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Abstract

As a specific type of structural variation, inversions are enjoying particular traction as a result of 

their established role in evolution. Using third-generation sequencing technology to predict 

inversions is growing in interest, but many such methods focus on improving sensitivity, giving 

rise to either too many false positives or very long running times. In this paper, we propose a new 

framework for inversion detection based on a combination of two novel theoretical models: 

Rectangle Clustering and Representative Rectangle Prediction. This combination can 

automatically filter out false positive inversion predictions while retaining correct ones, leading to 

a method that has both high sensitivity and high positive prediction values (PPV). Further, this new 

framework can run very fast on available data. Our software can be freely obtained at https://

github.com/UTbioinf/RigInv.

Index Terms—

Structural variations; Inversions; Rectangle Clustering; Representative Rectangle Prediction

I. Introduction

STRUCTURAL variations (SVs) are important in evolutionary biology and speciation, 

amplifying genetic diversity in mammals [1] and attributing to heritable genetic diseases [2], 

[3] and cancers [4], [5]. SVs include insertions, deletions, inversions, translocations, and 

copy number variants (CNVs). Among them, inversions are balanced structural variations 

that have been playing a vital role in chromosomal evolution. It has been clearly shown that 

they can affect phenotypes and be adaptive in many species [6]–[8]. Many polymorphic 

inversions have also been discovered in human genomes [9], [10], some of which have been 
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linked to diseases. For example, the iduronate 2-sulphatase (IDS) gene when interrupted by 

some inversions can lead to Hunter syndrome [11]. For these reasons, it is important to 

predict and catalog inversions.

Early SV detection methods largely rely on experimental data such as array comparative 

genome hybridization (array-CGH, e.g., [12]). These approaches, however, hardly locate 

exact breakpoints and are incapable of discovering balanced structural variations such as 

inversions. To overcome these issues, sequencing data have been leveraged, and all the 

sequence-based SV detection methods utilize one or more of the following approaches: i) 

Detecting aberrant alignments of paired reads [13]–[15]; ii) analyzing inferred read depths to 

unveil copy number variants (CNV) (e.g., [16]–[18]); iii) using inferred split reads and/or 

poorly aligned reads to pinpoint novel breakpoints [19], [20]; iv) reconstructing potential 

breakpoints by local-assembly for better prediction (e.g., [21],[22]). Some implementations 

even combine two or more of these four methods [23]–[26].

Even though newer sequencing platforms have been effective in predicting smaller SVs, 

shorter reads face challenges with repeat-rich regions. Third-generation sequencing 

platforms, such as PacBio and Oxford Nanopore, are generating much longer reads that are 

advantageous in de novo assembly [27], [28] and in SV prediction [29]–[36]. For example, 

PBHoney [34] uses two algorithms to predict SVs including PBHoney-Spots that considers 

long-read discordance, and PBHoney-Tails that considers interrupted mapping. Sniffles [30] 

performs extensive coverage analysis at high-mismatch regions and uses split-read 

alignments. NextSV [33] is basically a combination of PBHoney and Sniffles, and uses 

ANNOVAR [37] to better predict SVs. Special types of SVs have also been considered. For 

example, CORGi [31] focuses on complex SVs with more than 2 breakpoints. NpInv [32] is 

designed for detecting non-allelic homologous recombination inversions. Finally, InvDet 

[35] was designed for large inversions whose left and right neighbors may be unclear.

In this paper, we focus on predicting large local inversions (≥ 1000bp) using PacBio long 

reads. We define a local inversion as an inverted interval such that its neighboring regions 

around the two breakpoints do not have substantial changes (see Fig. 1 for an example). 

More specifically, for an inverted interval (L, R) in the reference sequence and an integer δ > 

0, if the intervals (L−δ, L), (L, L+δ), (R−δ, R), and (R, R + δ) are only subject to indels and 

variations, we call (L, R) a “local” inversion.

The contributions of this work are threefold.

• We propose a new Rectangle Clustering framework to group predicted interval 

pairs (i.e., rectangles) that are “close” to one another. Extant methods mostly 

focus on clustering intervals that cover the same breakpoints. These approaches 

may perform well if the goal is to predict a deletion but they may ignore the 

relationships between pairs of breakpoints. Our Rectangle Clustering model and 

algorithm, however, are able to acknowledge these relationships and generate 

more robust clusters.

• We propose a novel Representative Rectangle Prediction problem that, for each 

rectangle cluster, predicts a small interval pair (i.e., a small rectangle) that 
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contains the pair of breakpoints of a local inversion with high confidence. 

Although designed for our framework, we expect this formulation may also 

improve other split read-based SV prediction methods.

• The combination of the Rectangle Clustering and Representative Rectangle 

Prediction schemes predicts relatively unique inversions. Other methods often 

report two or more predictions that may form two cliques of intervals around the 

two (predicted) breakpoints. We overcome these issues with our new framework 

RigInv.

The rest of this paper is organized as follows. Section II presents the detailed algorithms of 

our local inversion prediction framework, including those for the new Rectangle Clustering 

problem and the novel Representative Rectangle Prediction problem. Section III shows some 

experimental results on synthetic E. coli K12 and An. gambiae PEST, and an empirical 

conjecture on the real An. gambiae PEST. Section IV concludes our work.

II. Methods

Our framework (see Fig. 2) takes as input read alignments, and generates an initial result file 

in which each line contains a predicted inversion. We represent each inversion (both the 

candidate inversions and final predictions) as a rectangle, and the pair of end points of each 

inversion (i.e., the breakpoints) as a single point in 2-D space. Next, based on the current 

candidate inversions, we predict small and nearly non-overlapping inversions using a 

heuristic Rectangle Clustering algorithm and a novel Representative Rectangle Prediction 

algorithm.

A. Candidate inversion detection

As shown in Fig. 3, to locate intervals X and Y covering the two breakpoints of an inversion 

(L, R), we need two types of indicator alignment segments; the L type indicator alignment is 

obtained by splitting a single read A into two disjoint alignments (usually by tools such as 

BLASR [38] and BWA-MEM [39]) A1 and A2 such that A1 is followed by A2, A1 is aligned 

to the left neighbor of the inversion (L, R), and A2 is aligned to the very right end of (L, R) 

but in the opposite orientation w.r.t. A1. Similarly, the R type indicator alignment is obtained 

by splitting a single read B into two parts B1 and B2 such that B1 is followed by B2, B1 is 

aligned to the very left end of (L, R), and B2 is aligned to the right neighbor of (L, R) but in 

the opposite orientation w.r.t. B1.

To simplify the notation, we also say that A1, A2, B1, and B2 are intervals inferred from the 

indicator alignments. For each indicator alignment C, we denote the corresponding interval 

in a reference sequence as (C.ref.l, C.ref.r), where C.ref.l (resp., C.ref.r) is the left (resp., 

right) end point of the alignment. Similarly, we denote the aligned region in the read as 

(C.rd.l, C.rd.r), where C.rd.l and C.rd.r are the coordinates calculated according to the 

orientation of the read in the input. Then the interval covering the left (resp., right) 

breakpoint of the inversion is X = (A1.ref.r, B1.ref.l) (resp., Y = (A2.ref.r, B2.ref.l)).

We can find all possible pairs of intervals covering the breakpoints of inversions based 

simply on this definition. Note, however, that if there are two other indicator alignment 
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segments A1′ , A2′  and B1′ , B2′  aligned to similar locations of A1, A2 and B1, B2, then we will 

have to consider four pairs of indicator alignments: A v.s. B, A v.s. B′, A′ v.s. B, and A′ 
v.s. B′. In general, there will be a quadratic number of pairs of the given indicator alignment 

segments, leading to a steep increase in memory and running time in the successive 

predictions.

To mitigate this issue, we detect specific intervals X and Y using indicator alignments of A 
and B separately, but also using the inferred distance between the split reads. We also 

annotate whether the prediction is anchored by the left neighbor or the right neighbor. More 

specifically, for alignments A1 and A2, we determine:

i. XA = (A1.ref.r, A1.ref.r + |A2.rd.r − A1.rd.r|),

ii. YA = (A2.ref.r, A2.ref.r + |A2.rd.r − A1.rd.r|), and

iii. this indicator alignment is an L type alignment.

Such a detection is called an L type candidate inversion and denoted by (XA, YA, L). For 

alignments B1 and B2, we can obtain an R type candidate inversion (XB, YB, R) such that

i. XB = (B1.ref.l − |B1.rd.l − B2.rd.l|, B1.ref.l),

ii. YB = (B2.ref.l − |B1.rd.l − B2.rd.l|, B2.ref.l), and

iii. this indicator alignment is an R type alignment.

In light of these definitions, there are only a linear number of candidate inversions.

Even so, if we extract all the possible candidate inversions based on unfiltered input 

alignments, unclassified repeats and other complex features will still induce false positives. 

Therefore, in the remainder of this paper, we describe new algorithms and methods that best 

predict a single pair of relatively small inversion intervals with higher accuracy.

B. Connected components of rectangles

For each inversion, its pair of breakpoints can be viewed as a point c in 2-D space. For each 

candidate inversion (X, Y, L) or (X, Y, R), we can view (X, Y) as a rectangle in 2-D space. 

For simplicity of notation, we reuse (X, Y, L) and (X, Y, R) to represent candidate 

rectangles. For a “regular” rectangle without a third component (e.g., final predictions by our 

framework), we simply use (X, Y). It then follows that each point contained in a candidate 

rectangle is possibly a desired breakpoint c. Because the input data (here, long read 

alignments) span larger intervals and have a high rate of sequencing errors, we assume that a 

large portion of these rectangles contain a common single point c. Thus, our ultimate goal is 

to find the smallest possible rectangle with consensus.

To help deal with the high time complexity of the successive steps in our processing, we 

partition the set of candidate rectangles into smaller groups based on their connected 

components in 2D. The connected components of the candidate rectangles are defined by 

viewing each candidate rectangle as a vertex in an undirected graph; if two candidate 

rectangles overlap, then we add an edge between the two corresponding vertices in the 

graph. Next, we find all connected components in this graph since they can be processed 
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independently (and in parallel). Computing connected components of rectangles in 2-D has 

been well studied and can be done in O(n log n) time using complex data structures, where n 
is the number of rectangles [40]–[42]. Here, to avoid implementing complicated data 

structures, we consider a simple O(n2) time algorithm combined with some heuristics, 

because the number of candidate rectangles may not be large in each resulted connected 

component, and, in most cases, we speculate that their configuration will not be complex.

We first partition the rectangles by considering only their connectivity along the x-axis. In 

this case, there are n intervals in the plane and the x-connected components of these intervals 

can be found easily in O(n log n) time. Next, for each resulted group of the above partition, 

we consider only their y-axis connectivity, which can be partitioned similarly. Finally, a 

trivial quadratic-time algorithm is applied to partition each group of rectangles thus resulted 

into connected components of rectangles. In practice, this heuristic approach can 

substantially reduce the amount of running time.

C. Rectangle clustering

Next, we want to cluster candidate rectangles that are “close” to one another since they are 

likely to represent (contain) a single structural variant. To illustrate our idea, suppose the 

given rectangles are as shown in Fig. 4 with three clusters: red, blue, and green. In this 

example, it is not obvious how to assign each rectangle uniquely to one of the three clusters. 

To resolve this issue, we apply a soft-clustering such that some candidate rectangles can be 

assigned to multiple clusters. We define the soft-clustering problem as follows.

Definition 1: Let Rects = {r1, r2, …, rn} be a set of n (candidate) rectangles. Let F be a 

prediction function whose input is a subset of Rects and output is either a rectangle or 

“None”. The objective is to assign the n rectangles to k (k is determined by the algorithm) 

clusters such that the predictions (by F) for each cluster are disjoint. Each rectangle can be 

assigned to 0 or more clusters. Further, the assignment should be maximal, i.e., for the set N 
of (candidate) rectangles that are not assigned, the following two conditions should hold:

i. For ∀N′ ⊆ N, F(N′) always returns “None”, and

ii. For ∀N′ ⊆ N and any cluster Ci (i = 1, …, k), the output of F(N′ ∪ Ci) is either 

“None” or a rectangle that must intersect with the other predicted rectangles.

In short, we want to ignore any (candidate) rectangles ended up in the set N while best 

determining the optimal number of clusters (inversions). This behavior is similar to the well-

known DBSCAN clustering algorithm [43] except that our formulation is heavily dependent 

on the definition of F, which makes our version of the problem more difficult. To overcome 

this difficulty, we propose a simple probabilistic model as the prediction function F. We will 

show that a combination of this probabilistic model and our soft-clustering algorithm 

defined above improves the overall results.

The basic idea of our approach is to first partition the 2D plane into a grid using horizontal 

and vertical lines passing through the boundary edges of the n rectangles. We then count, for 

each cell of the grid, the number of rectangles that cover that cell. We say that a grid cell is a 

local maximal if the coverage numbers of its adjacent left, right, top, and bottom cells are 
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not larger than that of the cell. Then for each local maximal cell, we invoke F to predict a 

representative rectangle for all the rectangles covering that cell. Because the representative 

rectangles thus predicted could still be very close to one another in distance, we repeat this 

process iteratively until there are no new predictions. Specifically, in successive iterations, 

we partition the grid and count the coverage for each grid cell using only the representative 

rectangles, but when we compute new representative rectangles, we use the union of the 

original rectangles. The detailed pseudocode of the algorithm is given in Algorithm 1.

D. Representative rectangle prediction

The function F, which is the second input item to Algorithm 1, takes as input an array of 

candidate rectangles of both types L and R (where L and R are the third component of 

candidate rectangles as defined in Section II-A), and outputs a representative rectangle. 

Here, we design a specific prediction function F. The first step of F is to decide whether there 

are enough candidate rectangles of both types. Let nL and nR be the numbers of type L and 

type R rectangles in the input, respectively. If min {nL, nR} ≤ c1 or min {nL, nR} / max {nL, 

nR} ≤ c2, where c1 and c2 are user-defined parameters, then F returns “None”. Otherwise, it 

proceeds to the next step for the Representative Rectangle Prediction (RRP) problem, which 

will be discussed in detail below.

There are two trivial ways to define and solve the RRP problem. First, we simply take the 

intersection of all the rectangles. The downside for this approach is that there are likely 

errors in the candidate predictions and resulted clusters. Even if the intersection of these 

rectangles is not empty, predicting a rectangle in this way will fail to capture true 

breakpoints (or the point c defined in the first paragraph of Section II-B). Second, we can 

take the minimum rectangle covering all the rectangles as our prediction. The downside here 

is that the predicted rectangle may be too large; even though the prediction may capture the 

target point with an extremely high probability, very large intervals make it difficult to 

validate the predictions, pinpoint biologically important features, and perform further 

analysis. In addition, when we plug this approach into Algorithm 1, after the first iteration, 

the set of candidate rectangles covering a local maximal cell will be increasingly scattered. 

In such a case, this approach would predict terribly large rectangles and may yield as bad as 

a single cluster, resulting in low PPV and maybe low sensitivity. As a result, it is imperative 

to predict a rectangle that is both small and still contains relevant breakpoints with a high 

probability. Also, the approach should be able to return “None” when the candidate 

rectangles do not form a cluster. With this in mind, we define the Representative Rectangle 

Prediction (RRP) problem, as follows.

Definition 2: Let c be an unknown point on the plane. Let S be a set of n i.i.d. rectangles 

sampled from some probability distribution such that, with probability p, each rectangle of S 
contains the point c. For a value δ ∈ (0, 1), the objective is to find a rectangle r′ that 

contains the point c with probability at least 1 − δ, such that the area of r′ is as small as 

possible.

Before delving into the corresponding algorithm, let us briefly justify the underlying 

rationale for this RRP formulation. The basic idea behind Definition 2 is that we want to use 
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a common parameter p to predict a representative rectangle for each of the clusters. The 

point c, however, will be different for every cluster. This implies that each instance of the 

RRP problem corresponds to a different probability space. On the other hand, if we define a 

random variable for each probability space appropriately, it is possible that these random 

variables will follow the same distribution. Suppose we define the random variable for each 

cluster as the following indicator function:

1c(r) = 1  if the rectangle r contains c
0  otherwise 

Then the probability P(1c = 1) is basically the “proportion” of the rectangles in S containing 

c. In practice, we can assume, for all the clusters coming from the same dataset, that P(1c = 

1) shares a common lower bound p that is large enough, since otherwise the dataset itself 

will not contain sufficient information for inversion prediction. It follows that Definition 2 is 

merely a simplified version such that all the instances follow the same distribution.

We now propose a simple algorithm that guarantees only that the representative rectangle 

found contains c with probability at least (1 − δ). Let S.l be the set of left boundary edges of 

S. Denote S.li as the i-th smallest value in S.l. Likewise, we define S.r, S.b, and S.t as the 

sets of right, bottom, and top boundary edges of S, respectively, and denote S.ri, S.bi, and 

S.ti, similarly. If we know in advance that the number of rectangles not containing c is k, 

then we claim that the rectangle (S.ln−k, S.rk+1, S.bn−k, S.tk+1) is either the smallest possible 

rectangle that is guaranteed to contain c, or not a rectangle (say, S.ln−k > S.rk+1), in which 

case the prediction should be “None”. As a result, we only need to compute the largest k 
such that the probability of at most k rectangles in S not containing c is at least (1 − δ).

Let X be a random variable following a binomial distribution B(n, p). Then the goal is to 

find the largest k such that P[X ≥ n − k] ≥ 1 − δ. Formally,

max k: ∑
i = n − k

n

i
n pi(1 − p)n − i ≥ 1 − δ ,
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which is equivalent to

min k: ∑
i = 0

k

i
n pn − i(1 − p)i ≥ 1 − δ .

We do not use any tail inequalities because there are plenty of packages [44], [45] providing 

functions for efficient calculation of ∑i = 0
k

i
n pn − i(1 − p)i with high precision. Therefore, we 

can apply binary search to determine k by calling such a function a logarithmic number of 

times.

Note that in practice, we do not know the value p and it is difficult to estimate a lower bound 

for p given raw alignment data. We simply empirically guess the lower bound of p based on 

existing predictions.

III. Experiments & Results

We compare our approach (denoted by RigInv) with InvDet [35] and Sniffles [30], two long-

read only methods, and four short-read only tools: Lumpy [23], Hydra [15], Delly [26], and 

Pindel-C [24]. We evaluate our results on synthetic E. coli data and An. gambiae data, and 

derive an empirical conjecture based on the experiments on real An. gambiae data.

A. Results on synthetic E. coli

Here we introduce random inversions, translocations, indels, and mismatches into the 

complete reference genome of E. coli K12 and attempt to predict them using real PacBio 

long reads (accession NC 000913) and Illumina Miseq paired-end reads that correspond to 

the alternative (real) karyotype [46]. Note that long reads are used by InvDet, Sniffles, and 

our new method (i.e., RigInv), while Illumina data are used by the other methods.

We generate different synthetic reference genomes to observe the accuracy of these tools as 

the variants get larger. We prepare four sets of simulations with the lengths of inversions 

uniformly randomly falling in the ranges of (500, 1000), (1000, 5000), (5000, 10000), and 

(10000, 50000), respectively. The first three simulations contain 50 inversions and the last 

one contains 30. To guarantee the credibility of these experiments, we also introduce 20 

relocations with each relocated interval uniformly randomly selected from the range (500, 

50000), and 0.01% of insertions, deletions, and variations each.

We calculate the sensitivity (denoted by S), PPV, and F1 score for each experiment, where:

S = TP
TP + FN = TP

 number of true inversions  ,

PPV = TP
TP + FP = TP

 number of predicted inversions  ,

F1 = 2 ⋅ S⋅PPV
S+PPV .

Note that the predictions of Sniffles, Lumpy, Hydra, Delly, and Pindel-C are not “clean” 

since there may be repetitive predictions for a single inversion. To account for this issue, we 
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use two alternative approaches to calculate the three metrics and report the metrics by 

choosing for each tool the approach yielding the better trade-off metrics throughout the 

experiments. The first alternative is that we consider only distinct true predictions when we 

calculate sensitivity but retain repetitive predictions when calculating PPV. For the second 

alternative, if two predictions (X1, Y1) and (X2, Y2) overlap, i.e., X1 overlaps with X2, and 

Y1 overlaps with Y2, then the two predictions are merged into a single prediction (X, Y), 

where:

X = min X1[1], X2[1] , max X1[2], X2[2]

Y = min Y1[1], Y2[1] , max Y1[2], Y2[2]

This guarantees that the predictions of all these tools are “clean” and the T P s in both 

sensitivity and PPV are identical.

The calculated metrics are presented in Table I. Since our framework is designed for large 

local inversions (≥1000bp), it is not surprising that RigInv achieves the best trade-off 

between sensitivity and PPV for larger variants. The F1 score is a widely used metric as a 

trade-off between sensitivity and PPV, and, again, RigInv has the highest score when 

compared to the alternatives. Although the sensitivity of RigInv in this experiment is high, 

our ensuing experiments show that the sensitivity can be improved further. This is in part a 

result of our stronger requirements that both L and R type indicator alignments should 

appear to support a potential inversion, which is not strictly observed by other tools like 

Sniffles. Note that InvDet is designed to detect “global” large inversions and as such should 

have lower sensitivity and PPV. Sniffles has the highest sensitivity but lower PPV for large 

inversions, which may be impacted by the simulated translocations in the synthetic reference 

genomes based on the results in the next section. When using Illumina data, Lumpy achieves 

the best trade-off between sensitivity and PPV, with almost the highest F1 score. Even so, 

RigInv outperforms Lumpy in all the metrics used. Although Delly and Hydra always have 

the highest sensitivity, their PPVs decrease when inversions get larger. Pindel-C always has 

extremely low PPV, maybe because it was designed to predict very short inversions.

Apropos to the running time, InvDet runs the fastest, followed by RigInv. Indeed, RigInv 

spends most of its running time (about 40s) in parsing the SAM file and partitioning the 

input dataset for easier parallelization in successive steps. Lumpy also runs very fast, but 

when compared with InvDet and RigInv, it is much slower.

B. Results on synthetic An. gambiae

Before applying our tool to the An. gambiae data with established inversions, we first 

experiment with synthetic An. gambiae data to assess alignment quality/power and to assess 

the needed parameters and overall potential of each method.

We first use the An. gambiae PEST [47] reference sequence and generate 50X of PacBio 

long reads by PBSIM [48] and 50X of Illumina Miseq short PE reads by ART [49]. We then 

introduce simulated inversions and assess the ability of RigInv and the other tools to detect 

these simulated inversions. We introduce up to 10 inversions in each chromosome of An. 
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gambiae PEST using exactly the same approach we did for E. coli K12, where each 

inversion has a length between 1Mbp and 10Mbp. We also introduce 0.01% of insertions, 

deletions, and variations apiece. For simplicity, we do not introduce translocations for these 

assessments. At the end, we simulate three An. gambiae PEST-based test sequences with 38, 

37, and 35 inversions, respectively.

Table II shows the results of these three experiments. Although Sniffles achieves the best 

results in terms of sensitivity and the trade-off between sensitivity and PPV, it takes over five 

days of user and system time. RigInv and Lumpy always have the best PPV, but RigInv has 

higher sensitivity than Lumpy, and a higher F1 score than all the other tools aside from 

Sniffles. We note, however, that RigInv runs the fastest (over 2500X faster than Sniffles), 

which could help in faster analysis (e.g., high priority cancer typing) and allow researchers 

to experiment with different parameter settings.

As expected, sensitivity is universally low for the chromosome UNKN in An. gambiae 
PEST, which is a random assortment of all sequences not assigned to specific chromosomes. 

Only Sniffles can detect the introduced inversions in this hodgepodge chromosome 

composed of repeat rich regions. For example, it is known that UNKN contains repetitive X 

and some Y chromosome sequences that are difficult to assemble [50]. We therefore 

conjecture that this made-up chromosome abounds with inverted repeats, resulting in 

aligners such as BWA-MEM to extensively align input reads in these regions.

C. Results on real An. gambiae

Our long interest in computational methods for malaria mosquito genome analysis prompted 

us to predict actual inversions relative to the An. gambiae PEST genome. There are four 

known inversions on the 2R arm [51] and one on the 2L arm [52]. Because these inversions 

are detected using a microscope and specific isolated cells, the wet-lab approach for locating 

inversions is very time consuming. Moreover, the exact genome-based locations of mosquito 

inversion breakpoints are not known, which makes more efficient tests such as PCR-based 

assays not feasible. As a result, it is imperative to devise computational approaches to better 

predict inversion breakpoints to facilitate mosquito variation research.

Since chromosome X has no known inversions in An. gambiae, this negative control 

provides a general but more accurate estimate of PPV of the available methods. 

Significantly, only RigInv fully passes this test. Lumpy predicts 1, indicating that its 

predictions are also quite accurate. Sniffles predicts 5. Delly(PRECISE) predicts 26 and 

Delly predicts 1333. InvDet, Hydra, and Pindel-C did not finish after running days on our 

computational machine cluster. The conclusions of the PPVs on RigInv, Lumpy, Sniffles, 

and Delly(PRECISE)/Delly are consistent with the conclusions derived from our synthetic 

An. gambiae data.

Next, with prior cytogenetic knowledge of the 2L and 2R arms providing general locations 

of the known inversions, we examine the predictions of all the tools relative to these known 

large-scale variants. Although we loosely define a correct prediction as being within 3Mbp 

of the known inversion breakpoints, none of the available tools including RigInv can predict 

any of the five known inversions. This indicates that there are features of these important 
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mosquito inversions that have long been overlooked. We intend to further improve RigInv 

based on this cytogenetic data and other emerging data such as chromosome contact (HiC) 

data to better predict these ecologically important inversions.

Finally, we note that RigInv and Sniffles both recently predicted two new inversions in An. 
gambiae on 3R. This indicates that these two inversions are more likely to be real and will be 

validated by our biological collaborators using in situ chromosome hybridization (FISH).

IV. Conclusions

The importance of SV detection in disease etiology and other biological applications has 

prompted us to develop a new framework for inversion detection. Based on a combination of 

two novel theoretical models, Rectangle Clustering and Representative Rectangle Prediction, 

our new framework outperforms all the known short read methods in terms of PPV and the 

trade-off between sensitivity and PPV even with uncorrected PacBio reads. Our new 

framework also has higher PPV and competitive F1 score relative to Sniffles according to 

our simulation experiments. Further, we showed that known inversions in important 

mosquito species are not yet detectable with current methods. In the future, we aim to 

identify their characteristics and further improve our framework to predict these new types 

of inversion signatures.
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Fig. 1. 
Definition of local inversions. The red segment (L, R) in the reference is a local inversion if 

it is reverse complemented (as in the figure), and the four indicator segments of length δ are 

only subject to small variations/indels. Two reads A and B must be split and aligned (in pair) 

in different orientations to the reference in the manner exactly as shown here, where the 

dashed lines indicate the ordering of the split reads. These split alignments covering the four 

δ segments guarantee that the four δ segments do not change substantially.
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Fig. 2. 
An overview of our local inversion detection framework. The step of partitioning connected 

components of rectangles decomposes a large input into smaller-scale inputs. This allows the 

successive steps of higher time complexity to be parallelized.
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Fig. 3. 
Intervals X and Y covering the two breakpoints of an inversion. In practice, it is more 

reasonable to predict an interval X (resp., Y) covering the left (resp., right) breakpoint L 
(resp., R). In this example, X = (A1.ref.r, B1.ref.l) and Y = (A2.ref.r, B2.ref.l). This 

representation of candidate inversions complies with the definition of a local inversion but 

leads to a quadratic number of candidate inversions. This issue can be resolved by 

considering an L (resp., R) type candidate inversion for each L (resp., R) type indicator 

alignment. As in this figure, since the distance of A1 and A2 in read A is d = A2.rd.r − 

A1.rd.r (assuming the coordinates are w.r.t. the orientation of A1), the left and right 

candidate intervals covering L and R are XA = (A1.ref.r, A1.ref.r + d) and YA = (A2.ref.r, 
A2.ref.r + d), respectively. The L type candidate inversion/rectangle w.r.t. read A and the 

reference sequence is therefore denoted by (XA, YA, L). The R type candidate inversion/

rectangle w.r.t. read B and the reference sequence can be represented similarly.
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Fig. 4. 
Soft clustering of three clusters of rectangles. In this example, the two long blue rectangles 

can be assigned to both the blue and red clusters; the two long green rectangles can be 

assigned to both the green and red clusters.
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