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Abstract

Identifying the genes and proteins associated with a biological process or disease is a central goal 

of the biomedical research enterprise. However, relatively few systematic approaches are available 

that provide objective evaluation of the genes or proteins known to be important to a research 

topic, and hence researchers often rely on subjective evaluation of domain experts and laborious 

manual literature review. Computational bibliometric analysis, in conjunction with text mining and 

data curation, attempts to automate this process and return prioritized proteins in any given 

research topic. We describe here a method to identify and rank protein—topic relationships by 

calculating the semantic similarity between a protein and a query term in the biomerical literature 

while adjusting for the impact and immediacy of associated research articles. We term the 

calculated metric the weighted copublication distance (WCD) and show that it compares well to 

related approaches in predicting benchmark protein lists in multiple biological processes. We used 

WCD to extract prioritized “popular proteins” across multiple cell types, subanatomical regions, 

and standardized vocabularies containing over 20 000 human disease terms. The collection of 

protein—disease associations across the resulting human “diseasome” supports data analytical 

workflows to perform reverse protein-to-disease queries and functional annotation of experimental 

protein lists. We envision that the described improvement to the popular proteins strategy will be 

useful for annotating protein lists and guiding method development efforts as well as generating 

new hypotheses on understudied disease proteins using bibliometric information.
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INTRODUCTION

The corpus of scientific literature can be represented as a network of structured associations 

among genes/proteins, diseases, and researchers.1 Identifying the prioritized proteins within 

a biomedical topic (e.g., a disease, cell type, or organ) can yield insights into the underlying 

biological processes and can also help guide research direction and resource allocation. For 

instance, where the wherewithal for producing protein-specific assays or reagents is finite, a 

judicious strategy would be to prioritize efforts to those protein targets with maximal 

potential return and interest in the relevant research community. One example application 

that has garnered the recent attention of proteomics researchers is to identify important 

disease proteins to guide the development of targeted proteomics assays to promote the 

adoption of proteomics across broad research fields.

Toward this goal, we and others have applied data science approaches to analyze the 

scientific literature and identify highly studied “popular proteins” from multiple tissues and 

research topics.2,3 The rationale for popular proteins as a proxy for biologically important 

proteins is that over time researchers in a field would be expected to prioritize more research 

efforts on promising protein targets, such that proteins associated with more publications 

within a topic are also more likely to have bona fide biological significance. To identify 

popular proteins across research topics, we showed that the relationship between a protein 

and a particular topic in literature publication may be estimated by their semantic similarity 

within the PubMed corpus, a metric that measures the likeness of meaning between the a 

protein term and a topic term within a corpus of documents, as opposed to the similarity in 

their syntactic representation. Using the PubMed query function and the publicly available 

Gene2PubMed reference data provided by The National Center for Biotechnology 

Information (NCBI), we previously determined popular proteins based on their semantic 

similarity with six organ systems.2 In recent work, the Biology/Disease Human Proteome 

Project (B/D-HPP) initiatives within the Human Proteome Organization (HUPO) have 
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adopted this approach to discover critical proteins in the heart,4 the liver,5 and other organs,3 

the results of which are being leveraged to analyze research trends and expedite bioassay 

development. Despite progress, whether the popular protein approach can distinguish 

prioritized protein lists across systematic collections of disease terms remains to be 

examined, whereas further refinements to bibliometric methods have the potential to yield 

more accurate prioritized protein lists.

Here we extend the popular protein strategy to incorporate additional data annotation 

sources as well as introduce a weighted copublication distance (WCD) metric, which takes 

into account the immediacy and impact of individual publications to adjust the contributions 

of single publications to popularity scores. We find that WCD outperforms unadjusted 

semantic similarity scores over identical queries. We demonstrate its utility to identify 

popular proteins across cell types and across common disease phenotypes (inflammation, 

fibrosis, metabolic syndrome, protein misfolding, and cell death) and to further identify 

significant proteins across the human “diseasome”, a term used to refer to the set of known 

human diseases/disorders and their association networks.6,7 By querying a vast collection of 

over 23 000 biomedical terms compiled in standardized vocabularies of human disease 

processes including 10 129 diseases, 10 642 phenotypes, and 2370 pathways, we find that 

diseasome search terms are associated with specific prioritized protein lists that inform on 

disease relationships. Finally, we have implemented a reverse protein search strategy over 

the precompiled terms, which associates an input list of genes/proteins with the diseases and 

disease phenotypes in which they are intensively investigated; for example, querying the 

protein cardiac troponin would return the disease term cardiomyopathy and the phenotype 

chest pain.

MATERIALS AND METHODS

Calculation of Semantic Distance between Protein and Topics

The popular protein strategy2 performs large-scale bibliometric analysis from research 

articles indexed on PubMed. Research topics are used to query PubMed via the NCBI EUtils 

Application Programming Interface (API)8 to retrieve associated articles and an annotation 

table that houses known PubMed ID (PMID)–gene associations. To measure the semantic 

distance between a gene/protein with a topic of interest in the literature, we previously 

devised a semantic similarity metric, the normalized copublication distance (NCD), defined 

as

NCDP, T =
max log10

T , log10
P − log10

T ∩ P

log10
A − min log10

T , log10
P ]

(1)

where T denotes the set of articles associated with any protein in the set of articles contained 

in the annotation table and that are retrieved from the PubMed query, P is the set of articles 

associated with a particular protein in the annotation table, and A is the set of all articles 

associated with any protein in any topic in the annotation, that is, all PubMed ID (PMID) 

entries in the annotation table, such that T ⊆ A and P ⊆ A. The significance of association 
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between a term and a particular protein is estimated by the Z score of the NCDP,T over all 

associated proteins under a normal distribution.

We devised a weighted variant of NCD by introducing weighted adjustments to each 

article’s contribution by immediacy and impact metrics. In the unadjusted NCD, each 

associated article ai carries an equal weight of 1. The weight is adjusted in WCD such that 

each annotated article in the association table i carries a weight of wi

WCDP,T =

max log10 ∑
i ai ∈ T

wi , log10 ∑
i ai ∈ P

wi − log10 ∑
i ai ∈ (T ∩ p)wi

log10 ∑
i ai ∈ A

wi − min log10 ∑
i ai ∈ T

wi , log10 ∑
i ai ∈ P

wi

(2)

To model the impact of an article ai, we retrieved citation counts programmatically by 

querying PubMed IDs through the Europe PubMed Central (PMC) web API.9 We then 

applied logistic transformation to the base 10 logarithm of the number of citations of an 

article plus one ni, where the scale a, shape b, and steepness c are 1, 6, and 2, respectively.

mi(a, b, c) = a
1 + b ⋅ exp −c ⋅ ni

(3)

To model the immediacy of a paper, we applied Weibull transformation to the distance in 

decades since the publication date of the article to the present year, yi, with the shape 

parameters, λ and k, heuristically set to 1 and 1.25.

ni(λ, k) = k
λ ⋅

yi
λ

k − 1
⋅ e

− yi/λ
k

(4)

The final weighted publication count of the protein is calculated as the sum of the associated 

publication counts plus each associated publication’s immediacy and impact.

wi = 1 + mi + ni (5)

Determination of Popular Protein Lists

With the above method, we retrieved popular protein lists with search terms as described in 

the Results section. Protein–PMID associations were retrieved on 2018–04-22 from the 
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manually curated NCBI Gene2Pubmed,8 and data were downloaded from Pubtator,10 the 

latter of which contained text-mined relationships between biomedical concepts and entities. 

A union of the two sets of relationships was used in the analysis below.

We performed PubMed queries on 23 141 defined topics retrieved from publicly available 

vocabularies, including 10 129 disease definitions from Disease Ontology (DO)11 (version 

2018–03-02; retrieved 2018–03-15), 10 642 phenotypic descriptions from Human Phenotype 

Ontology (HPO)12 (version 2018–03-08; retrieved 2018–03-15), and 2370 biochemical and 

signaling pathways from Pathway Ontology (PWO)13 (version 7–4-2; retrieved 2018–

03-15). PWO contains only a collection of standardized terms for pathways and is distinct 

from Gene Ontology (GO). From the retrieved PubMed IDs from each query, protein-term 

associations are ranked according to NCD, as previously described (popularity index). 

Moreover, the popularity index for all terms and proteins that are significantly associated 

with each individual topics (P< 0.05) have been uploaded to the PubPular web app and are 

made searchable.

To evaluate the similarity in associated protein lists between two disease terms with 50 or 

more significantly associated proteins, we consider (i) the proportion of shared proteins in 

the top 50 ranks θ50 of the —log10P of protein-term associations between two terms and (ii) 

the Cohen’s kappa κ in two-way classification of significantly associated proteins (P ≤ 0.05) 

and nonsignificantly associated proteins (P > 0.05) among the intersect of proteins with one 

or more associated publications in each term. Two disease terms are considered to be similar 

in their protein-term associations if θ50 ≥ 0.8 and κ ≥ 0.

Web Application and User Interface

We provide a web app PubPular at http://pubpular.net that allows users to query the popular 

protein lists of custom topics. The PubPular web app automatically analyzes the occurrences 

of each protein being referenced to the retrieved papers using the Gene2PubMed8 and 

Pubtator10 resources and performs the calculation of WCD between a protein and the 

queried topic. We created an extended module to the PubPular web application named 

FABIAN (Functional Annotation by Bibliometric Analysis), which provides the 

functionality for gene/protein lists to be uploaded and compared with results from curated 

terms. The web module builds on the precompiled results from search terms on PubPularDB 

and uses parametric gene set enrichment analysis14 to discover terms for which the list of 

associated proteins (P ≤ 0.05) is significantly enriched or depleted with reference to the 

ranks of the uploaded gene/protein list. The code for calculating WCD and R package are 

available at https://github.com/ed-lau/calcWCD.

Comparison of Prioritized Gene Lists against Curated Standards

Curated benchmark protein lists were retrieved as follows: Proteins associated with three 

Gene Ontology (GO)15 terms for disease processes, namely, apoptosis (apoptotic process, 

GO:0006915; 762 proteins), cell adhesion (GO:0007155; 800 proteins), DNA repair (463 

genes; GO:0006281), and mitochondrial inner membrane (GO:0005743; 549 proteins), were 

retrieved from the European Bioinformatics Institute (EBI) QuickGO interface16 and filtered 

to include only human Entrez Gene IDs that exist in the annotation source. Proteins 
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associated with complex disease terms, namely, brain infarction (40 proteins), hypertension 

(180 proteins), insulin resistance (62 proteins), macular degeneration (40 proteins), 

Parkinson’s disease (92 proteins), obesity (202 proteins), schizophrenia (170 proteins), and 

Tetralogy of Fallot (12 proteins), were retrieved from the Comparative Toxicogenomics 

Database (CTD)17 (downloaded on 2018–08-13).

Precision, recall, sensitivity, and specificity of positive/negative classification are calculated 

based on true-positives, TP, false-positives, FP, true-negatives, TN, and false-negatives, FN. 
Sensitivity and Recall are defined as TP/(TP + FN). Specificity is defined as TN/(TN + FP), 

Precision is defined as TP/(TP + FP), and Fβ is defined as (1 + β2 (Preasion-Recall)/ (β 
Precision + Recall).

Results from GLAD4U18 and PURPOSE3 were retrieved on their respective web services on 

2018–08-13 after accessing the web tools and entering the exact search terms as shown, and 

the protein lists were retrieved in entirety using their download functions. Searches were 

performed using default settings on the web services, with the exception that score threshold 

is set to 0 for GLAD4U such that the list of all predicted proteins and their scores could be 

retrieved. Protein lists were ranked from best to worst using the standard scores output from 

each method, namely, GLAD4U score for GLAD4U (highest is better), PURPOSE_Score 

for PURPOSE (higher is better), NCD for Pubpular NCD (lower is better), and WCD for 

Pubpular WCD (this study) (lower is better). Receiver operating characteristic (ROC) 

analysis was performed by ranking all gene/protein predictions based on the score of each 

method. Area-under-ROC (AUROC) was calculated by integration using the trapezoid 

method over all Sensitivity and 1 – Specificity values in a particular query.

RESULTS

Evaluation of Prioritized Protein Lists

We previously devised a metric NCD for the semantic similarity between a protein and a 

topic of interest. NCD normalizes the count of query-specific publications by the count of 

total publications on PubMed that are associated with the protein, so that a query will not be 

populated only by proteins that are broadly studied in many fields (e.g., p53 or APOE). 

WCD modifies NCD by modeling the immediacy and impact of an article to weight its 

contribution to the overall protein-term association (Figure 1) (see Methods). Overall, the 

publication year and citation counts of publications are poorly correlated (Figure S1). Their 

incorporation in WCD allows recent or high-cited publications to carry additional evidence 

of protein–term relationships.

The resulting metrics prioritizes top proteins in PubMed query search terms including 

searches for inherited and complex diseases (Figure 1). A lower WCD for a protein within a 

disease query suggests higher semantic similarity between the protein term and the disease 

term in the literature and is overall correlated with a greater number of publications for the 

proteins within that topic.

To compare the performance of WCD to retrieve relevant gene lists, we compared the results 

to a list of benchmark curated terms in public resources. These include four curated 
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biological process terms from Gene Ontology (apoptosis, cell adhesion, DNA repair, and 

mitochondrial inner membrane) as well as eight complex disease terms (brain infarction, 

hypertension, insulin resistance, macular degeneration, obesity, Parkinson’s disease, 

schizophrenia, and Tetralogy of Fallot). Gene Ontology contains manually curated 

relationships between terms and human genes as well as annotations automatically 

transferred from homologues of other species,15 whereas the Comparative Toxicogenomics 

Database (CTD)17,19 contains manual annotation and further collage annotations from Gene 

Ontology, Reactome, PubMed, and other sources. Both databases contain curated lists of 

good quality and are well utilized by researchers and hence provide a benchmark for 

automated methods. We compared the performance to the NCD from the PubPular2 web app 

NCD2 and to two related methods GLAD4U18 and PURPOSE.3 The test terms were chosen 

to avoid biasing toward the present approach with specific terms, as 6 of the 12 terms were 

used as benchmarks in the GLAD4U publication and the CTD database was a data source 

used to benchmark PURPOSE in its publication (Figure 2).

From comparison of the areas-under-curve of receiver operating characteristics (AUROC) of 

predicted gene/protein lists from each method against the manually curated benchmark data 

set, we found that WCD consistently outperforms NCD in overall sensitivity and specificity 

and also compares well to GLAD4U and PURPOSE. Each method differs in data annotation 

source and prioritization algorithm (see also the Discussion), and we saw some evidence that 

the approaches are complementary. No method performed better than WCD in 11 out of 12 

terms tested. PURPOSE tied with WCD in two terms and was the top performer in one term 

(hypertension). Among the 12 tested terms, brain infarction appeared to be the only term 

where none of the method performed well, possibly because this CTD term was not usually 

employed in the relevant literature. Besides brain infarction, mitochondrial inner membrane 

was another query term where the compared methods did not appear to reach high 

sensitivity, suggesting that some of the curated proteins were not in the predicted lists at all 

regardless of confidence or score cutoff.

We complemented the analysis by comparing the performance of WCD over NCD using F2 

measure, which is a function of recall and precision of the returned protein list at a particular 

threshold. Compared with the F1 score, the F2 score places twice the emphasis on recall over 

precision and is preferred in our comparison because the cost of a false-positive is adjudged 

to be lower than the cost of a false-negative. At two separate significance thresholds (P ≤ 

0.01 and P ≤ 0.05), WCD consistently outperforms Pubpular NCD2 in 9 of the 12 terms 

tested and in 10 of the 12 terms tested, respectively (Figure S2). Altogether, these 

comparisons suggest that WCD offers excellent performance in identifying important gene/

proteins across topics.

Catalogs of Popular Proteins Across Cell Types and Diseases

Using the devised prioritization method, we set out to identify prioritized proteins in several 

individual subanatomical regions and cell types. We previously demonstrated that queries of 

six major organ systems revealed a preferential affinity of each organ with a specific set of 

proteins. Here we asked whether the subanatomical regions and cell types can also be shown 

to be preferentially associated with different proteins. For the heart, we queried the 
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anatomical regions “left atrium”, “left ventricle”, “right atrium”, and “right ventricle” as 

well as the cell types “cardiomyocytes”, “smooth muscle cells”, “endothelial cells”, and 

“fibroblasts”, using the search terms “cardiac OR heart AND left AND atrium”, and so on. 

For the lung, we queried the anatomical regions “alveolar sac”, “bronchiole”, “capillaries”, 

and “trachea”, as well as the cell types “pneumocytes”, “smooth muscle”, “epithelial”, and 

“fibroblasts”. From the brain, we queried proteins associated with the anatomical regions 

“cerebellum”, “cerebrum”, “brain stem”, and “thalamus” and the cell types “neurons”, 

“astrocyte”, “glial cell”, and “oligodendrocyte”.

The analysis led to several general observations. First, we found that queries of different 

subanatomical regions were sufficiently specific; for instance, the top five proteins in each 

query readily returned associations with region-specific proteins (Table 1). For example, in 

the heart, connexin-40 (GJA5) is preferentially associated with the atria but not ventricles, 

consistent with the known involvement of the protein in the pathogenesis of atrial 

fibrillation.20 In the brain, ataxins (ATXN½), associated with progressive ataxias, are 

preferentially associated with the cerebellum but not the cerebrum. Cell types from each 

tissues were also associated with different lists of prioritized proteins. For instance, 

surfactant proteins are preferentially associated with pneumocytes, which form the alveolar 

linings, whereas fibroblast growth factors (FGFs) populate the prioritized list for lung 

fibroblasts. Notably, the fibroblasts and smooth muscle cells in the heart and in the lung are 

found to be associated with different sets of proteins, for example, FGF23 and FGF21 for 

heart fibroblasts versus FGF10 and FGF7 for lung fibroblasts, suggesting that the prioritized 

protein lists may help shed light onto the gene expression and properties of similar cell types 

found across multiple organs, such as fibroblasts and endothelial cells, that may be 

implicated in common disease processes, for example, fibrosis and endothelial disorders, 

that accompany diverse human diseases.

The majority of known human diseases can be grouped into subnetworks within a disease 

network sometimes referred to as the “diseasome”, in which known diseases can be grouped 

into clusters based on their shared disease phenotypes.7 To determine how the prioritized 

protein lists intersect with common disease processes that occur in complex human diseases, 

including those that are the thematic focuses of HUPO B/D HPP initiatives, we queried the 

popular proteins in six specific disease processes, namely, fibrosis, cell death, inflammation, 

metabolic syndrome, oxidative stress, and protein misfolding (Table 2).

We find that the top five proteins in “fibrosis” are transforming growth factor beta 1 

(TGFB1), followed by connective tissue growth factor (CTGF), actin alpha skeletal muscle 

(ACTA1), mothers against decapentaplegic homolog 3 (SMAD3), and mothers against 

decapentaplegic homolog 2 (SMAD2). Another molecular phenotype common in multiple 

diseases is “cell death”. The top five proteins in our popular protein search using the key cell 

death returned caspase-3 (CASP3), apoptosis regulator Bcl-2 (BCL2), apoptosis regulator 

BAX (BAX), caspase-9 (CASP9), and caspase-8 (CASP8). The query for inflammatory 

response returned common cytokines including interleukin-6 (IL6), tumor necrosis factor 

(TNF), C-reactive protein (CRP), interleukin-1 beta (IL1B), and interleukin-8 (CXCL8); the 

query for metabolic syndrome returned lipid metabolism proteins including adiponectin 

(ADIPOQ), insulin (INS), and leptin (LEP); oxidative stress queries returned nuclear factor 
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erythroid 2-related factor 2 (NRF2/NEF2L2), catalase (CAT), superoxide dismutases 

(SOD½), and kelch-like ECH-associated protein 1 (KEAP1). Finally, protein misfolding 

returned tauopathy and neurodegenerative proteins as well as amyloidosis proteins including 

alternative prion protein (PRNP), alpha-synuclein (SNCA), huntingtin (HTT), transthyretin 

(TTR), and superoxide dismutase (SOD1).

Protein–Disease Networks Across the Human Diseasome

Although the individual results on common disease processes are not entirely surprising, the 

prioritized protein lists could be useful for identifying proteins and pathways that are 

preferentially studied in particular disease processes such that reagent development efforts 

could be prioritized toward these topics (e.g., fibrosis in the heart). Building on this effort, 

we systematically queried over 25 000 search terms in comprehensive vocabularies that 

describe virtually the entirety of known human diseases. In total, we performed individual 

PubMed queries, then calculated protein association scores for 23 141 defined topics 

retrieved from publicly available vocabularies, including proteins for 10 129 disease 

definitions from Disease Ontology (DO), 10 642 phenotypic descriptions from Human 

Phenotype Ontology (HPO), and 2370 biochemical and signaling pathways from Pathway 

Ontology (PWO). Among the vocabularies, 7897 search terms in DO were associated with at 

least one significant (P ≤ 0.05) protein, along with 7076 terms in HPO and 1798 terms in 

PWO.

We explored the network representation of the relationships between 832 DO disease terms 

that are each significantly associated with 50 or more proteins at P ≤ 0.05. Manual 

inspection showed that disease terms are clustered together by their prioritized protein lists 

(Figure 3). We compared the derived protein “diseasome” with a previous disease network 

generated using Online Mendelian Inheritance in Man (OMIM) data.21 Despite differences 

in data source and methodology, we observe comparable properties in the derived human 

disease networks. First, we observe a network topology organized into hubs, where the 

majority of disease terms are linked to a few neighbors but a few hub diseases are linked to 

many neighbors. Hubs are occupied by top-level or near-top-level terms in DO categories; 

for example, DOID:5295 intestinal disease is a hub disease and linked to DOID:0060810 

colitis, DOID:0050589 inflammatory bowel disease, DOID:8577 ulcerative colitis, and 

DOID:0060190 ileocolitis. Second, we see prominent and interconnected clusters of cancer 

terms, as represented in the network, as also noted by Goh et al.21 Third, related disease 

terms are clearly connected via their semantic similarity despite little verbal or syntactic 

similarities; for example, DOID:1242 globe disease is the neighbor of DOID:10871 age-

related macular degeneration and DOID:3612 retinitis. Although these observations may be 

expected, they nevertheless show that the protein-association approach is able to distinguish 

relevant pathogenic processes across human diseases. All 11 428 397 protein–disease 

associations can be found in Supplementary Data 1.

Reverse Query from Proteins to Significantly Associated Topics

Using the compiled lists of prioritize proteins across multiple human diseases and 

phenotypes, we explored whether reverse queries could be made from proteins to retrieve 

information on disease vocabulary terms. In other words, given a protein name, a protein-to-
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topic reverse query returns all of the disease areas in which this protein is intensively studied 

based on literature records. This is distinguished from the forward query, where the user 

inputs a disease term and retrieves all of the proteins that are intensively studied in the 

disease. For instance, one of the most highly investigated proteins in the heart is troponin I 

(TNNI3). Reverse query with TNNI3 against the precompiled popular protein lists of DO 

and HPO terms indicates that, as expected, TNNI3 is also highly associated with a cluster of 

cardiovascular-related topics, ranging from “myocardial infarction” (DO accession DOID:

5844; P: 9.6 × 10−5) to “hypertrophic cardiomyopathy” (DO accession DOID:11984; P: 4.1 

× 10−3). Utilizing the reverse query strategy on the list of popular disease phenotype proteins 

above, we find that the top fibrosis protein TGFB1 is significantly associated with 

“mesenchymal cell neoplasm” (DO accession DOID:3350; P: 0.059), “collagen diseases” 

(DO accession DOID:854, P: 0.0016), as well as a number of fibrotic diseases including 

“pulmonary fibrosis” (DO accession DOID:3770; P: 0.0045), “renal fibrosis” (DO accession 

DOID:50855; P: 0.0042), and “liver cirrhosis” (DO accession DOID:5082; P: 0.031), 

consistent with its involvement in common disease processes. Moreover, we asked with 

which other disease terms is another top fibrosis protein CTGF also popularly associated and 

identified a broad spectrum of disease terms including “connective tissue benign neoplasm”, 

“connective tissue cancer”, “renal fibrosis”, “liver cirrhosis”, and “scleroderma”. In the HPO 

data set, TGFB1 is further associated with phenotypes including “cirrhosis”, “beta-cell 

dysfunction”, and hepatic, pulmonary, and renal fibrosis. The pathways associated with 

TGFB1 include transforming growth factor beta signaling pathway, cell–extracellular matrix 

signaling pathway, and peptide and protein metabolic process. Importantly, this strategy is 

generalizable to other collections of popular protein lists not detailed here. For example, the 

Brenda Tissue Ontology (BTO) contains a collection of terms on tissue and cell types, 

reverse query against which shows that TGFB1 is preferentially associated with a number of 

fibroblast-related publications in the literature, including in myofibrolasts and lung 

fibroblasts.

One application for the reverse query strategy is that the curated protein lists across human 

diseases allow popular proteins to be used as an annotation source for gene list functional 

analysis. For instance, given a list of differentially expressed proteins found in a quantitative 

transcriptomics or proteomics experiment comparing two biological samples, one may 

examine whether the significantly up-/down-regulated proteins are enriched in proteins that 

are intensively researched in a particular disease or disease phenotypes. We implemented a 

new module (FABIAN) to perform gene enrichment analysis against precompiled popular 

protein lists. To evaluate the potential utility of this approach, we retrieved a publicly 

available transcriptomics data set on cardiac failure, which encompasses five replicates each 

of control versus failing hearts from a rodent model of transverse aortic constriction with 

apical myocardial infarction (GSE56348).22 We performed a hypergeometric test to identify 

enriched annotation terms among differentially expressed protein (defined as having 

limma23 adjusted P ≤ 0.01) against Gene Ontology biological process terms and the 

precompiled DOID disease–gene associations (Figure 4). The results show that reverse 

popular protein queries provide complementary annotations to GO Process terms; for 

example, we find significant enrichment of differentially regulated genes that are intensively 

researched in DOID “collagen disease” and “cartilage disease” terms (hypergeometric test 
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adjusted P ≤ 0.05), corresponding to enrichment of GO “extracellular matrix organization” 

term, as well as enrichment of the DOID “mitochondrial disease” term, which corresponds 

to the GO “mitochondrial electron transport, NADH to ubiquinone” term. Moreover, the 

enrichment analysis against DOID shows a significant involvement of genes highlighted in 

“atrial fibrillation”, which was not readily apparent among the top enriched GO terms 

(Figure 4), highlighting the potential utility of combining multiple annotation sources in 

large-scale data interpretation.

Lastly, WCD-ranked popular proteins may also be useful for identifying important target 

proteins that are currently “understudied” in the literature (Figure S3), which may help 

counter researcher bias and also highlight high-value future research avenues.24

It has been suggested that biomedical research is overly focused on only a subset of genes 

and hence may create a “rich gets richer” scenario that leaves important genes/proteins 

understudied.24,25 This has been attributed to various factors including availability of 

reagents26 and risk-averse funding mechanisms,25 but few solutions have been proposed, 

and the advent of omics data alone did not appear to correct gene research biases.25 One 

approach we propose is to focus on proteins that interact closely with highly popular 

proteins but are themselves associated with relatively few publications. As a proof of 

concept, we mapped WCD values to predicted protein–protein association from STRING27 

to create a directed graph connecting interacting pairs from low to high popularity scores. 

We then redistributed protein popularity scores using the PageRank algorithm implemented 

in the igraph package in R. We used three example search terms (“heart failure”, “obesity”, 

and “Parkinson’s disease”) to discern proteins that receive the most gains in popularity 

ranks, that is, understudied proteins that occupy important hub positions around highly-

studied proteins. Notable up-ranked Heart Failure proteins include HEY2, GJA1, and 

NACA2. Notable up-ranked Obesity proteins include PPY and NPY2R. Notable up-ranked 

Parkinson’s Disease proteins include RING1, SMPD1, and COX6A2 (Figure S3). Although 

this hypothesis generation approach shows promise, we caution that a potential limitation is 

that disease interactomes are not specific to cell types or models. We suggest that future 

work may seek to refine the approach outlined here and experimentally validate whether 

implicated proteins may be critical for regulating pathological phenotypes in various disease 

models.

DISCUSSION

Gene/protein prioritization is a recurring informatics task in biomedical research28 that can 

be generally stated as follows: Given a collection of gene names, identify a subset that is 

preferentially associated with a topic or disease in question. For instance, given a list of 

genes residing at a locus implicated in a genetic mapping study, one may wish to find the 

causal disease genes or variants responsible for the observed phenotypes. More recently, 

there has been interest in protein prioritization efforts to guide the prioritized development of 

research reagents or the distributive fairness in biocuration efforts. The Biology/Disease 

Human Proteome Project (B/D-HPP) initiative within the Human Proteome Organization 

(HUPO) has a mission to popularize proteomics assays and reagents, an objective that 

requires the prioritization of genes and proteins to nominate the most attractive assays for 
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development. These needs have spawned text-mining and network approaches28–30 as well 

as literatury-based strategies for in silico gene/protein prioritization.

Literature-based gene/protein prioritization is predicated on the hypothesis that over time, 

researchers will choose to work and publish preferentially on proteins relevant to a disease 

or topic, and hence a popular protein will also tend to play bona fide significant roles in a 

biological phenomenon of interest. We and others have previously shown that publication 

popularity yields accurate predictions of curated gene lists and is distinguished by being 

amenable to any search terms one may think of provided they return PubMed results. 

Several related approaches exist to estimate publication popularity within topics, which 

differ by their sources of annotated gene/protein-term relationships and by their information 

retrieval algorithms. In previous work, we have utilized the NCBI curated Gene2Pubmed file 

without the removal of publications and calculated the unweighted semantic similarity 

between a search term and a protein to prioritize term-specific proteins over nonspecific 

ones.2 GLAD4U utilizes the NCBI-curated Gene2PubMed file after removing publications 

that are associated with 500 or more proteins and applies a hypergeometric test to identify 

proteins that appear more often than expected.18 More recently, Yu et al.3 read from the text-

mined PubTator file10 and ranked proteins by term-frequency inverse document-frequency 

(TF-IDF) modified by the citation index of each publication. In the present study, we use a 

union of the curated Gene2PubMed file and the text-mined PubTator file and calculate the 

WCD, which introduces weighting factors based on the transformed impact (number of 

citations) and immediacy (number of years since publication) of linked publications in the 

calculation of protein–term association. In prior work, we observed that the trend of protein 

popularity in research can change over time;2 for example, the popularity of brain-type 

natriuretic peptide (BNP) surged following its adoption as a clinical marker for heart failure 

in 2003.4 Hence we hypothesize that by assigning more weight to more recent papers we can 

better capture the direction and interest of a field of research associated with a given topic. 

In parallel, it has been suggested that widely cited publications carry more influence to the 

direction of a field and hence may be given higher significance in literature analysis 

including gene prioritization3 and text-mining30 approaches. Pubpular WCD performs 

comparatively well over related methods including PURPOSE and GLAD4U in sensitivity 

and specificity of prediction against benchmarked gene lists.

The present study is also the first to demonstrate the utility of popular proteins in three 

applications, namely, to analyze: (i) cell types and anatomical regions within a region, (ii) 

disease processes underlying multiple disorders, and (iii) systematically cataloged disease 

terms within curated vocabularies. Our results suggest that cell types from each organ are 

preferentially associated with investigations of different proteins and can lend higher 

resolution to the identification of proteins associated with critical disease processes. 

Identifying popular proteins in common disease processes may be useful for guiding 

prioritization methods for protein assays that are not specific to a particular field and so may 

have wider appeal, for example, to develop a panel of multiple reaction monitoring (MRM) 

assays for fibrosis that can be applicable to ongoing research in the heart, the lung, as well as 

the liver. Upon extracting popular proteins from over 23 000 disease and disease phenotype 

definitions, we found that the similarity of associated proteins can be used to cluster disease 

terms and create a representation of the human “diseasome”, a network medicine concept 
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that supposes human diseases are interrelated via underpinning processes and can be used to 

identify the wiring diagram of how perturbations in key genes and modules can influence 

pathogenic processes.21 The popular protein lists provide a potential alternative route toward 

generating disease–disease and disease–gene association networks, which have been 

previously explored using other data sources (e.g., genetic mutation knowledge21 and text-

mining approaches6) to reveal the phenotypic homogeneity of related diseases. A 

comparison of network structures between the popularity-based disease network here and 

phenotype-based networks may help discern deep-lying commonalities and differences in 

disease features. In more immediate applications, precompiled popular proteins across large 

vocabularies of disease terms enabled a “reverse query” strategy to identify disease 

phenotypes that have been associated with a query protein in the literature. Applying this 

strategy to reanalyze differentially expressed genes in a public data set on heart failure, we 

suggest that the enrichment of DO and HPO disease terms among differentially regulated 

transcripts could provide complementary information over commonly utilized GO analysis.

In summary, we describe here a method to prioritize intensively researched proteins 

associated with cell types, subanatomical regions, and molecular phenotypes common across 

human diseases. Several limitations to the current study exist. The annotation sources 

linking genes to PubMed IDs do not distinguish gene-level and protein-level experimental 

evidence in the associated studies. We also saw evidence of bias in protein annotation 

(Figure S4). Proteins with uncertain existence evidence at the protein level (neXtProt PE2–

5)31 and proteins with no known functions (uPE1) are both associated with lower 

publication counts (Figure S4). Some proteins are therefore “unpopular” because their 

expression and function have not been thoroughly investigated but nevertheless may have 

undiscovered importance in disease processes. Future work may address this by identifying 

proteins that interact with intensively research proteins but are themselves understudied in 

the literature.
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NCD normalized copublication distance

WCD weighted copublication distance
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Figure 1. 
Modeling the immediacy and impact of protein-associated publications. (a) Immediacy of a 

publication is modeled using a Weibull distribution such that recent publications published 

within the past decade are given greater weights than older publications that are associated 

with a protein. (b) Impact of a publication is modeled using a logistic transformation of the 

log10 citation count of the publication retrieved via the Europe PubMed Central (PMC) API. 

(c) Scatterplot of weighted copublication distance (WCD) versus publication counts. The top 

10 prioritized proteins in three diseases (cystic fibrosis, diabetes mellitus, and hypertrophic 

cardiomyopathy) as measured by WCD are given as examples (labeled in red).
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Figure 2. 
Receiver operating characteristic (ROC) analysis of protein list prediction. Area-under-ROC 

(AUROC) metric is used to compare the performance of weighted copublication distance 

(WCD) versus unadjusted normalized copublication distance (NCD) (Lam et al. 2015)2 and 

two published approaches GLAD4U (Jourquin et al. 201218) and PURPOSE (Yu et al. 

20183) on 12 query terms. The results are compared against curated benchmark protein lists 

retrieved from the Comparative Toxicogenomics Database (CTD) or Gene Ontology (GO).
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Figure 3. 
Prioritized proteins across the human diseasome. (a) Schematics for precompiling popular 

protein terms from three standard vocabularies related to human diseases and disease 

processes. (b) Distribution of total proteins per term in three vocabularies. The distribution 

of number of total (left) and significantly associated (right) proteins per term in each 

vocabulary (P ≤ 0.05). (c) Correlation matrix of protein associations for 832 Disease 

Ontology (DO) terms with 50 or more proteins associated at P ≤ 0.05. A minimal spanning 

tree of DO terms based on similarity of associated proteins. A protein network is constructed 

using all DO terms associated with any proteins as nodes. Edges connect pairs of DO terms 

with κ ≥ 0 or θ50 ≥ 0.2, from which a minimal spanning tree is constructed. (d,e) Zoomed-in 

views of selected disease labels around two network nodes.
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Figure 4. 
Enriched terms in reverse protein-to-disease query (DO and HPO) versus Gene Ontology. (a) 

Schematics for performing reverse (protein-to-term) queries using precompiled popular 

protein lists in the human diseasome. (b) Enriched terms (hypergeometric test P ≤ 0.05) from 

(top) DO, (middle) HPO, and (bottom) GO Biological Processes were associated with 

differentially expressed genes (limma adjusted, P ≤ 0.01) in a microarray data set from a 

rodent model of heart failure. (c) Relationship between assigned DO, HPO, and GO terms. 

Top associated terms are shown for each significantly up-regulated (blue) or down-regulated 
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(red) transcript (limma adjusted P ≤ 0.01) in the microarray data set from a rodent model of 

heart failure. The alluvial streams link the top enriched term of DO to the corresponding 

terms in HPO and GO for each transcript. For example, a number of up-regulated transcripts 

are associated with the “familial atrial fibrillation” term in DO, corresponding in part to the 

“arrhythmia” term in HPO and to the “regulation of heart rate by cardiac conduction” term 

in GO.
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