving pressure fixed at ΔP = 32547 dyn cm−2. 

The onset of higher-order periodicities (T in
P +) for the low γ case occurs at Tin = 0.525 sec, 

compared to Tin = 1.04 sec for the baseline. Large symbols indicate transition region points.
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Figure 10: 
Outlet channel periodicity for the baseline (R = 50 μm, μ = 0.295 g cm−1 sec−1) and high μ 

(R = 50 μm, μ = 0.59 g cm−1 sec−1) cases with the driving pressure fixed at ΔP = 32547 dyn 

cm−2. The onset of higher-order periodicities (T in
P +) for the high μ case occurs at Tin = 2.18 

sec, compared to Tin = 1.04 sec for the baseline. Large symbols indicate transition region 

points.
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Figure 11: 
Outlet periodicity for tube radii R = 50 μm (baseline case) and R = 25 μm for μ = 0.0295 g 
cm−1 sec−1, γ = 3.6 dyn cm−1, and α = 0.9. In both cases the driving pressure is identical 

(ΔP = 32547 dyn cm−2), the increased fluidic resistance resulting by the decreased radius 

causes the transition from p1 to higher orders to occur at a much larger Tin = 4.5 sec. Large 

symbols indicate transition region points.
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Figure 12: 
Effects of the surface tension γ on periodicity in the outlet channel showing the low γ (γ = 

1.8 dyn cm−1, R = 50 μm, ΔP = 19400 dyn cm−2), low R (γ = 3.6 dyn cm−1, R = 25 μm, ΔP 
= 73800 dyn cm−2), and the baseline cases (γ = 3.6 dyn cm−1, R = 50 μm, ΔP = 32547 dyn 
cm−2) with μ = 0.0295 g/cm sec and α = 0.9. The low radius and low surface tension cases 

exhibit similar behavior; in both cases the influence of an individual droplet is reduced. 

Large symbols indicate transition region points.
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Figure 13: 

Effects of the viscosity μ (at fixed T in
P +) on periodicity in the outlet channel showing the 

baseline (μ = 0.59 g cm−1 sec−1, ΔP =32547 dyn cm−2) and high viscosity (μ = 0.059 g/cm 
sec, ΔP = 38800 dyn cm−2) cases where γ = 3.6 dyn cm−1, R = 50 μm, and α = 0.9. At a 

given Tin, periodicity is greater for the high-viscosity case because the Poiseuille pressure 

drop has increased while the droplet pressure drop remains relatively constant. Large 

symbols indicate transition region points.
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Figure 14: 
Bifurcation maps (a,c) and outlet periodicities (b,d) describing the substantial effects of the 

leg length ratio α = LLong/LShort for α = 0.98 (A and B, ΔP = 38600 dyn cm−2) and α = 

0.75 (C and D, ΔP = 19700 dyn cm−2) at μ = 0.0295 g/cm sec, γ = 3.6 dyn cm−1, and R = 

50 μm. Reducing the leg length ratio (increasing the disparity in lengths) results in a wider 

distribution of droplet spacing and higher-order periodicities at a given Tin.
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Table 1:

Parameter values employed in simulations. The length of the long (top) leg of the flow loop LLong = 1.98 mm. 

The driving pressure ΔP is chosen so that the transition from period-1 to higher orders of periodicity occurs at 

T in
P + = 1.04 sec, as in Fuerstman’s1 experimental investigation.

Bulk Fluid Viscosity 
μ

(g cm−1 sec −1)

Surface Tension 
γ

(dyn cm−1)

Fixed Tin Driving 
Pressure ΔP
(dyn cm−2)

Fixed ΔP p1 
Transition Time 

T in
P +

(sec)

Radius R
(μm)

Leg Length 
Ratio α

LShort/LLong

Baseline 0.0295 3.6 32547 1.03 50 0.9

Low γ 0.0295 1.8 19400 0.525 50 0.9

High μ 0.059 3.6 38800 2.18 50 0.9

Low R 0.0295 3.6 73800 4.50 25 0.9

Low α 0.0295 3.6 18600 0.415 50 0.75

High α 0.0295 3.6 38600 1.25 50 0.98
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Table 2:

Parameter ratios w.r.t. the baseline case highlighting the important differences between the fixed T in
P + and 

fixed ΔP cases.

Fluidic Resistance Ω ΔPDroplet
(Fix ΔP)

ΔPDroplet

(Fix T in
P +)

Ca
(Fix ΔP)

Ca

(Fix T in
P +)

Baseline 1 1 1 1 1

Low γ 16 0.91 1.45 0.25 0.57

High μ 2 1 1.10 1 1.19

Low R 1 0.71 0.55 2 1.19

Low α 1 1.00 0.74 1.00 0.57

High α 1 0.99 1.09 0.99 1.19
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