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Abstract

Identifying the genes and proteins associated with a biological process or disease is a central goal
of the biomedical research enterprise. However, relatively few systematic approaches are available
that provide objective evaluation of the genes or proteins known to be important to a research
topic, and hence researchers often rely on subjective evaluation of domain experts and laborious
manual literature review. Computational bibliometric analysis, in conjunction with text mining and
data curation, attempts to automate this process and return prioritized proteins in any given
research topic. We describe here a method to identify and rank protein—topic relationships by
calculating the semantic similarity between a protein and a query term in the biomerical literature
while adjusting for the impact and immediacy of associated research articles. We term the
calculated metric the weighted copublication distance (WCD) and show that it compares well to
related approaches in predicting benchmark protein lists in multiple biological processes. We used
WCD to extract prioritized “popular proteins” across multiple cell types, subanatomical regions,
and standardized vocabularies containing over 20 000 human disease terms. The collection of
protein—disease associations across the resulting human “diseasome” supports data analytical
workflows to perform reverse protein-to-disease queries and functional annotation of experimental
protein lists. We envision that the described improvement to the popular proteins strategy will be
useful for annotating protein lists and guiding method development efforts as well as generating
new hypotheses on understudied disease proteins using bibliometric information.

"Corresponding Author s Jennifer.VanEyk@cshs.org (J.E.V.E.)., maggie.lam@ucdenver.edu (M.P.Y.L.).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jproteome.8b00393.
Popular proteins in the human diseasome. (ZIP)

Figure S1. Correlation between immediacy and impact value. Figure S2. Comparison of WCD and NCD against benchmark gene/
protein list. Figure S3. ldentifying understudied proteins by popularity overlaid on protein association graphs. Figure S4. Number of
associated publications per protein across protein evidence and functional categories. (PDF)

Notes
The authors declare no competing financial interest.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Lau et al.

Page 2

Graphical Abstract

Keywords

© Topicofinterest  og hyportensi -3 @ Output WED Prioritized Prateins
Get Protein-Topi j I—
SLProteinTople w— o |
® ceutonship 3 , ————
Get Publication — ' R i
o Immediacy and Impact ; o Precompiled WCD ° Pratein-to-Topic
for 10,000+ Disease Terms Reverse queries
A !
| R : 0o
't . :
s : FWO
© Compute WCD W, (F,Th, o] a—

high-priority proteins; semantic similarity; popular proteins; diseasome; normalized copublication
distance; weighted copublication distance; bibliometric analysis; targeted proteomics

INTRODUCTION

The corpus of scientific literature can be represented as a network of structured associations
among genes/proteins, diseases, and researchers.! Identifying the prioritized proteins within
a biomedical topic (e.g., a disease, cell type, or organ) can yield insights into the underlying
biological processes and can also help guide research direction and resource allocation. For
instance, where the wherewithal for producing protein-specific assays or reagents is finite, a
judicious strategy would be to prioritize efforts to those protein targets with maximal
potential return and interest in the relevant research community. One example application
that has garnered the recent attention of proteomics researchers is to identify important
disease proteins to guide the development of targeted proteomics assays to promote the
adoption of proteomics across broad research fields.

Toward this goal, we and others have applied data science approaches to analyze the
scientific literature and identify highly studied “popular proteins” from multiple tissues and
research topics.23 The rationale for popular proteins as a proxy for biologically important
proteins is that over time researchers in a field would be expected to prioritize more research
efforts on promising protein targets, such that proteins associated with more publications
within a topic are also more likely to have bona fide biological significance. To identify
popular proteins across research topics, we showed that the relationship between a protein
and a particular topic in literature publication may be estimated by their semantic similarity
within the PubMed corpus, a metric that measures the likeness of meaning between the a
protein term and a topic term within a corpus of documents, as opposed to the similarity in
their syntactic representation. Using the PubMed query function and the publicly available
Gene2PubMed reference data provided by The National Center for Biotechnology
Information (NCBI), we previously determined popular proteins based on their semantic
similarity with six organ systems.2 In recent work, the Biology/Disease Human Proteome
Project (B/D-HPP) initiatives within the Human Proteome Organization (HUPO) have
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adopted this approach to discover critical proteins in the heart,? the liver,5 and other organs,3
the results of which are being leveraged to analyze research trends and expedite bioassay
development. Despite progress, whether the popular protein approach can distinguish
prioritized protein lists across systematic collections of disease terms remains to be
examined, whereas further refinements to bibliometric methods have the potential to yield
more accurate prioritized protein lists.

Here we extend the popular protein strategy to incorporate additional data annotation
sources as well as introduce a weighted copublication distance (WCD) metric, which takes
into account the immediacy and impact of individual publications to adjust the contributions
of single publications to popularity scores. We find that WCD outperforms unadjusted
semantic similarity scores over identical queries. We demonstrate its utility to identify
popular proteins across cell types and across common disease phenotypes (inflammation,
fibrosis, metabolic syndrome, protein misfolding, and cell death) and to further identify
significant proteins across the human “diseasome”, a term used to refer to the set of known
human diseases/disorders and their association networks.5” By querying a vast collection of
over 23 000 biomedical terms compiled in standardized vocabularies of human disease
processes including 10 129 diseases, 10 642 phenotypes, and 2370 pathways, we find that
diseasome search terms are associated with specific prioritized protein lists that inform on
disease relationships. Finally, we have implemented a reverse protein search strategy over
the precompiled terms, which associates an input list of genes/proteins with the diseases and
disease phenotypes in which they are intensively investigated; for example, querying the
protein cardiac troponin would return the disease term cardiomyopathy and the phenotype
chest pain.

MATERIALS AND METHODS

Calculation of Semantic Distance between Protein and Topics

The popular protein strategy? performs large-scale bibliometric analysis from research
articles indexed on PubMed. Research topics are used to query PubMed via the NCBI EULtils
Application Programming Interface (AP1)8 to retrieve associated articles and an annotation
table that houses known PubMed ID (PMID)-gene associations. To measure the semantic
distance between a gene/protein with a topic of interest in the literature, we previously
devised a semantic similarity metric, the normalized copublication distance (NCD), defined
as

| max(log; " log;,") — log;," "]

[loglolA| - min(loglom, loglolPl)]

)

NCD,, ;=

where 7 denotes the set of articles associated with any protein in the set of articles contained
in the annotation table and that are retrieved from the PubMed query, Pis the set of articles
associated with a particular protein in the annotation table, and A is the set of all articles
associated with any protein in any topic in the annotation, that is, all PubMed 1D (PMID)
entries in the annotation table, such that 7€ A and PC A. The significance of association
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between a term and a particular protein is estimated by the Zscore of the NCD p-over all
associated proteins under a normal distribution.

We devised a weighted variant of NCD by introducing weighted adjustments to each
article’s contribution by immediacy and impact metrics. In the unadjusted NCD, each
associated article a; carries an equal weight of 1. The weight is adjusted in WCD such that
each annotated article in the association table 7 carries a weight of w;

WCDy 1 = @)

max(log10(2i|ai € Twi)’ 10g10(2i|ai € Pwi)) B 10g10(2i|ai eTn p)wi)
log10(2i|ai i mln(log10(2i|ai c Twi), log10(2i|a. c Pwi))

1

To model the impact of an article a;, we retrieved citation counts programmatically by
querying PubMed IDs through the Europe PubMed Central (PMC) web API.2 We then
applied logistic transformation to the base 10 logarithm of the number of citations of an
article plus one n;, where the scale &, shape b, and steepness care 1, 6, and 2, respectively.

a
1+b- exp(—c . nl.)

®)

ml.(a, b,c) =

To model the immediacy of a paper, we applied Weibull transformation to the distance in
decades since the publication date of the article to the present year, y;, with the shape
parameters, A and &, heuristically set to 1 and 1.25.

) = (%) . (% )k—l 'e_<yl-/l)k "

The final weighted publication count of the protein is calculated as the sum of the associated
publication counts plus each associated publication’s immediacy and impact.

w, =1+ m +n, (5

1

Determination of Popular Protein Lists

With the above method, we retrieved popular protein lists with search terms as described in
the Results section. Protein—~PMID associations were retrieved on 2018-04-22 from the
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manually curated NCBI Gene2Pubmed,® and data were downloaded from Pubtator,10 the
latter of which contained text-mined relationships between biomedical concepts and entities.
A union of the two sets of relationships was used in the analysis below.

We performed PubMed queries on 23 141 defined topics retrieved from publicly available
vocabularies, including 10 129 disease definitions from Disease Ontology (DO)! (version
2018-03-02; retrieved 2018-03-15), 10 642 phenotypic descriptions from Human Phenotype
Ontology (HPO)2 (version 2018-03-08; retrieved 2018-03-15), and 2370 biochemical and
signaling pathways from Pathway Ontology (PWOQ)13 (version 7-4-2; retrieved 2018
03-15). PWO contains only a collection of standardized terms for pathways and is distinct
from Gene Ontology (GO). From the retrieved PubMed IDs from each query, protein-term
associations are ranked according to NCD, as previously described (popularity index).
Moreover, the popularity index for all terms and proteins that are significantly associated
with each individual topics (A< 0.05) have been uploaded to the PubPular web app and are
made searchable.

To evaluate the similarity in associated protein lists between two disease terms with 50 or
more significantly associated proteins, we consider (i) the proportion of shared proteins in
the top 50 ranks 65 of the —log P of protein-term associations between two terms and (ii)
the Cohen’s kappa « in two-way classification of significantly associated proteins (P< 0.05)
and nonsignificantly associated proteins (2> 0.05) among the intersect of proteins with one
or more associated publications in each term. Two disease terms are considered to be similar
in their protein-term associations if 85y = 0.8 and x> 0.

Web Application and User Interface

We provide a web app PubPular at http://pubpular.net that allows users to query the popular
protein lists of custom topics. The PubPular web app automatically analyzes the occurrences
of each protein being referenced to the retrieved papers using the Gene2PubMed8 and
Pubtator1® resources and performs the calculation of WCD between a protein and the
queried topic. We created an extended module to the PubPular web application hamed
FABIAN (Functional Annotation by Bibliometric Analysis), which provides the
functionality for gene/protein lists to be uploaded and compared with results from curated
terms. The web module builds on the precompiled results from search terms on PubPularDB
and uses parametric gene set enrichment analysis4 to discover terms for which the list of
associated proteins (P< 0.05) is significantly enriched or depleted with reference to the
ranks of the uploaded gene/protein list. The code for calculating WCD and R package are
available at https://github.com/ed-lau/calcWCD.

Comparison of Prioritized Gene Lists against Curated Standards

Curated benchmark protein lists were retrieved as follows: Proteins associated with three
Gene Ontology (GO)1 terms for disease processes, namely, apoptosis (apoptotic process,
G0:0006915; 762 proteins), cell adhesion (GO:0007155; 800 proteins), DNA repair (463
genes; GO:0006281), and mitochondrial inner membrane (GO:0005743; 549 proteins), were
retrieved from the European Bioinformatics Institute (EBI) QuickGO interface® and filtered
to include only human Entrez Gene IDs that exist in the annotation source. Proteins
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associated with complex disease terms, namely, brain infarction (40 proteins), hypertension
(180 proteins), insulin resistance (62 proteins), macular degeneration (40 proteins),
Parkinson’s disease (92 proteins), obesity (202 proteins), schizophrenia (170 proteins), and
Tetralogy of Fallot (12 proteins), were retrieved from the Comparative Toxicogenomics
Database (CTD)’ (downloaded on 2018-08-13).

Precision, recall, sensitivity, and specificity of positive/negative classification are calculated
based on true-positives, 77, false-positives, FP, true-negatives, 7/, and false-negatives, F/\.
Sensitivity and Recall are defined as TRI(TP+ FN). Specificity is defined as TN/(TN + FP),
Precisionis defined as 7P/(TP+ FP), and Fgis defined as (1 + [ (Preasion-Recall)/ (B
Precision + Recall).

Results from GLAD4U8 and PURPOSE? were retrieved on their respective web services on
2018-08-13 after accessing the web tools and entering the exact search terms as shown, and
the protein lists were retrieved in entirety using their download functions. Searches were
performed using default settings on the web services, with the exception that score threshold
is set to 0 for GLADA4U such that the list of all predicted proteins and their scores could be
retrieved. Protein lists were ranked from best to worst using the standard scores output from
each method, namely, GLAD4U score for GLADA4U (highest is better), PURPOSE_Score
for PURPOSE (higher is better), NCD for Pubpular NCD (lower is better), and WCD for
Pubpular WCD (this study) (lower is better). Receiver operating characteristic (ROC)
analysis was performed by ranking all gene/protein predictions based on the score of each
method. Area-under-ROC (AUROC) was calculated by integration using the trapezoid
method over all Sensitivityand 1 — Specificity values in a particular query.

Evaluation of Prioritized Protein Lists

We previously devised a metric NCD for the semantic similarity between a protein and a
topic of interest. NCD normalizes the count of query-specific publications by the count of
total publications on PubMed that are associated with the protein, so that a query will not be
populated only by proteins that are broadly studied in many fields (e.g., p53 or APOE).
WCD modifies NCD by modeling the immediacy and impact of an article to weight its
contribution to the overall protein-term association (Figure 1) (see Methods). Overall, the
publication year and citation counts of publications are poorly correlated (Figure S1). Their
incorporation in WCD allows recent or high-cited publications to carry additional evidence
of protein—term relationships.

The resulting metrics prioritizes top proteins in PubMed query search terms including
searches for inherited and complex diseases (Figure 1). A lower WCD for a protein within a
disease query suggests higher semantic similarity between the protein term and the disease
term in the literature and is overall correlated with a greater number of publications for the
proteins within that topic.

To compare the performance of WCD to retrieve relevant gene lists, we compared the results
to a list of benchmark curated terms in public resources. These include four curated
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biological process terms from Gene Ontology (apoptosis, cell adhesion, DNA repair, and
mitochondrial inner membrane) as well as eight complex disease terms (brain infarction,
hypertension, insulin resistance, macular degeneration, obesity, Parkinson’s disease,
schizophrenia, and Tetralogy of Fallot). Gene Ontology contains manually curated
relationships between terms and human genes as well as annotations automatically
transferred from homologues of other species,® whereas the Comparative Toxicogenomics
Database (CTD)719 contains manual annotation and further collage annotations from Gene
Ontology, Reactome, PubMed, and other sources. Both databases contain curated lists of
good quality and are well utilized by researchers and hence provide a benchmark for
automated methods. We compared the performance to the NCD from the PubPular2 web app
NCD? and to two related methods GLAD4U8 and PURPOSE.3 The test terms were chosen
to avoid biasing toward the present approach with specific terms, as 6 of the 12 terms were
used as benchmarks in the GLAD4U publication and the CTD database was a data source
used to benchmark PURPOSE in its publication (Figure 2).

From comparison of the areas-under-curve of receiver operating characteristics (AUROC) of
predicted gene/protein lists from each method against the manually curated benchmark data
set, we found that WCD consistently outperforms NCD in overall sensitivity and specificity
and also compares well to GLAD4U and PURPOSE. Each method differs in data annotation
source and prioritization algorithm (see also the Discussion), and we saw some evidence that
the approaches are complementary. No method performed better than WCD in 11 out of 12
terms tested. PURPOSE tied with WCD in two terms and was the top performer in one term
(hypertension). Among the 12 tested terms, brain infarction appeared to be the only term
where none of the method performed well, possibly because this CTD term was not usually
employed in the relevant literature. Besides brain infarction, mitochondrial inner membrane
was another query term where the compared methods did not appear to reach high
sensitivity, suggesting that some of the curated proteins were not in the predicted lists at all
regardless of confidence or score cutoff.

We complemented the analysis by comparing the performance of WCD over NCD using ~
measure, which is a function of recall and precision of the returned protein list at a particular
threshold. Compared with the F; score, the ~, score places twice the emphasis on recall over
precision and is preferred in our comparison because the cost of a false-positive is adjudged
to be lower than the cost of a false-negative. At two separate significance thresholds (P<
0.01 and P< 0.05), WCD consistently outperforms Pubpular NCD? in 9 of the 12 terms
tested and in 10 of the 12 terms tested, respectively (Figure S2). Altogether, these
comparisons suggest that WCD offers excellent performance in identifying important gene/
proteins across topics.

Catalogs of Popular Proteins Across Cell Types and Diseases

Using the devised prioritization method, we set out to identify prioritized proteins in several
individual subanatomical regions and cell types. We previously demonstrated that queries of
six major organ systems revealed a preferential affinity of each organ with a specific set of
proteins. Here we asked whether the subanatomical regions and cell types can also be shown
to be preferentially associated with different proteins. For the heart, we queried the

J Proteome Res. Author manuscript; available in PMC 2019 December 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Lau et al.

Page 8

anatomical regions “left atrium”, “left ventricle”, “right atrium”, and “right ventricle” as
well as the cell types “cardiomyocytes”, “smooth muscle cells”, “endothelial cells”, and
“fibroblasts”, using the search terms “cardiac OR heart AND left AND atrium”, and so on.

For the lung, we queried the anatomical regions “alveolar sac”, “bronchiole”, “capillaries”,
and “trachea”, as well as the cell types “pneumocytes”, “smooth muscle”, “epithelial”, and
“fibroblasts”. From the brain, we queried proteins associated with the anatomical regions
“cerebellum”, “cerebrum”, “brain stem”, and “thalamus” and the cell types “neurons”,

“astrocyte”, “glial cell”, and “oligodendrocyte”.

The analysis led to several general observations. First, we found that queries of different
subanatomical regions were sufficiently specific; for instance, the top five proteins in each
query readily returned associations with region-specific proteins (Table 1). For example, in
the heart, connexin-40 (GJAD) is preferentially associated with the atria but not ventricles,
consistent with the known involvement of the protein in the pathogenesis of atrial
fibrillation.20 In the brain, ataxins (ATXNY2), associated with progressive ataxias, are
preferentially associated with the cerebellum but not the cerebrum. Cell types from each
tissues were also associated with different lists of prioritized proteins. For instance,
surfactant proteins are preferentially associated with pneumocytes, which form the alveolar
linings, whereas fibroblast growth factors (FGFs) populate the prioritized list for lung
fibroblasts. Notably, the fibroblasts and smooth muscle cells in the heart and in the lung are
found to be associated with different sets of proteins, for example, FGF23 and FGF21 for
heart fibroblasts versus FGF10 and FGF7 for lung fibroblasts, suggesting that the prioritized
protein lists may help shed light onto the gene expression and properties of similar cell types
found across multiple organs, such as fibroblasts and endothelial cells, that may be
implicated in common disease processes, for example, fibrosis and endothelial disorders,
that accompany diverse human diseases.

The majority of known human diseases can be grouped into subnetworks within a disease
network sometimes referred to as the “diseasome”, in which known diseases can be grouped
into clusters based on their shared disease phenotypes.’ To determine how the prioritized
protein lists intersect with common disease processes that occur in complex human diseases,
including those that are the thematic focuses of HUPO B/D HPP initiatives, we queried the
popular proteins in six specific disease processes, namely, fibrosis, cell death, inflammation,
metabolic syndrome, oxidative stress, and protein misfolding (Table 2).

We find that the top five proteins in “fibrosis” are transforming growth factor beta 1
(TGFB1), followed by connective tissue growth factor (CTGF), actin alpha skeletal muscle
(ACTAL), mothers against decapentaplegic homolog 3 (SMAD3), and mothers against
decapentaplegic homolog 2 (SMAD2). Another molecular phenotype common in multiple
diseases is “cell death”. The top five proteins in our popular protein search using the key cell
death returned caspase-3 (CASP3), apoptosis regulator Bcl-2 (BCL2), apoptosis regulator
BAX (BAX), caspase-9 (CASP9), and caspase-8 (CASP8). The query for inflammatory
response returned common cytokines including interleukin-6 (IL6), tumor necrosis factor
(TNF), C-reactive protein (CRP), interleukin-1 beta (IL1B), and interleukin-8 (CXCL8); the
query for metabolic syndrome returned lipid metabolism proteins including adiponectin
(ADIPOQ), insulin (INS), and leptin (LEP); oxidative stress queries returned nuclear factor
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erythroid 2-related factor 2 (NRF2/NEF2L2), catalase (CAT), superoxide dismutases
(SOD¥2), and kelch-like ECH-associated protein 1 (KEAPL). Finally, protein misfolding
returned tauopathy and neurodegenerative proteins as well as amyloidosis proteins including
alternative prion protein (PRNP), alpha-synuclein (SNCA), huntingtin (HTT), transthyretin
(TTR), and superoxide dismutase (SOD1).

Protein—Disease Networks Across the Human Diseasome

Although the individual results on common disease processes are not entirely surprising, the
prioritized protein lists could be useful for identifying proteins and pathways that are
preferentially studied in particular disease processes such that reagent development efforts
could be prioritized toward these topics (e.g., fibrosis in the heart). Building on this effort,
we systematically queried over 25 000 search terms in comprehensive vocabularies that
describe virtually the entirety of known human diseases. In total, we performed individual
PubMed queries, then calculated protein association scores for 23 141 defined topics
retrieved from publicly available vocabularies, including proteins for 10 129 disease
definitions from Disease Ontology (DO), 10 642 phenotypic descriptions from Human
Phenotype Ontology (HPO), and 2370 biochemical and signaling pathways from Pathway
Ontology (PWO). Among the vocabularies, 7897 search terms in DO were associated with at
least one significant (P < 0.05) protein, along with 7076 terms in HPO and 1798 terms in
PWO.

We explored the network representation of the relationships between 832 DO disease terms
that are each significantly associated with 50 or more proteins at £< 0.05. Manual
inspection showed that disease terms are clustered together by their prioritized protein lists
(Figure 3). We compared the derived protein “diseasome” with a previous disease network
generated using Online Mendelian Inheritance in Man (OMIM) data.2! Despite differences
in data source and methodology, we observe comparable properties in the derived human
disease networks. First, we observe a network topology organized into hubs, where the
majority of disease terms are linked to a few neighbors but a few hub diseases are linked to
many neighbors. Hubs are occupied by top-level or near-top-level terms in DO categories;
for example, DOID:5295 intestinal disease is a hub disease and linked to DOID:0060810
colitis, DOID:0050589 inflammatory bowel disease, DOID:8577 ulcerative colitis, and
DOID:0060190 ileocolitis. Second, we see prominent and interconnected clusters of cancer
terms, as represented in the network, as also noted by Goh et al.2! Third, related disease
terms are clearly connected via their semantic similarity despite little verbal or syntactic
similarities; for example, DOID:1242 globe disease is the neighbor of DOID:10871 age-
related macular degeneration and DOID:3612 retinitis. Although these observations may be
expected, they nevertheless show that the protein-association approach is able to distinguish
relevant pathogenic processes across human diseases. All 11 428 397 protein—disease
associations can be found in Supplementary Data 1.

Reverse Query from Proteins to Significantly Associated Topics

Using the compiled lists of prioritize proteins across multiple human diseases and
phenotypes, we explored whether reverse queries could be made from proteins to retrieve
information on disease vocabulary terms. In other words, given a protein name, a protein-to-
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topic reverse query returns all of the disease areas in which this protein is intensively studied
based on literature records. This is distinguished from the forward query, where the user
inputs a disease term and retrieves all of the proteins that are intensively studied in the
disease. For instance, one of the most highly investigated proteins in the heart is troponin |
(TNNI3). Reverse query with TNNI3 against the precompiled popular protein lists of DO
and HPO terms indicates that, as expected, TNNI3 is also highly associated with a cluster of
cardiovascular-related topics, ranging from “myocardial infarction” (DO accession DOID:
5844: P. 9.6 x 107°) to “hypertrophic cardiomyopathy” (DO accession DOID:11984; P. 4.1
x 1073). Utilizing the reverse query strategy on the list of popular disease phenotype proteins
above, we find that the top fibrosis protein TGFBL is significantly associated with
“mesenchymal cell neoplasm” (DO accession DOID:3350; ~. 0.059), “collagen diseases”
(DO accession DOID:854, £ 0.0016), as well as a number of fibrotic diseases including
“pulmonary fibrosis” (DO accession DOID:3770; P. 0.0045), “renal fibrosis” (DO accession
DOID:50855; ~. 0.0042), and “liver cirrhosis” (DO accession DOID:5082; P. 0.031),
consistent with its involvement in common disease processes. Moreover, we asked with
which other disease terms is another top fibrosis protein CTGF also popularly associated and
identified a broad spectrum of disease terms including “connective tissue benign neoplasm”,
“connective tissue cancer”, “renal fibrosis”, “liver cirrhosis”, and “scleroderma”. In the HPO
data set, TGFBL1 is further associated with phenotypes including “cirrhosis”, “beta-cell
dysfunction”, and hepatic, pulmonary, and renal fibrosis. The pathways associated with
TGFB1 include transforming growth factor beta signaling pathway, cell-extracellular matrix
signaling pathway, and peptide and protein metabolic process. Importantly, this strategy is
generalizable to other collections of popular protein lists not detailed here. For example, the
Brenda Tissue Ontology (BTO) contains a collection of terms on tissue and cell types,
reverse query against which shows that TGFBL1 is preferentially associated with a number of
fibroblast-related publications in the literature, including in myofibrolasts and lung
fibroblasts.

One application for the reverse query strategy is that the curated protein lists across human
diseases allow popular proteins to be used as an annotation source for gene list functional
analysis. For instance, given a list of differentially expressed proteins found in a quantitative
transcriptomics or proteomics experiment comparing two biological samples, one may
examine whether the significantly up-/down-regulated proteins are enriched in proteins that
are intensively researched in a particular disease or disease phenotypes. We implemented a
new module (FABIAN) to perform gene enrichment analysis against precompiled popular
protein lists. To evaluate the potential utility of this approach, we retrieved a publicly
available transcriptomics data set on cardiac failure, which encompasses five replicates each
of control versus failing hearts from a rodent model of transverse aortic constriction with
apical myocardial infarction (GSE56348).22 We performed a hypergeometric test to identify
enriched annotation terms among differentially expressed protein (defined as having
limma?23 adjusted P< 0.01) against Gene Ontology biological process terms and the
precompiled DOID disease—gene associations (Figure 4). The results show that reverse
popular protein queries provide complementary annotations to GO Process terms; for
example, we find significant enrichment of differentially regulated genes that are intensively
researched in DOID “collagen disease” and “cartilage disease” terms (hypergeometric test
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adjusted P< 0.05), corresponding to enrichment of GO “extracellular matrix organization”
term, as well as enrichment of the DOID “mitochondrial disease” term, which corresponds
to the GO “mitochondrial electron transport, NADH to ubiquinone” term. Moreover, the
enrichment analysis against DOID shows a significant involvement of genes highlighted in
“atrial fibrillation”, which was not readily apparent among the top enriched GO terms
(Figure 4), highlighting the potential utility of combining multiple annotation sources in
large-scale data interpretation.

Lastly, WCD-ranked popular proteins may also be useful for identifying important target
proteins that are currently “understudied” in the literature (Figure S3), which may help
counter researcher bias and also highlight high-value future research avenues.?*

It has been suggested that biomedical research is overly focused on only a subset of genes
and hence may create a “rich gets richer” scenario that leaves important genes/proteins
understudied.24:25 This has been attributed to various factors including availability of
reagents26 and risk-averse funding mechanisms,2° but few solutions have been proposed,
and the advent of omics data alone did not appear to correct gene research biases.2> One
approach we propose is to focus on proteins that interact closely with highly popular
proteins but are themselves associated with relatively few publications. As a proof of
concept, we mapped WCD values to predicted protein—protein association from STRING2’
to create a directed graph connecting interacting pairs from low to high popularity scores.
We then redistributed protein popularity scores using the PageRank algorithm implemented
in the igraph package in R. We used three example search terms (“heart failure”, “obesity”,
and “Parkinson’s disease™) to discern proteins that receive the most gains in popularity
ranks, that is, understudied proteins that occupy important hub positions around highly-
studied proteins. Notable up-ranked Heart Failure proteins include HEY2, GJA1, and
NACAZ2. Notable up-ranked Obesity proteins include PPY and NPY2R. Notable up-ranked
Parkinson’s Disease proteins include RING1, SMPD1, and COX6A2 (Figure S3). Although
this hypothesis generation approach shows promise, we caution that a potential limitation is
that disease interactomes are not specific to cell types or models. We suggest that future
work may seek to refine the approach outlined here and experimentally validate whether
implicated proteins may be critical for regulating pathological phenotypes in various disease
models.

DISCUSSION

Gene/protein prioritization is a recurring informatics task in biomedical research?® that can
be generally stated as follows: Given a collection of gene names, identify a subset that is
preferentially associated with a topic or disease in question. For instance, given a list of
genes residing at a locus implicated in a genetic mapping study, one may wish to find the
causal disease genes or variants responsible for the observed phenotypes. More recently,
there has been interest in protein prioritization efforts to guide the prioritized development of
research reagents or the distributive fairness in biocuration efforts. The Biology/Disease
Human Proteome Project (B/D-HPP) initiative within the Human Proteome Organization
(HUPO) has a mission to popularize proteomics assays and reagents, an objective that
requires the prioritization of genes and proteins to nominate the most attractive assays for
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development. These needs have spawned text-mining and network approaches?8-30 as well
as literatury-based strategies for in silico gene/protein prioritization.

Literature-based gene/protein prioritization is predicated on the hypothesis that over time,
researchers will choose to work and publish preferentially on proteins relevant to a disease
or topic, and hence a popular protein will also tend to play bona fide significant roles in a
biological phenomenon of interest. We and others have previously shown that publication
popularity yields accurate predictions of curated gene lists and is distinguished by being
amenable to any search terms one may think of provided they return PubMed results.
Several related approaches exist to estimate publication popularity within topics, which
differ by their sources of annotated gene/protein-term relationships and by their information
retrieval algorithms. In previous work, we have utilized the NCBI curated Gene2Pubmed file
without the removal of publications and calculated the unweighted semantic similarity
between a search term and a protein to prioritize term-specific proteins over nonspecific
ones.2 GLADA4U utilizes the NCBI-curated Gene2PubMed file after removing publications
that are associated with 500 or more proteins and applies a hypergeometric test to identify
proteins that appear more often than expected.18 More recently, Yu et al.3 read from the text-
mined PubTator filel® and ranked proteins by term-frequency inverse document-frequency
(TF-IDF) modified by the citation index of each publication. In the present study, we use a
union of the curated Gene2PubMed file and the text-mined PubTator file and calculate the
WCD, which introduces weighting factors based on the transformed impact (number of
citations) and immediacy (number of years since publication) of linked publications in the
calculation of protein—term association. In prior work, we observed that the trend of protein
popularity in research can change over time;?2 for example, the popularity of brain-type
natriuretic peptide (BNP) surged following its adoption as a clinical marker for heart failure
in 2003.4 Hence we hypothesize that by assigning more weight to more recent papers we can
better capture the direction and interest of a field of research associated with a given topic.
In parallel, it has been suggested that widely cited publications carry more influence to the
direction of a field and hence may be given higher significance in literature analysis
including gene prioritization3 and text-mining3° approaches. Pubpular WCD performs
comparatively well over related methods including PURPOSE and GLAD4U in sensitivity
and specificity of prediction against benchmarked gene lists.

The present study is also the first to demonstrate the utility of popular proteins in three
applications, namely, to analyze: (i) cell types and anatomical regions within a region, (ii)
disease processes underlying multiple disorders, and (iii) systematically cataloged disease
terms within curated vocabularies. Our results suggest that cell types from each organ are
preferentially associated with investigations of different proteins and can lend higher
resolution to the identification of proteins associated with critical disease processes.
Identifying popular proteins in common disease processes may be useful for guiding
prioritization methods for protein assays that are not specific to a particular field and so may
have wider appeal, for example, to develop a panel of multiple reaction monitoring (MRM)
assays for fibrosis that can be applicable to ongoing research in the heart, the lung, as well as
the liver. Upon extracting popular proteins from over 23 000 disease and disease phenotype
definitions, we found that the similarity of associated proteins can be used to cluster disease
terms and create a representation of the human “diseasome”, a network medicine concept
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that supposes human diseases are interrelated via underpinning processes and can be used to
identify the wiring diagram of how perturbations in key genes and modules can influence
pathogenic processes.2! The popular protein lists provide a potential alternative route toward
generating disease—disease and disease—gene association networks, which have been
previously explored using other data sources (e.g., genetic mutation knowledge?! and text-
mining approaches®) to reveal the phenotypic homogeneity of related diseases. A
comparison of network structures between the popularity-based disease network here and
phenotype-based networks may help discern deep-lying commonalities and differences in
disease features. In more immediate applications, precompiled popular proteins across large
vocabularies of disease terms enabled a “reverse query” strategy to identify disease
phenotypes that have been associated with a query protein in the literature. Applying this
strategy to reanalyze differentially expressed genes in a public data set on heart failure, we
suggest that the enrichment of DO and HPO disease terms among differentially regulated
transcripts could provide complementary information over commonly utilized GO analysis.

In summary, we describe here a method to prioritize intensively researched proteins
associated with cell types, subanatomical regions, and molecular phenotypes common across
human diseases. Several limitations to the current study exist. The annotation sources
linking genes to PubMed IDs do not distinguish gene-level and protein-level experimental
evidence in the associated studies. We also saw evidence of bias in protein annotation
(Figure S4). Proteins with uncertain existence evidence at the protein level (neXtProt PE2—
5)31 and proteins with no known functions (UPE1) are both associated with lower
publication counts (Figure S4). Some proteins are therefore “unpopular” because their
expression and function have not been thoroughly investigated but nevertheless may have
undiscovered importance in disease processes. Future work may address this by identifying
proteins that interact with intensively research proteins but are themselves understudied in
the literature.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Modeling the immediacy and impact of protein-associated publications. (a) Immediacy of a

publication is modeled using a Weibull distribution such that recent publications published
within the past decade are given greater weights than older publications that are associated
with a protein. (b) Impact of a publication is modeled using a logistic transformation of the
logyg citation count of the publication retrieved via the Europe PubMed Central (PMC) API.
(c) Scatterplot of weighted copublication distance (WCD) versus publication counts. The top
10 prioritized proteins in three diseases (cystic fibrosis, diabetes mellitus, and hypertrophic
cardiomyopathy) as measured by WCD are given as examples (labeled in red).

J Proteome Res. Author manuscript; available in PMC 2019 December 07.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Lau et al.

0.75

0.50

0.25

0.00

0.75

0.50

sensitivity

0.25

0.00

075

0.50

0.25

0.00

Receiver Operating Characteristic of GO/CTD Benchmark Prediction

Number: Area—under—curve for each predictor

Page 17

WCD (This study)
NCD (Lam et al. 2015)
PURPOSE (Yu et al. 2018)

GLAD4U (Jourguin et al. 2012)

Apoptosis (GO) Brain Infarction (CTD) Cell Adhesion (GO) DNA repair (GO)
- 100 - 100 - 100 -
- 075 = 075 = 075 =
- 050 - 050 - 050 -
_ WCD: 0.82 WCD: 0.88 _ WCD: 0.92
- : NCD:08 025 - °D:0.18. 025 = NCD:084 025 - : NCD: 0.9
PURPOSE: 0.61 ’(.‘.3[- 0.36 PURPOSE: 0.54 PURPOSE: 0.65
GLADAU: 0.78 In GLADAU: 0.23 GLAD4U: 0.83 GLADAU: 0.89
- 000 - 000 - 0.00 =.
L ' L] ] ) (] ] L] L] ] ] L] ' ] 1 L] ] ] 1 (]

0.00 0.25 0.50 0.75 1.00

0.00 025 0.50 0.75 1.00

0.00 0.25 0.50 075 1.00

0.00 0.25 0.50 075 1.00

Hypertension (CTD) Insulin Resistance (CTD) Macular Degeneration (CTD) Mitochondrial Inner Membrane (GO)
- 100 = 100 = © 100 - ~
- 075 = 075 = 075 -
- 050 = 050 = 050 =
WCD: 0.66 5 WCD: 0.83 g wcp:ogss8  ff o __—MgD =
= =y NCD: 0.56 025 = . NCD: 0.79 025 = - NCD: 0.87 025 = NCD: 0.59
PURPOSE: 0.7 PURPOSE: 0.8 PURPOSE: 0.73 PURPOSE: 0.27
GLAD4LU: 0.61 GLAD4U: 0.79 GLAD4U: 0.85 GLAD4U: 0.21
- 000 -.° 000 - 000 =

[ ] ' [ '
0.00 0.25 0.50 0.75 1.00

' ' [ ' '
0.00 025 0.50 0.75 1.00

' [ ' [ "
0.00 0.25 0.50 0.75 1.00

" ' ' " '
0.00 0.25 0.50 0.75 1.00

Obesity (CTD) Parkinson Disease (CTD) Schizophrenia (CTD) Tetralogy of Fallot (CTD)
- 100 = 100 = 1.00 - -
5 075 - 075 - 075 -
|

- 050 = 050 = 050 =

§ WCD: 0.68 ) WCD: 0.66
' 025 = ™ N G 025 = - NCD: 0.61 025 =

PURPOSE: 0.68 PURFO L5
GLAD4U: 0.59 GLAD4L: 0.65 GLAD4U: 0.62 GLAD4LU: 0.63
= 000 -. 000 - 0.00 -.°
' L} Ll Ll ' ' L] ' L} Ll L] L ' Ll L} L} ' Ll L} ]
000 025 050 075 100 000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
1 - specificity

Figure 2.
Receiver operating characteristic (ROC) analysis of protein list prediction. Area-under-ROC

(AUROC) metric is used to compare the performance of weighted copublication distance
(WCD) versus unadjusted normalized copublication distance (NCD) (Lam et al. 2015)2 and
two published approaches GLAD4U (Jourquin et al. 201218) and PURPOSE (Yu et al.
20183) on 12 query terms. The results are compared against curated benchmark protein lists
retrieved from the Comparative Toxicogenomics Database (CTD) or Gene Ontology (GO).
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Figure 3.
Prioritized proteins across the human diseasome. (a) Schematics for precompiling popular

protein terms from three standard vocabularies related to human diseases and disease
processes. (b) Distribution of total proteins per term in three vocabularies. The distribution
of number of total (left) and significantly associated (right) proteins per term in each
vocabulary (P< 0.05). (c) Correlation matrix of protein associations for 832 Disease
Ontology (DO) terms with 50 or more proteins associated at Z< 0.05. A minimal spanning
tree of DO terms based on similarity of associated proteins. A protein network is constructed
using all DO terms associated with any proteins as nodes. Edges connect pairs of DO terms
with x>0 or 65 = 0.2, from which a minimal spanning tree is constructed. (d,e) Zoomed-in
views of selected disease labels around two network nodes.
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rodent model of heart failure. (c) Relationship between assigned DO, HPO, and GO terms.
Top associated terms are shown for each significantly up-regulated (blue) or down-regulated
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Terms enrichment analysis across vocabularies
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(red) transcript (limma adjusted £< 0.01) in the microarray data set from a rodent model of
heart failure. The alluvial streams link the top enriched term of DO to the corresponding
terms in HPO and GO for each transcript. For example, a number of up-regulated transcripts
are associated with the “familial atrial fibrillation” term in DO, corresponding in part to the
“arrhythmia” term in HPO and to the “regulation of heart rate by cardiac conduction” term
in GO.
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