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Abstract

Genome-wide association study identified prostate cancer risk variants explain only a relatively 

small fraction of its familial relative risk, and the genes responsible for many of these identified 

associations remain unknown. To discover novel prostate cancer genetic loci and possible causal 

genes at previously identified risk loci, we performed a transcriptome-wide association study in 

79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue 

Expression Project, we established genetic models to predict gene expression across the 

transcriptome for both prostate models and cross-tissue models and evaluated model performance 

using two independent datasets. We identified significant associations for 137 genes at P < 

2.61×10−6, a Bonferroni-corrected threshold, including nine genes that remained significant at P < 

2.61×10−6 after adjusting for all known prostate cancer risk variants in nearby regions. Of the 128 

remaining associated genes, 94 have not yet been reported as potential target genes at known loci. 

We silenced 14 genes and many showed a consistent effect on viability and colony-forming 

efficiency in three cell lines. Our study provides substantial new information to advance our 

understanding of prostate cancer genetics and biology.

Keywords

transcriptome-wide association study; genetic factors; prostate cancer; gene expression

Introduction

Prostate cancer is the most frequently diagnosed malignancy and the second leading cause of 

cancer mortality among males in the United States(1). Epidemiological studies provide 

strong evidence for a genetic predisposition to prostate cancer(2,3). Since 2006, genome-

wide association studies (GWAS) have identified nearly 150 genetic loci harboring common, 

low-penetrance risk variants for prostate cancer(4-6). However, together these variants 

explain less than 30% of the familial relative risk of prostate cancer(4),6, leaving a 

substantial proportion of familial risk uncharacterized.

Many of the GWAS-identified disease risk variants are enriched in functional elements 

including promoters, enhancers, DNase I hypersensitive sites, and transcription factor 

binding sites, which may regulate the expression of genes causing diseases(7). It has been 

hypothesized that many of the genetic associations identified by GWAS may be mediated 

through the regulatory effects of risk variants on genes that are involved in the etiology of 

diseases(8-15). Specifically for prostate cancer, several recent studies using expression 

quantitative trait loci (eQTLs) analyses have shown that GWAS-identified risk variants may 

regulate the expression of certain genes that potentially play a role in prostate 

carcinogenesis(8,13,16). However, the causal genes for the large majority of the GWAS-

identified prostate cancer risk loci remain unknown.
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With a few exceptions, most common risk variants identified to date are only associated with 

diseases with modest effect sizes. It is possible that there are many risk variants in the 

genome that have not yet been identified. Because of their small effect size, these variants 

are difficult to identify in a typical GWAS, even with a very large sample size. 

Transcriptome-wide association studies (TWAS) can be used to systematically assess the 

association of genetically predicted gene expression levels with disease risk throughout the 

transcriptome, providing a powerful approach to identify novel disease risk genes and 

uncover possible causal genes at loci identified previously by GWAS(17-23). Instead of 

evaluating each specific genetic variant as conducted in GWAS, TWAS uses gene-based 

approaches that aggregate the effects of multiple SNPs into one testing unit and thus may 

increase power for identifying novel disease risk loci. Because it is expensive and often 

infeasible to profile the transcriptome of the target tissue in a large number of cases and 

controls, reference datasets containing both genotyping and gene expression data are used to 

establish genetic predictors for gene expression, which are then used to impute gene 

expression levels for subjects with genotype information available in a typical GWAS for 

association analyses of predicted gene expression with disease risk(18). By focusing on the 

genetically regulated component of gene expression, this approach can effectively overcome 

the potential influence of biases due to reverse causation and confounding effects on study 

results. Very recently, there has been a TWAS identifying new prostate cancer risk 

regions(24). This study, however, relies only on statistical inference and does not 

characterize potential function of the identified genes in prostate tumorigenesis using 

functional assays. Herein, we report results from another comprehensive TWAS of prostate 

cancer in which we used different strategies for modelling prostate gene expression and 

functionally characterized selected identified genes using in-vitro assays.

Methods

Building gene expression prediction models

We used transcriptome and high-density genotyping data from the Genotype-Tissue 

Expression (GTEx) study to establish gene expression prediction models using SNPs(25). In 

brief, genomic DNA samples obtained from study participants were genotyped using 

Illumina OMNI 2.5M or 5M SNP Array, and RNA samples from 51 tissue sites were 

sequenced to generate transcriptome profiling data. We used genotyping and prostate tissue 

transcriptome data from 73 European descendants to build prostate tissue gene expression 

prediction models. The genetic ancestry of GTEx subjects was determined based on the first 

two principal components, with reference to populations in the 1000 Genomes Project. 

Considering that the regulatory mechanisms for a large proportion of genes are similar 

across most human tissues(25-27), to increase the statistical power of building models that 

aim to capture genetic effects on gene expression of normal prostate tissue, we also 

generated cross-tissue models using gene expression data generated in all tissues from 369 

GTEx participants of European descent(28). Genotyping data were processed according to 

the GTEx protocol (http://www.gtexportal.org/home/documentationPage). Briefly, SNPs 

having a call rate < 98%, with differential missingness between the 5M and 2.5M Array 

experiments, with Hardy-Weinberg equilibrium P-value < 10−6 (among subjects of European 

ancestry), or showing batch effects were excluded; also one participant diagnosed with 
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Klinefelter disease, one participant with trisomy 17 mosaicism, and three related individuals 

were excluded. The genotype data were imputed in our study to the Haplotype Reference 

Consortium reference panel(29) using Minimac3 for imputation and SHAPEIT for 

prephasing(30,31). SNPs with high imputation quality (RSQR ≥ 0.8), minor allele frequency 

(MAF) ≥ 0.05, those that were included in HapMap Phase 2 for CEU population, and those 

on autosomal chromosomes were retained for the construction of gene expression prediction 

models. HapMap SNPs were used because it is expected that additional variants may 

increase noise without performance improvement, and such a strategy could generate 

stronger instruments because of fewer predicting SNPs being included in the models.

Detailed information of RNA-seq experiments and quality-control of the mRNA data 

performed as part of the GTEx project have been described in detail elsewhere(25,27). In 

brief, the same lab protocol was used to minimize batch effects on study results. Low quality 

samples and outlier samples were identified and removed. Gene-level read counts were 

produced using the following read-level filters: 1) reads were uniquely mapped; 2) reads 

were aligned in proper pairs; 3) the read alignment distance was ≤ 6; 4) reads were fully 

contained within exon boundaries. These data are available in dbGaP and were downloaded 

for model building in our study. For model building, the gene expression levels in reads per 

kilobase of transcript per million mapped reads (RPKM) units from RNA-SeQC was 

used(32). For prostate tissue models, genes with a median expression level of less than 0.1 

RPKM across samples were removed. For the analysis of cross-tissue transcriptomic data, 

genes were retained when the mean expression levels were > 0.1 RPKM and expression 

levels were > 0 RPKM in at least 3 individuals. In both situations, for retained genes, the 

RPKM values were log2 transformed. Quantile normalization, to bring the expression profile 

of each sample to the same scale, and inverse quantile normalization, to map each set of 

expression values to a standard normal, were then performed. Further, adjustments were 

made for the top three principal components (PCs) derived from genotype data and the top 

15 probabilistic estimation of expression residuals (PEER) factors(33) for prostate models, 

and the top three PCs, the top 35 PEER factors(33), and sex for cross-tissue models. The 

PEER analyses were used to further control for unmeasured determinant of gene expression 

variation, including batch effects(33).

In GTEx data, there are expression measurements in different tissues for each individual. A 

mixed effect model was used to decompose the expression level of a gene at a given tissue 

for individual i into a subject-specific cross-tissue component and a subject-by-tissue-

specific component(28), as

Yi, t = Yi
CT + Zi′β + ϵi, t

Here Yi
CT represents the cross-tissue component, Z′i represents a vector of covariates (e.g., 

PEER factors, genetic ancestry, and sex) that have effects of β on the expression levels of the 

gene, and the subject-by-tissue-specific component was estimated as the difference between 

the expression levels and cross-tissue components (Yi
CT) given the lack of replicated 

measurement for a specific tissue/subject pair. The mixed effect model parameters were 

estimated using the lme4 package in R. Posterior models of the subject level random 
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intercepts were used as estimates of the cross-tissue components. The whole tissue gene 

expression data of 6,124 GTEx tissue samples from 369 unique European ancestry 

individuals with genotyping data available were used.

Using both genotyping and gene expression data, an expression prediction model for each 

gene was built by applying the elastic net method as implemented in the glmnet R package, 

with α=0.5(18). The genetically regulated expression for each gene was estimated by 

including SNPs within the 2 MB flanking region of each gene, aligned with the biologic 

understanding that generally variants within this range may influence gene 

expression(34-36). For example, enhancers are known to increase gene transcription, and 

they can be located up to 1 Mbp away from the gene(34,35); it has also been found that 

megabase-sized local chromatin interaction domains are a common structure feature of the 

genome organization(36). Expression prediction models were built for protein coding genes, 

lncRNAs, microRNAs (miRNAs), processed transcripts, immunoglobulin genes, and T cell 

receptor genes, according to the Gencode V19 annotation file (http://

www.gencodegenes.org/releases/19.html). Pseudogenes were not included due to concern 

for potentially inaccurate calling.(37) Ten-fold cross-validation was used to select the 

lambda parameter with which corresponding prediction models generated the smallest 

prediction error. The determined lambda was used in the whole dataset to generate the final 

models. The prediction R2 values (the square of the correlation between predicted and 

observed expression) were used to estimate the prediction performance of each of the finally 

established prediction models.

Evaluating performance of gene expression prediction models using Mayo Clinic and 
TCGA data

To further assess the external validity of the models we built using GTEx data, we performed 

external validation experiment using Mayo Clinic dataset comprising genetic data and gene 

expression data of fresh frozen normal prostate tissue obtained from patients with either 

radical prostatectomy or cystoprostatectomy (N=471)(8), and TCGA dataset comprising 

genetic data and gene expression data of tumour-adjacent normal prostate tissue from 

European-ancestry prostate cancer patients (N=45). Genotype data were imputed using the 

1000 genomes phase 3 data as reference. Gene expression data were processed and 

normalized using a similar approach as described above. The predicted expression level for 

each gene was calculated using the models established using GTEx data and then compared 

with the observed level of that gene using the Spearman’s correlation.

Association analyses of predicted gene expression with prostate cancer risk

We used the following criteria to select prediction models with at least two predicting 

variants for the association analysis: 1) with a model prediction R2 of ≥ 0.01 in GTEx and a 

Spearman’s correlation coefficient of ≥ 0.1 between the predicted and measure gene 

expression in the external validation (Mayo Clinic or TCGA dataset), 2) with a prediction R2 

of ≥ 0.04 in GTEx regardless of the performance in Mayo Clinic or TCGA dataset, 3) with a 

prediction R2 of ≥ 0.01 in GTEx but unable to be evaluated in Mayo Clinic or TCGA 

dataset. The second group of genes was selected because that the gene expression data of the 

Mayo Clinic dataset were derived from fresh frozen tissue obtained from patients with either 
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radical prostatectomy or cystoprostatectomy, and it is expected that the expression patterns 

of some genes in these patients may be different from those in the healthy subjects included 

in GTEx; for TCGA, some gene expression levels might have changed in TCGA tumor-

adjacent normal tissues, and thus it is anticipated that some genes may show low prediction 

performance in TCGA data due to the influence of tumor growth(38,39). Overall, 6,390 

prostate tissue models and 12,779 cross-tissue models met the criteria and were used to 

evaluate for expression-trait associations.

To identify prostate cancer risk associated genes, the MetaXcan method (version 0.2.5), 

which has been described elsewhere, was used for the association analyses(17). Briefly, the 

formula:

Zg ≈ ∑
l ∈ Modelg

wlg
σl
σg

βl
se(βl)

was used to estimate the Z-score of the association between predicted gene expression and 

prostate cancer risk. Here wlg is the weight of SNP l for predicting the expression of gene g, 

βl and se(βl) are the association regression coefficient and its standard error for SNP l in 

GWAS, and σl and σg are the estimated variances of SNP l and the predicted expression of 

gene g. The input variables for the MetaXcan analyses include the weights for gene 

expression predicting SNPs, GWAS summary statistics results, and correlations between 

predicting SNPs. For this study we estimated correlations between SNPs included in the 

prediction models using the phase 3, 1000 Genomes Project data focusing on European 

population.

We used the summary statistics data for the association of genetic variants with prostate 

cancer risk generated from 79,194 prostate cancer cases and 61,112 controls of European 

ancestry in the PRACTICAL consortium. Briefly, 46,939 prostate cancer cases and 27,910 

controls were genotyped using OncoArray including 570,000 SNPs (http://

epi.grants.cancer.gov/oncoarray/). Genotypes were phased and imputed to the cosmopolitan 

panel of the 1000 Genomes Project (1KGP; 2014 June release). Also included in the analysis 

were data from seven previous prostate cancer GWAS or high-density SNP panels of 

European ancestry imputed to 1KGP: UK stage 1 (1,854 cases/1,894 controls) and stage 2 

(3,650 cases/3,940 controls); CaPS 1 (474 cases/482 controls) and CaPS 2 (1,458 cases/512 

controls); BPC3 (2,068 cases/2,993 controls); NCI PEGASUS (4,600 cases/2,941 controls); 

and iCOGS (20,219 cases/20,440 controls). Logistic regression summary statistics were 

meta-analyzed using an inverse variance fixed effect approach using METAL. All 

participating studies were approved by their appropriate ethics review boards. The studies 

were conducted in accordance with Declaration of Helsinki. In each participating study, 

written informed consent was collected from the participants. This study was approved by 

the PRACTICAL/ELLIPSE Data Access Committee.

For our primary analyses, a Bonferroni corrected p threshold of 2.61 × 10−6 (0.05/19,169) 

was used to determine a statistically significant association. To determine whether the 
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identified associations between genetically predicted gene expression and prostate cancer 

risk were influenced by association signals identified in GWAS, we conducted conditional 

analyses adjusting for all risk SNPs in the corresponding genomic region identified in 

GWAS or fine-mapping studies. Briefly, we performed GCTA-COJO analyses developed by 

Yang et al(40) (version 1.26.0) to calculate association betas and standard errors of SNPs 

with prostate cancer risk after adjusting for the index SNPs of interest. We then re-ran the 

MetaXcan analyses using the association statistics after conditioning on the index SNPs.

Prostate cancer cell lines

We performed cell viability and colony formation efficiency (CFE) assays to assess the 

functions of a selected set of candidate genes identified in our study. We used the human 

prostate cancer cell lines PC-3, DU-145, and LNCaP. These cell lines from American Type 

Culture Collection (ATCC, Manassas, VA) were cultured in RPMI 1640 medium (Gibco, 

cat#11875093) (DU145 and LNCaP cells) or Hams F-12K medium (Gibco, cat#21127022) 

(PC3 cells) supplemented with 2 mm l-glutamine (Gibco, cat# 25030081), 100 IU/ml 

penicillin-streptomycin (Gibco, cat#15140122), 1 mm sodium pyruvate (Sigma-Aldrich, 

cat#s8636), 10 mm Hepes (Gibco, cat#15630080), 1x nonessential amino acids (Gibco, cat# 

11140076),, and 10% fetal bovine serum (Gibco, cat# 16000044) at 37°C in a humidified 

atmosphere with 5% CO2. All cell lines were authenticated by American Type Culture 

Collection (ATCC), and were checked for mycoplasma by MycoFluor™ Mycoplasma 

Detection Kit (Thermofisher).

Gene expression in prostate cancer cell lines

Total RNA was isolated from the three prostate cancer cell lines using the miRNeasy Mini 

Kit (Qiagen, cat# 217004). cDNA was synthesized using the High-Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific Inc, cat# 4368814). Real-time monitoring of 

PCR amplification of cDNA was performed using DNA primers and CFX384 Touch™ Real-

Time PCR Detection System (Bio-Rad) with RT² SYBR Green qPCR Mastermix (Qiagen, 

cat# 330500). Target gene expression was normalized to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) levels in the respective samples as an internal standard, and the 

comparative cycle threshold (Ct) method was used to calculate relative amount of target 

mRNAs. The primer sequences are listed in Supplementary Table 1.

Short interfering RNA (siRNA) silencing

After performing transfection optimization, PC-3 and LNCaP cells were plated at 3,000 

cells/well and DU145 cells at 4,000 cells/well in 96-well plates and reverse-transfected with 

siRNAs targeting genes of interest (GOI) purchased from Thermo Fisher Scientific and 

Integrated DNA Technologies, Inc. (IDT), a positive control siRNA (All Stars Hs Cell Death 

Control siRNA, Qiagen cat# 1027299) or a non-targeting (NT) control siRNA (All Stars 

Negative Control siRNA, Qiagen cat# 1027281) (Supplementary Tables 2 and 3) with 

RNAiMAX (Life Technologies, cat# 13778150) or lipofectamine2000 (Life Technologies, 

cat# 11668019) according to the manufacturer’s protocol. Verification of siRNA knockdown 

of gene expression of each GOI was done by qPCR 36 hours after transfection and 

compared to NT control. AllStars Negative Control siRNA has no homology to any known 
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mammalian gene and has a minimal nonspecific effects, as validated using Affymetrix 

GeneChip arrays and a variety of cell-based assays (Qiagen).

Cell viability assays

Cell viability was determined using the Alamar blue (Thermo Fisher, cat# DAL1025) assay 

as previously performed for siRNA knockdowns(41). On day 5 following reverse-

transfection of siRNAs Alamar blue was added to cell plates with fresh media (1:10 

dilution), incubated for 2 hours, and fluorescence (ex570nm/em585nm) was measured using 

a plate reader (BioTek NEO) in the Vanderbilt High-Throughput Screening Facility. Percent 

relative viability was calculated as: (siGOI value / mean NT siRNA control value) × 100. For 

each cell line, each GOI siRNA experiment was conducted in quadruplicate each time and 

repeated for 3 times.

Colony formation assays

For colony formation assays, siRNA transfected cells (DU-145 and PC-3) were seeded in 6-

well plates with a density of 1000 cells/well at 16 hours after transfection, and were cultured 

for two weeks. Colonies, as defined to consist of ≥50 cells, were fixed with methanol, 

stained with crystal violet (0.1% w/v) (Sigma-Aldrich, cat# C0775), scanned and counted 

using ImageJ as batch analysis by a self-defined plug-in Macro. Relative CFE % was 

calculated as: 100 +/− (relative CFE in indicated siRNA - CFE in NTC siRNA) / transfection 

efficiency (“+” if the GOI promotes colony formation (CF) and “-” if it inhibits CF). Two 

independent experiments were carried out for all siRNAs of each GOI siRNA in DU-145 

and PC-3 cell lines. Due to a weak adherence ability of the LNCaP cells, we did not perform 

the colony formation experiments on the LNCaP cells.

Results

Gene expression prediction models

Of the prostate tissue models built for 11,172 genes, 7,893 demonstrated a prediction 

performance (R2) of at least 0.01 (≥ 10% correlation) (Supplementary Table 4). The cross-

tissue models were built for 18,961 genes, of which 14,153 showed a prediction 

performance (R2) of at least 0.01 (Supplementary Table 4). We externally validated our 

models using Mayo Clinic and TCGA datasets. The correlations of two sets of R2s (external 

prediction performance and internal prediction performance) are shown in Supplementary 

Figures 1 and 2. Overall, models that predict gene expression well in GTEx data performed 

well in predicting gene expression in both Mayo Clinic and TCGA data sets, while models 

that predict gene expression poorly in GTEx showed lower external validity. The correlation 

coefficients between internal performance R2 of GTEx models and external performance R2 

derived from the Mayo Clinic dataset were 0.60 for prostate tissue models (0.43 after 

removing outliers) and 0.68 for cross-tissue models (0.68 after removing outliers), which 

were higher than the corresponding correlation coefficients of 0.48 (0.28 after removing 

outliers) and 0.54 (0.43 after removing outliers) obtained using TCGA data for external 

validation. We prioritized 6,390 prostate-specific models and 12,779 cross-tissue models for 

association analyses based on their performance in GTEx, Mayo Clinic and TCGA datasets.
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Association analyses of predicted gene expression with prostate cancer risk

Of the 19,169 models evaluated for the association analyses between predicted gene 

expression and prostate cancer risk, models for 137 genes showed a significant association at 

the Bonferroni-corrected threshold of p ≤ 2.61×10−6 (Tables 1-3, Supplementary Tables 5-6, 

Figure 1). Of them, 68 showed a positive association and 69 showed an inverse association. 

We conducted conditional analyses adjusting for all reported risk variants in the same 

genomic region identified in previous GWAS or fine-mapping studies to evaluate 

independency of the identified associations of the genes(40) (Tables 1-3; Supplementary 

Table 7). The associations for nine previously unreported genes in nine chromosome regions 

(six protein-coding genes and three long non-coding RNAs (lncRNAs)) remained 

statistically significant at p ≤ 2.61×10−6 even after conditioning on the known risk variants 

(Table 1), thus representing potential independent association signals. An association 

between higher predicted expression and increased prostate cancer risk was identified for 

KIAA0907 (1q22), HCG21 (6p21.33), RP11–103H7.5 (8q24.21), AGAP10 (10q11.22), and 

UQCC1 (20q11.22) (Table 1). Conversely, an association between lower predicted 

expression and increased prostate cancer risk was detected for LRRN2 (1q32.1), 

RP11-429J17.8 (8q24.3), USP28 (11q23.2) and EIF3K (19q13.2) (Table 1). Of the 

remaining 128 genes, 94 have not yet been previously implicated as genes responsible for 

association signals with prostate cancer risk through expression quantitative trait loci 

(eQTL) and/or functional studies, and they became insignificant at p ≤ 2.61×10−6 after 

conditioning on the known risk variants, indicating that these associations may be at least 

partially influenced by reported prostate cancer risk variants (Tables 2-3, Supplementary 

Table 5). Interestingly, 34 genes reported as potential causal genes at prostate cancer 

susceptibility loci identified through eQTL and/or functional studies were also found to be 

associated with prostate cancer risk in our agnostic search (Supplementary Table 6), 

substantially exceeding the number of genes (n = 1) expected by chance alone (p<0.0001).

It is worth noting that, for some genes in Tables 2-3 and Supplementary Table 6, their 

associations were not too far from 2.61×10−6 after conditioning on reported prostate cancer 

risk variants. For these genes, it is possible that they may represent independent association 

signals, although the power of detecting them may be constrained by the available sample 

size in the current study.

For 56 of the 137 associated genes identified in this study, we were able to build both 

prostate tissue and cross-tissue prediction models that fulfill the inclusion criteria described 

in the method section. Thus, we could evaluate each of these genes for its predicted 

expression using both models with prostate cancer risk (Supplementary Table 8). Of these 

genes, 46 showed an association in the same direction using both models, including 14 with 

a p ≤ 2.61×10−6 in both models and an additional 21 with a p < 0.05 in both models 

(Supplementary Table 8). There were only two genes that showed a different direction of 

association at p < 0.05 (Supplementary Table 8).

In vitro functional assays using prostate cancer cells

We selected, for functional assays, 14 genes whose high predicted expression was associated 

with increased risk of prostate cancer using knockdown experiments in prostate cancer cells. 
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These genes included 11 protein coding genes (KIAA0907, EFCAB12, UQCC1, DDX52, 

MYO9B, WDPCP, NPNT, VARS2, NUCKS1, HLA-DRB5, and TMEM180) and three 

lncRNAs (RP11-103H7.5, RP11-38L15.3, and AC092155.4). We searched The Human 

Protein Atlas website (http://www.proteinatlas.org) and noted that all 11 selected protein-

coding genes were expressed in the prostate cancer cell line PC-3. We performed 

quantitative PCR (qPCR) on the three prostate cancer cell lines (LNCaP, PC-3 and DU-145) 

to analyze the expression levels of these genes (Supplementary Table 1). All 11 protein-

coding genes and two lncRNAs (RP11-103H7.5 and RP11-38L15.3) were expressed in the 

three cell lines. The expression of AC092155.4 was undetectable in any of the three cell 

lines using the standard RT-PCR protocol. We used cell lines PC-3, DU-145, and LNCaP for 

the viability assay, and PC-3 and DU-145 for the colony formation assay. These genes were 

silenced using small short interfering RNA (siRNA) and the knockdown efficiency was 

calculated in each cell line for each siRNA. Through qPCR validation, robust knockdown of 

the gene of interests (GOI) was achieved with all the siRNAs for the 11 protein-coding 

genes and lncRNAs RP11-103H7.5 and RP11-38L15.3 (Supplementary Figure 3).

To assess the proliferation of cells following gene silencing, we quantified the relative 

viability of cells after knocking down genes of interest in comparison with that of cells 

treated with non-target control (NTC) siRNA (Figure 2). Except for MYO9B, VARS2, and 

NPNT, knocking down any of the other genes resulted in a significantly decreased cell 

viability in at least one of the three prostate cancer cell lines (LNCaP, PC-3 and DU-145) 

used in our experiments. These results were consistent with our hypothesis that silencing 

genes whose predicted high expression was associated with an increased prostate cancer risk 

should reduce cell viability. Interestingly, down-regulation of any of the three lncRNAs 

(RP11-103H7.5, RP11-38L15.3, and AC092155.4) resulted in significantly decreased cell 

viability in all three tested cell lines compared with control group. We further assessed the 

influence of silencing these genes on colony forming ability in PC-3 and DU-145 cells 

(Figure 3). With the exception of WDPCP, knockdown for any of the other 13 genes resulted 

in significant reduction in colony forming efficiency in DU-145 cells compared with the 

control. Experiments using PC-3 cells also showed, in general, reductions in colony forming 

efficiency, although the differences with controls were not statistically significant. These 

results were consistent with our a priori hypothesis as well.

Discussion

This is the most comprehensive TWAS study to evaluate the associations of genetically 

predicted gene expression with prostate cancer risk throughout the human genome. We 

identified 137 genes demonstrating a statistically significant association after Bonferroni 

correction, including nine novel associations independent of any reported prostate cancer 

risk variants. Of the 128 remaining associated genes, 94 have not been reported previously 

as potential causal genes at GWAS-identified loci for prostate cancer risk. Based on The 

Human Protein Atlas, many of our identified genes show an enriched expression pattern in 

prostate or other cancers, and some even demonstrate potential prognostic significance in 

prostate or other cancers (Supplementary Table 9). For virtually all of the identified genes, at 

least one gene expression predicting SNPs showed a highly significant association with 

prostate cancer risk, and for many genes, multiple expression-predicting SNPs were 
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associated with the risk of prostate cancer (Supplementary Tables 10 and 11). This study 

provides substantial novel information to improve the understanding of genetics and etiology 

for prostate cancer, the most common malignancy among men in most countries around the 

world.

Although TWAS-identified associations could be mediated by the expression level of the 

identified genes, it is also possible that such associations may be confounded via a linkage 

disequilibrium between expression predicting SNPs and a disease causal SNP acting through 

other mechanisms. To understand the functional importance of TWAS-identified associated 

genes, we silenced 14 genes whose predicted high levels of expression were associated with 

an increased prostate cancer risk in three prostate cancer cell lines, and assessed their 

influence on cell viability and colony forming efficiency. We observed that, interruption for 

many of these genes demonstrated an effect in the tested cell lines, especially on colony 

forming efficiency in DU-145 cells and on viability in LNCaP cells. Based on previous 

research, downregulation of one of the tested genes, KIAA0907, had no influence on cell 

proliferation or cell viability distribution in non-small cell lung cancer cells(42). This 

supports that KIAA0907 may not be an essential gene. Our observation that knocking down 

expression of KIAA0907 resulted in significantly decreased cell viability in LNCaP cells 

and significantly decreased colony forming efficiency in DU-145 cells thus support a 

potential role of KIAA0907 in prostate tumorigenesis. It is expected that some real 

biological effects may not be detected in all related cell lines, as each cell line has different 

characteristics and may not always accurately replicate the primary cells(43). We observed 

consistent and strong effects for the three lncRNAs evaluated in the experiments, 

RP11-103H7.5, RP11-38L15.3, and AC092155.4, although the expression and knockdown 

efficiency of AC092155.4 could not be detected in the three cell lines examined using the 

typical RT-PCR method. These results provide evidence for a potential causal role of these 

genes in the development of prostate cancer.

Some of the identified genes showing functional significance from our experiments have 

been previously reported to play important roles in the development of cancer. For example, 

MYO9B was found to be upregulated in prostate cancer cells with high metastatic 

potentials(44). Knockdown of MYO9B was found to increase stress fiber formation and 

directional persistence, and decrease 2D migration speed in prostate cancer cells(44). 

Another gene, NUCKS1, was identified as a putative oncogene and immunodiagnostic 

marker of hepatocellular carcinoma(45). Its overexpression was also identified as a 

prognostic marker for both colorectal cancer and cervical squamous cell carcinoma(46,47). 

Furthermore, NUCKS1 was found to be potentially involved in the etiology of lung 

cancer(48). Our study provided additional evidence that these two genes might play an 

oncogenic role in prostate cancer etiology.

In this large TWAS study we identified 103 associated genes which have not yet been 

implicated as potential causal genes at GWAS-identified loci for prostate cancer risk. 

Although we are not able to functionally characterize all of them in one single study, in 
vitro/in vivo studies or human studies have shown that some of these genes may play 

important roles in prostate tumorigenesis. For example, knockdown of CLIC1 exerts 

inhibitory effects on prostate cancer cell proliferation and migration(49). The USP39 gene 
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has been suggested to play an oncogenic role in prostate tumorigenesis, and overexpression 

of this gene was associated with a poor prognosis for prostate cancer patients(50). Expressed 

only in normal prostate and prostate tumor tissues, ANO7 has been shown to play a role in 

promoting cell contact-dependent interactions of prostate cancer cells, and was a potential 

target for T cell-mediated immunotherapy of prostate cancer(51-53). PDLIM5 was identified 

to be overexpressed in prostate cancer cells compared with benign prostate tissue and 

noncancer prostate cells(54). These previous studies provide support of our findings 

regarding a potential role of these genes in prostate carcinogenesis.

Previous studies have shown that the gene expression prediction models are generally stable 

and can capture well the cis-regulatory effects of genetic variants on gene 

expression(18,19,55). Based on our external validation using both Mayo Clinic and TCGA 

data, the prostate tissue models and cross-tissue models built in this study demonstrated 

reasonable prediction performance, overall. The sample size for association analyses in this 

study was large, which provides high statistical power to detect a large number of prostate 

cancer susceptibility gene candidates. On the other hand, the sample size for building 

prostate tissue specific expression prediction models was relatively small (n=73), which may 

affect the precision of estimated model parameters. Given that the regulatory mechanisms 

for most genes are similar across most human tissues(25,26), we also built cross-tissue 

models using gene expression data generated in all tissues from 369 European descendants 

to increase the statistical power. The cross-tissue models are expected to have improved 

power for genes whose regulatory mechanisms are similar across most tissues. In 

comparison, prostate tissue models are likely to be more appropriate for genes whose 

regulatory mechanisms are specific to prostate tissue. With that being said, for genes that we 

could build both prostate tissue model and cross-tissue model, their associations with 

prostate cancer risk were, in general, consistent with each other (Supplementary Table 8). 

Not all genes could be evaluated in our study due to their various hereditary components in 

expression regulation. For example, previous studies suggested an important role of genes 

ASCL2(8), C10orf32(8,9), COL2A1(8), DBIL5P(8), EBF2(11), and GJB1(8) in the etiology 

of prostate cancer. However, expression of these genes cannot be predicted well using data 

currently available in the GTEx project which has precluded us from including them in the 

association analyses. With a large sample size and improved model building strategies, we 

expect that additional genes could be identified in relation to prostate cancer risk in future 

studies. As with most other in vitro experiments, we used cancer cell lines to evaluate the 

functional significance of associated genes identified in our study. Future studies could be 

conducted using normal prostate cell lines. In the current work we did not include negative 

controls in the in vitro experiments. However, it is difficult to identify negative control genes 

for which there is sufficient evidence supporting their irrelevance with prostate cancer. In 

addition, we did not build prediction models using data from other tissues, some of which 

could be relevant to prostate cancer etiology. Future studies using data from relevant tissues 

could be helpful in identifying additional candidate genes contributing to prostate cancer 

etiology.

In conclusion, in this large-scale TWAS study of prostate cancer, we identified a large 

number of novel genes in association with prostate cancer risk. The silencing experiments 

we performed suggest that many of the genes identified by TWAS are likely to mediate risk 
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of prostate cancer by affecting viability or colony forming efficiency, two of the hallmarks of 

cancer. Further investigation of these genes will provide additional insight into the biology 

and genetic of prostate cancer.

Data availability

The GTEx data are publically available via dbGaP (www.ncbi.nlm.nih.gov/gap; dbGaP 

Study Accession: phs000424.v6.p1). The Mayo Clinic study data are available via dbGaP 

(Accession: phs000985.v1.p1). TCGA data are available via the National Cancer Institute’s 

Genomic Data Commons Data Portal (https://gdc.cancer.gov/). The OncoArray genotype 

data and relevant covariate information (i.e. ethnicity, country, principal components, etc.) 

for prostate cancer study are deposited into dbGAP (Accession #: phs001391.v1.p1). In total 

47 of the 52 OncoArray studies, encompassing nearly 90% of the individual samples, are 

available. The previous meta-analysis summary results and genotype data currently are 

available in dbGaP (Accession #: phs001081.v1.p1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

This study identifies novel prostate cancer genetic loci and possible causal genes, 

advancing our understanding of the molecular mechanisms that drive prostate cancer.
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Figure 1. Manhattan plot of association results from the prostate cancer transcriptome-wide 
association study.
The red line represents P = 2.61 × 10−6 based on 19,169 tests. Each dot represents the 

genetically predicted expression of one specific gene by either prostate tissue or cross-tissue 

prediction models: the x axis represents the genomic position of the corresponding gene, and 

the y axis represents the negative logarithm of the association P-value. There are two 

associations with P < 1.00 × 10−40 not shown in this Figure.
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Figure 2. Effects on cell viability in prostate cancer cells by gene silencing.
(A) DU-145, (B) PC-3 or (C) LNCaP cells were transfected with indicated siRNAs. On day 

5, cell viability was determined using Alamar blue. Percent relative viability was calculated 

as: (siGOI value / mean NT siRNA control value) × 100. Error bars are from three 

independent experiments in quadruplicate, and represent standard deviation. P-values were 

determined by one-way ANOVA followed by Dunnett’s multiple comparisons test, which 

controlled for family-wise error-rate: *P-value < 0.05. NTC: non-target control.
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Figure 3. Effects on colony formation efficiency (CFE) in prostate cancer cells by gene silencing.
(A) DU-145 or (B) PC-3 cells were transfected with indicated siRNAs, then reseeded after 

16 hours for colony formation (CF) assay. At day 14, colonies were fixed with methanol, 

stained with crystal violet, scanned and batch analyzed by ImageJ. Relative CFE % = 100 +/

− (relative CFE in indicated siRNA - CFE in NTC siRNA) / transfection efficiency (“+” if 

the GOI promotes CF and “-” if it inhibits CF). Error bars are from two independent 

experiments in triplicate, and represent standard deviation. P-values were determined by 

Welch’s ANOVA followed by Dunnett’s multiple comparisons test, which controlled for 

family-wise error-rate: *P-value < 0.05. NTC: non-target control.
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