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Abstract

Parkinson disease has traditionally been classified as a movement disorder, despite patients’ 

accounts of diverse symptoms stemming from impairments in numerous body systems. Today, 

Parkinson disease is increasingly recognized by clinicians and scientists as a complex 

neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with 

pathology throughout all major branches of the nervous system. Dysfunction of the autonomic 

nervous system, or dysautonomia, is a common feature of Parkinson disease. It produces signs and 

symptoms that severely affect patients’ quality of life, such as blood pressure dysregulation, 

hyperhidrosis, and constipation. Treatment options for dysautonomia are limited to symptom 

alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. 

Animal models provide a platform to interrogate mechanisms of Parkinson disease-related 

autonomic nervous system dysfunction and test novel treatment strategies. Several animal models 

of Parkinson disease are available, each with different effects on the autonomic nervous system. 

This review critically analyses key dysautonomia signs and symptoms and associated pathology in 

Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular 

system, adrenal medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to 

assess the contribution of animal models to the understanding of Parkinson disease autonomic 

dysfunction.
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INTRODUCTION

Dr. James Parkinson’s 1817 “An Essay on the Shaking Palsy” is the first account of the 

devastating impact of Parkinson disease (PD) and details the breadth of symptoms these 

patients suffered. In addition to the tremor and rigidity characteristic of PD motor 

symptoms, Dr. Parkinson shares stories of “bowels, which had been all along torpid, now, in 

most cases, demand stimulating medicines”, sleep “much disturbed”, and food “with much 

difficulty retained in the mouth […] then as difficultly swallowed” [1]. Two hundred years of 

research following Dr. Parkinson’s seminal essay have led to the characterization of a wide 

array of PD nonmotor signs and symptoms. A subset of these are associated with altered 

function of one or more components of the autonomic nervous system (ANS), termed 

dysautonomia. Orthostatic hypotension, hyperhidrosis, and gastrointestinal (GI) dysfunction 

are common manifestations of PD dysautonomia that greatly affect patient quality of life [2]. 

Treatment options for dysautonomia are limited to symptom alleviation because the etiology 

of these features and PD overall is still unknown.

Animal and clinical research efforts have largely focused on PD motor signs and symptoms, 

as they are the basis for PD diagnosis. The extrapyramidal motor features of PD emerge 

when 30-50% of dopamine producing neurons in the substantia nigra have been lost [3]. 

This neurodegeneration is associated with the presence of alpha-synuclein (α-syn)-

immunoreactive intraneuronal inclusions termed Lewy bodies (LBs) in neuronal soma and 

Lewy Neurites (LNs) in axons or dendrites. The trigger for LB and LN formation and the 

precise mechanistic link between α-syn aggregation and nigral neuronal loss have yet to be 

defined; notably, PD protein accumulation is associated with increased inflammation and 

oxidative stress [4]. In addition to the substantia nigra, LBs and LNs are found throughout 

the central and peripheral nervous systems of PD patients, including in the ANS. α-Syn 

accumulation and neuronal loss are proposed to also be involved in PD dysautonomia.

The ANS is well conserved across mammalian species [5], thus making animal models an 

excellent platform for investigating the effects of PD on the ANS. The ANS consists of the 

sympathetic, parasympathetic, and enteric nervous systems. Sympathetic and 

parasympathetic nervous systems have both pre- and post-ganglionic neurons, and pre-

ganglionic neurons of both systems are cholinergic. Sympathetic preganglionic neurons 

reside in the thoracolumbar spinal cord and synapse with noradrenergic postganglionic 

neurons in the paravertebral ganglia, which then innervate appropriate organs. 

Parasympathetic preganglionic neurons originate in either brainstem nuclei or the sacral 

spinal cord and extend long axons to cholinergic postganglionic neurons in terminal ganglia 

near target organs. Enteric nervous system (ENS) ganglia are embedded in the wall of the GI 

tract in the net-like submucosal and myenteric plexuses; they also receive input from the 

sympathetic and parasympathetic nervous systems. ENS neurons express, and often co-

express, diverse neurotransmitters including acetylcholine, dopamine, and serotonin.

Animal research has been critical to understanding the neurophysiological basis of PD motor 

symptoms and developing treatments including dopamine replacement therapy and deep 

brain stimulation. Novel modeling methods are helping to shed light on PD etiology. Can 

current animal models provide the same insight into PD dysautonomia causes and potential 
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treatments? What signs and pathology would an ideal PD dysautonomia animal model 

display? This review critically analyses dysautonomia manifestations and hypothesized 

associated pathology in PD patients, relevant findings in animal models of PD, and the 

contribution of animal models to the understanding of PD autonomic dysfunction.

CLINICAL FEATURES AND PATHOLOGY OF PD AUTONOMIC 

DYSFUNCTION

An important step in modeling and treating PD dysautonomia is determining which 

nonmotor signs and symptoms are tied to ANS dysfunction. This has proven to be difficult, 

due to the widespread pathology of PD and the complex interrelationship of the ANS with 

the somatic and central nervous systems. In this section, we review clinical evidence of PD 

nonmotor features association with ANS dysfunction and pathology in key organ systems: 

cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and 

gastrointestinal tract (Table 1).

Cardiovascular System

An estimated 80% of PD patients experience heart rate and blood pressure abnormalities [6]. 

Heart rate variability decreases in PD, and a lower maximum heart rate can be present at PD 

diagnosis [7]. Prolonged QT interval of the heartbeat is observed in association with 

accelerated worsening of the disease over five years [8]. Blood pressure variability is 

increased in PD, leading to signs and symptoms ranging from fatigue during exercise to 

orthostatic hypotension [9]. Orthostatic hypotension, the inability to regulate blood pressure 

with changes in body position, affects 40% of PD patients, causes dizziness and syncope, 

and increases the risk of falls and injury [9,10]. It frequently coexists in PD with other 

manifestations of blood pressure dysregulation including supine hypertension, loss of 

nocturnal blood pressure dips (non-dipping), and low blood pressure after eating (post-

prandial hypotension) [9].

Heart rate abnormalities appear to be due to dysfunctional parasympathetic responses, while 

the inability to regulate blood pressure is related to loss of sympathetic regulation [9], α-Syn 

accumulates in the vagus nerve [11], potentially blunting cardiovascular parasympathetic 

tone. α-Syn pathology and neurodegeneration are also observed in the parasympathetic 

neurons of the dorsal motor nucleus of the vagus (DMV) [12], but the relevance of this to 

cardiovascular autonomic dysfunction is unclear as the main source of vagal afferents to the 

heart is nucleus ambiguous. Postganglionic parasympathetic loss may also be a feature of 

PD, as positron emission tomography (PET) with the radioligand 5-[(11)C]-methoxy-

donepezil shows decreased acetylcholinesterase in the myocardium [13].

Extensive clinical research illustrates that PD orthostatic hypotension is related to both the 

loss of postganglionic sympathetic innervation to the heart and baroreflex failure. 

Radioimaging evidence of decreased cardiac postganglionic sympathetic innervation is well 

documented in PD and is now a supportive criterion for clinical diagnosis [14]. Sixty percent 

of PD patients have loss of cardiac sympathetic innervation at diagnosis [15], which is 

estimated to affect 100% of patients as the disease progresses [16]. PD cardiac sympathetic 
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nerve loss is heterogeneous in the left ventricle, with the cardiac apex more affected than the 

base [17,18] and sparing of the anterior and proximal regions [17,19]; this loss progresses 

and becomes diffuse over time [20]. A chronological relationship between sympathetic nerve 

loss and α-syn has been suggested [21]. In patients with intact cardiac sympathetic 

innervation, α-syn is abundant in distal postganglionic axons and minimal in sympathetic 

ganglia. However, loss of sympathetic innervation to the heart is accompanied by decreased 

α-syn in cardiac nerve fibers and increased α-syn in paravertebral ganglia. LBs are also 

found in the cardiac plexus itself [22]. Baroreflex failure is thought to be elicited by 

currently unknown central lesions. For example, α-syn pathology and neuron loss have been 

found in the thoracolumbar intermediolateral spinal column, the nucleus from which 

preganglionic sympathetic neurons originate [23,11], in addition to cell loss observed in the 

locus coeruleus [24] and in rostral ventrolateral medulla in some patients [25].

Adrenal Medulla

Most PD patients with orthostatic hypotension present reduced supine plasma 

norepinephrine [26]. Sympathetic postganglionic neurons and the adrenal medulla are both 

important sources of circulating norepinephrine. Histological evaluation of the adrenal 

medulla in PD patients has confirmed that this organ is affected by the disease. Typical 

findings are reduced catecholamine content [27], LBs [28], and inclusions known as ‘hyaline 

globules’ or ‘adrenal bodies’ [29].

Interestingly, 10% of PD patients with early PD in one study had orthostatic hypotension 

with high supine norepinephrine [30], suggesting that PD orthostatic hypotension can 

present with sparing of the peripheral sympathetic system and greater deterioration of 

central components.

Skin/Thermoregulation

Effective thermoregulation depends on a delicate balance between cooling (e.g.: 

vasodilation) and warming (e.g.: thermogenesis) responses [31]. Sudomotor, 

thermoregulatory, and vasomotor dysfunction occur in two-thirds of PD patients [32]. 

Features include heat intolerance, cold intolerance, and profuse periodic sweating [32]. 

Excessive sweating of the face, neck, and upper body, known as axial hyperhidrosis, is 

common in PD [33] and can occur episodically without a stimulus, especially at night [34]. 

Axial hyperhidrosis is hypothesized to be a compensatory phenomenon for lower 

sympathetic activity in extremities [35].

Clinical tests confirm decreased sympathetic nerve function in the skin of hands, feet [35] 

and legs [36] of PD patients. This dysfunction has been linked to histological findings of 

loss of cutaneous nerves innervating blood vessels, sweat glands, and erector pili muscles 

[37]. α-Syn pathology is observed in autonomic cutaneous fibers [38,39], although both 

autonomic [38] and sensory [38,40] fibers are lost in PD. It should be noted that not all 

studies replicated the findings of α-syn accumulation in cutaneous fibers in PD, likely due to 

methodological differences [41]. Additionally, the hypothalamus is a critical coordinator of 

thermoregulation [31]. Decreased hypothalamic dopamine [42] and LBs found in every 

nucleus of the hypothalamus [43,28] may also elicit these symptoms.
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Bladder

Lower urinary tract signs and symptoms such as nocturia and increased frequency and 

urgency to urinate occur in 27 to 85% of patients [44]. Moreover, the detrusor muscle, which 

contracts during urination, is overactive in 58% of untreated PD patients [45].

The pathophysiology of PD bladder dysfunction is likely multifocal [46,47]. The bladder 

itself appears unaffected [44]. However, the basal ganglia are known to regulate micturition 

[48], and clinical imaging demonstrates a correlation between severity of striatal dopamine 

transporter loss and bladder symptoms [49], suggesting a connection to nigral 

neurodegeneration. In the ANS, LBs are found in micturition-associated autonomic 

preganglionic neurons in the lumbar and sacral spinal cord and in the pelvic plexus [11,28]. 

PD pathology also affects additional anatomical structures involved in bladder function 

including Onuf’s nucleus, the raphe nuclei, and the locus coeruleus [50,51].

Pupils

PD impact on patients’ vision encompasses visual hallucinations, abnormal eye movements, 

decreased blinking, and deficits in visual acuity, motion perception, contrast sensitivity, and 

pupil reactivity [52]. Dopamine loss in the CNS and the retina are likely responsible for 

most of the issues listed above, with exception of pupillary abnormalities, which are thought 

to be related to autonomic dysfunction [52]. PD patients exhibit decreased pupil constriction 

speed and decreased light-induced pupil constriction amplitude [53,54]. Clinical tests show 

supersensitivity to the 0.05% pilocarpine hydrochloride eye drop test and abnormal 

responses to 0.02% dipivefrine hydrochloride eye drops, suggesting compromised 

parasympathetic and sympathetic innervation of the iris sphincter and dilator muscles, 

respectively [55].

Parasympathetic pupillary constriction dysregulation may be related to 54% neuron 

reduction and 2-3% neurons containing LBs in the Edinger-Westphal nucleus [56], the 

parasympathetic preganglionic nucleus that innervates the iris sphincter muscle and the 

ciliary muscle. LBs have also been identified in the origin of sympathetic postganglionic 

innervation to the eye, the superior cervical ganglion [57].

Gastrointestinal Tract

Upper Gastrointestinal Tract—The upper GI tract includes structures from the mouth to 

the stomach. In PD, drooling occurs in 10-81% of patients and is hypothesized to be due to 

insufficient salivary clearance in association with difficulty swallowing [58], as salivary 

production is actually decreased in PD [59]. The stomach is also affected in PD; delayed 

gastric emptying occurs in 70-100% of patients causing nausea, vomiting, early satiety, and 

bloating [60].

It is unclear what role ANS dysfunction plays in PD upper GI abnormalities. Decreased 

saliva production could be related to LBs in the superior cervical ganglion, vagus nerve, and 

submandibular glands [57] or to central dopamine deficiency [61]. Swallowing is a complex 

but stereotyped activity regulated by a central pattern generator in the medulla oblongata 

[58]. Oropharyngeal dysphagia in PD is thought to be associated with central dopamine 
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insufficiency-related bradykinesia and poor muscle control of the tongue [58,62]. 

Aggregates of α-syn in the glossopharyngeal and vagus nerves innervating the pharynx may 

also impact swallowing [63]. α-Syn aggregation in the DMV could disturb both esophageal 

and gastric motility [64]. The ENS itself is affected in PD, in both the myenteric and 

submucosal plexuses [11], with a rostrocaudal gradient of serine 129 phosphorylated α-syn 

(p-α-syn), a marker of α-syn pathology associated with mitochondrial impairment [65]. 

Subthalamic nucleus deep brain stimulation improves gastric emptying in PD, substantiating 

a connection between PD upper GI clinical features and nigrostriatal loss [66].

Lower Gastrointestinal Tract—The lower GI tract includes structures from the small 

intestine to the anal canal. 50-80% of patients experience constipation and it can onset many 

years before PD motor symptoms [67]. Clinical evaluation reveals both increased transit 

time in the small and large intestine [68] and dyssynergic defecation, in which a paradoxical 

increase in puborectalis muscle activity occurs during attempted defecation [69].

Histopathologically, a significant decrease in dopamine immunoreactivity has been reported 

in the colon of PD patients with extremely severe constipation [70]. However, more recent 

publications find no changes in ENS neurochemical phenotypes or evidence of ENS 

neurodegeneration in PD [71,72]. Interestingly, mRNA expression is reported to be 

increased for dopamine receptor D1, vasoactive intestinal peptide, and serotonin receptor 3A 

and decreased for serotonin receptor 4 and muscarinic receptor 3 in submucosal rectal 

biopsies from PD patients; alterations in protein levels were not investigated [73]. As 

mentioned above, α-syn pathology is found extensively throughout the myenteric and 

submucosal plexuses of the ENS in PD, including in the small and large intestine [11]. LBs 

can also be present in the thoracolumbar intermediolateral spinal column, paravertebral 

sympathetic ganglia, DMV, and sacral parasympathetic nuclei [28], which may dysregulate 

autonomic coordination of colonic activity. Decreased acetylcholinesterase (a marker of 

cholinergic neurons) in the small intestine as detected by PET further implicates 

parasympathetic abnormalities [13]. Neuronal density in the substantia nigra [74] and 

reduced dopamine transporter availability in the caudate nucleus [75] have been reported to 

correlate with bowel movement frequency in PD patients, and administration of the 

dopaminergic type-2 agonist apomorphine improves symptoms of dyssynergic defecation 

[76], implicating central dopamine deficiency in PD constipation. Recent clinical evidence 

indicates that intestinal microbiome and permeability alterations may contribute to PD GI 

dysmotility [77]. In addition, presence of aggregated α-syn has been reported in the 

vermiform appendix, and appendectomies are associated with decreased risk and delayed 

onset of PD, suggesting that the appendix may be involved in PD initiation [78].

ANIMAL MODELS OF PD DYSAUTONOMIA

Understanding the characteristics and limitations of different animal models is critical to 

appropriately matching the model to the scientific question. As PD neuropathology has been 

identified beyond the nigrostriatal system, classic animal models are being re-evaluated and 

novel models are being developed with the goal of capturing the complexity of PD.
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Classic PD animal models use catecholaminergic neurotoxins such as 6-hydroxydopamine 

(6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP) to target the dopamine 

producing neurons of the substantia nigra and recreate the cardinal motor features of the 

disease [79,80]. 6-OHDA can be injected unilaterally or bilaterally into the substantia nigra 

or medial forebrain bundle to cause rapid (days) nigrostriatal loss or into the striatum to 

cause a slower (weeks) partial loss [81]. 6-OHDA does not cross the blood brain barrier, but 

systemic injection can be used to model PD peripheral nervous system sympathetic loss 

[81,82]. MPTP is typically administered systemically, although delivery to the brain via 

carotid artery infusion is a common technique performed in nonhuman primates [83]. MPTP 

is blood brain barrier permeable, therefore systemic administration results in 

catecholaminergic loss in the central and peripheral nervous systems, with the severity and 

stability of the lesion dependent on dosing regimen. Unilateral intracarotid delivery of 

MPTP induces nigral dopaminergic loss restricted to the ipsilateral administration side 

[83,81]. The pesticide rotenone and herbicide paraquat have also been used to model PD, 

impacting both the central and peripheral nervous systems, yet their application has been 

limited as their effects have large inter-animal variability, affecting reproducibility 

[84,85,81]. These neurotoxins alter mitochondrial function in dopaminergic neurons and 

increase oxidative stress and inflammation [86,80]. Their effects on α-syn are variable. 

Reports indicate that MPTP exposure leads to either upregulation of α-syn protein levels 

immediately following acute exposure or α-syn accumulation and aggregation following 

chronic exposure [87-89]; however, LBs or LB-like inclusions have not been observed. 

Rotenone appears to reliable produce accumulation of phosphorylated α-syn in affected 

rodents, which closely resembles PD pathology [84,90].

In 1997, the first genetic mutation associated with familial PD was identified in the α-syn 

gene. The mutation produces a threonine to alanine replacement in the 53rd residue of the 

protein (A53T) [91]. This watershed discovery led to the identification of α-syn as the major 

component of LBs and LNs [92] and the finding that the A53T mutation accelerates protein 

aggregation relative to wild type α-syn [93]. PD-associated mutations have been also 

identified in genes encoding LRRK2, DJ-1, Parkin and other proteins, which are reviewed in 

detail elsewhere [94]. Carriers of these mutations present a PD syndrome largely similar to 

sporadic PD, including the typical nigral dopaminergic loss and the presence of LBs and 

LNs (with the exception being carriers of Parkin mutations, who typically lack LBs) [94]. 

Animal models have since been created to test the effects of knocking out, mutating, and 

increasing the expression of these wild type and mutated proteins. Additionally, reports of 

LBs in transplanted fetal tissue grafted a decade earlier into the striatum of PD patients 

[95,96] have spurred questions about the ability of misfolded α-syn to spread trans-

synaptically in a prion-like fashion [97,98]. Animal models to test the role of α-syn in PD 

and the trans-synaptic spreading hypothesis include α-syn transgenic mice, models of α-syn 

overexpression induced by viral vector administration, and injection of different forms of α-

syn, such as monomers, oligomers, fibrils, or PD patient-derived LB extracts.

In this section, we review current literature on animal models of PD-associated ANS 

dysfunction and pathology. Similar to the previous patient section, we focus in key organ 

systems: cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and 

gastrointestinal tract (Table 2).
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Cardiovascular System

The finding that PD cardiovascular autonomic dysfunction is associated with loss of 

postganglionic sympathetic innervation in the heart has prompted the study of systemic 

administration of catecholaminergic toxins to model this pathology. Systemic MPTP mimics 

these findings, but the effect is temporary at the administered doses in mice and rhesus 

macaques [99,100]. Systemic 6-OHDA creates a stable lesion model and has been evaluated 

in rats, dogs, and rhesus macaques [101-103,82,104]. In rhesus, cardiac nerve loss induced 

by intravenous 6-OHDA mirrors the left ventricle pattern observed in PD, with the greatest 

loss at the apex and in the inferior region [104,82,103]. More traditional models of PD point 

to a complex role of central dopamine deficiency in cardiovascular autonomic dysfunction. 

For example, bilateral 6-OHDA injection into the substantia nigra of rats has been reported 

to either decrease or increase blood pressure, heart rate variability, and baroreflex sensitivity 

[105,106], while unilateral nigral injection blunts baroreflex sensitivity and increases blood 

pressure variability [107]. Bilateral striatal 6-OHDA injection to rats decreases night/day 

cycle heart rate change [108,109] and attenuates phenylephrine-induced bradycardia [110], 

suggesting decreased heart rate variability. Additionally, bilateral injection of 6-OHDA into 

the rat ventral tegmental area eliminates loss of blood pressure decrease during the light 

cycle in rats [111], mimicking PD non-dipping pattern. Rotenone administration to rats 

produces loss of neurons in the rostral ventrolateral medulla, decreases cardiac sympathetic 

activity [112], increases blood pressure variability, and reduces baroreflex sensitivity [107].

Rodent genetic models of PD have also been evaluated for cardiovascular pathology and 

functional deficits. Mice overexpressing human α-syn under the Thy1 promoter (Thy1-α-

syn) show proteinase K resistant α-syn aggregates in the heart [113], a sign of α-syn 

pathology, and abnormal sympathetic and parasympathetic responses to sodium 

nitroprusside and atropine, respectively [114]. Thy1-α-syn-A53T mice, which express the 

human A53T mutant α-syn, experience dampened heart rate response to atropine and 

increased baseline heart rate [115]. In contrast, heart rate variability is not altered in A53T 

mice generated using P1-derived artificial chromosome (PAC) transgenesis [116], potentially 

related to lower transgene protein expression [114]. Knockout of other PD associated genes, 

DJ-1, PINK1, and Parkin, affects cardiomyocyte mitochondrial function and/or oxidative 

stress sensitivity in mice, but cardiovascular autonomic dysfunction has not been reported in 

these models [117–119]. LRRK2 knockout in rats is not associated with histopathological 

changes in the heart [120].

Adrenal Medulla

Similar to its transitory impact on the heart sympathetic system, MPTP effects in the adrenal 

gland and on circulating catecholamines appear to be variable and temporary in rats [121]. 

Systemic administration of 6-OHDA to rhesus macaques significantly decreases plasma 

norepinephrine and 3,4-dihydroxyphenylacetic acid (DOPAC), a metabolite of dopamine, 

and the expression of the catecholamine-producing enzyme tyrosine hydroxylase in the 

adrenal medulla; these changes persist up to 3 months post-neurotoxin administration [82]. 

Rotenone treatment to rats seems to increase adrenal tyrosine hydroxylase levels [122], 

although a separate study reports a rotenone-induced decrease in plasma norepinephrine and 

epinephrine [112].
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Transgenic mice expressing human A53T α-syn under the prion protein promoter (Prnp-α-

syn-A53T) exhibit increased α-syn oligomerization (indicative of pathological 

accumulation) in the adrenal gland and hyperactivity of tyrosine hydroxylase [123].

Skin/Thermoregulation

6-OHDA and MPTP, but not paraquat, affect thermoregulation, producing acute hypothermia 

in mice requiring supplemental heating post-intoxication, which resolves over time 

[124,125]. Axial hyperhidrosis cannot be evaluated in mice and rats, as eccrine sweat glands 

are limited to the foot pads of rodents and function in frictional gripping [126]. To the 

authors’ knowledge, there are no reports of axial hyperhidrosis in nonhuman primate PD 

models. Intraperitoneal injections of 6-OHDA to mice and rats reproduces the loss of 

sympathetic innervation of sweat glands and blood vessels documented in PD [127,128].

In genetic PD models, Thy1-α-syn mice show expression of human α-syn in the skin [113], 

although this report did not evaluate for α-syn aggregation or p-α-syn. Thy1-α-syn-A53T 

mice did not show altered thermoregulation [115].

Bladder

In agreement with clinical research, multiple animal models of nigrostriatal degeneration 

support the involvement of central dopamine loss in PD-associated bladder dysfunction. 

Unilateral 6-OHDA injection into the middle forebrain bundle [129] or substantia nigra 

[130,131] of rats produces bladder overactivity, which is attenuated by stem cell 

transplantation [132]. MPTP injected intraperitoneally in marmosets [133] or intravenously 

in cynomolgus macaques [134] similarly provokes bladder hyperreflexia. Electrical field 

stimulation of isolated strips of urinary detrusor muscle generates increased contractile 

response in rats treated with unilateral injection of 6-OHDA into the medial forebrain bundle 

[135] and marmosets that received subcutaneous MPTP [136], suggesting an impact on local 

neuronal circuits in the bladder.

Thy1-α-syn mice exhibit increased bladder size at postmortem; bladder function has not 

been assessed [113]. Prnp-α-syn mice show urinary bladder hyperreflexia with increased 

voiding frequency, decreased voided volumes, and the presence of non-voiding contractions 

at 4 months of age which persisted to 16 months [137]. In these animals, mRNA levels of in 

vasoactive intestinal peptide, substance P, and neuronal nitric oxide synthase mRNA are 

altered throughout the spinal cord, autonomic paravertebral ganglia, detrusor muscle, and 

bladder, but changes in protein levels have not been confirmed and the electrical properties 

of the pelvic ganglia are unaffected.

Pupils

Reports of toxin models of PD support clinical findings that dopamine loss in the CNS 

[138,139] or in the retina [140,141] contribute to visuospatial abnormalities and visual 

detection deficits in PD. Animal research connecting pupillary abnormalities to specific 

pathological findings in PD models is more limited.
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Systemic administration of 6-OHDA intraperitoneally to rats [142] and subcutaneous 

delivery of MPTP mice [143] destroys sympathetic fibers or decreases norepinephrine in the 

iris, respectively, although no functional deficits of the eye have been reported. In one study, 

intravenous MPTP in cynomolgus macaques diminished pupillary light-responsiveness in 

one animal out of five [144]. These animals also exhibit electroretinogram irregularities, 

which the authors suggest could be due to damage to sympathetic innervation regulating 

retinal blood flow. 6-OHDA applied topically to the eye in rabbits produces attenuated pupil 

response to cholinergic agonists and supersensitivity to adrenergic agonists [145], and 

intravitreal 6-OHDA-treated cynomolgus macaques show electroretinogram and pattern 

visual evoked potential abnormalities [146], highlighting the importance of sympathetic 

innervation in iris function.

In murine genetic models of PD, overexpressing human α-syn under either the Thy1 or 

PDGFβ promoter produces accumulations of α-syn in the inner nuclear layer and ganglion 

cell layer of the retina and in the optic nerve [147]. Similarly, mice expressing α-syn fused 

to GFP under the PDGFβ promoter accumulate α-syn in retinal ganglion cells and the edges 

of arterial blood vessels [148].

Gastrointestinal Tract

Upper Gastrointestinal Tract—PD animal models that exhibit swallowing difficulties 

include both toxin-induced nigrostriatal degeneration [149] and genetic models of the 

disease [150,151]. However, this work implicates central rather than ANS pathology in PD 

dysphagia. It should be noted that the DMV, the source of vagal innervation of the 

esophagus, is often affected in toxin models of PD [152,153], potentially leaving a role for 

ANS dysfunction.

The presence of delayed gastric emptying in rats injected with 6-OHDA into the substantia 

nigra either bilaterally [152,154] or unilaterally [155,156], indicates that central dopamine 

deficiency may contribute to this manifestation. Furthermore, while substantia nigra 

stimulation with N-methyl-D-aspartate normally increases gastric tone and motility, this 

effect is lost in rats previously treated with unilateral nigral 6-OHDA [157]; cholera toxin B 

tracing in this study validates the existence of a monosynaptic nigro-vagal pathway that 

modulates gastric tone. Several studies demonstrate that toxin-induced nigrostriatal loss 

alters gastric ENS neurochemical phenotype, such as increased tyrosine hydroxylase 

[158,155] and dopamine D2 receptor expression [154], in addition to reducing choline acetyl 

transferase expression in the DMV [152]. Systemic administration of MPTP to mice via 

intraperitoneal injection [159] does not induce delayed gastric emptying. Rotenone models 

have also been evaluated for upper GI changes; a delay in gastric emptying has been 

reported [160] but not replicated [161]. Pathologically, rotenone increases α-syn 

accumulation in the ENS and the intermediolateral cell column of the spinal cord [162], 

which contains preganglionic sympathetic neurons. Paraquat dosing to rats leads to reduced 

gastric tone and motility, which is associated with increased α-syn and decreased choline 

acetyl transferase and tyrosine hydroxylase immunoreactivity in the DMV [157]. 

Interestingly, in a subsequent study by the same group, gastric gavage administration of 

subthreshold doses of paraquat and lectin to rats for seven days led to misfolded α-syn in the 
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DMV and substantia nigra. Although loss of tyrosine hydroxylase-positive neurons in the 

substantia nigra was observed, loss of cholinergic neurons in the DMV was not identified. 

These findings were associated with impaired nigro-vagally evoked gastric motility prior to 

the onset of motor dysfunction; vagotomy was sufficient to prevent motor dysfunction and 

the spread of α-syn misfolding beyond the ENS [163].

Prnp-α-syn-A53T mice exhibit delayed gastric emptying with age [164] concomitant with 

human A53T expression in the vagus nerve, but not in ENS neurons or sympathetic ganglia. 

In contrast, A53T mice generated using PAC transgenesis do show proteinase K resistant 

aggregations of α-syn in the gastric ENS [116]. Thy1-α-syn mice do not show a delay in 

gastric emptying [165,166].

Injection of different forms of α-syn (monomer, oligomer, fibril, etc.) into the GI tract yields 

mixed results regarding the ability of α-syn to spread trans-synaptically and has not yet 

reproduced PD GI dysfunction. Two studies illustrate movement of α-syn injected into the 

stomach to the DMV in rats [167] and mice [168]. In one study [168], the number of 

aggregates in the DMV decreased over time, DMV α-syn aggregation was abolished by 

cervical vagotomy, and there was no finding of aggregated α-syn in the thoracic spinal cord 

or any caudorostral spread beyond the DMV.

Lower Gastrointestinal Tract—PD-like constipation can be seen in rodent models of PD 

with nigrostriatal loss, such as those induced by unilateral [169-171,155,172] or bilateral 

[173] injection of 6-OHDA into the substantia nigra or the medial forebrain bundle, as well 

rotenone-treated mice [174,175]. Systemic administration of MPTP to mice shows mixed 

results [159,176].

Reminiscent of findings in the upper GI tract of PD models, central dopamine deficiency 

impacts the neuronal composition of the colonic ENS. Rats injected unilaterally with 6-

OHDA in the substantia nigra or medial forebrain bundle that develop constipation-like 

signs can exhibit increased colonic tyrosine hydroxylase [155], increased dopamine levels 

[170], decreased neuronal nitric oxide synthase [171,155,172] among other alterations. This 

is dissimilar to findings in PD patients, whose constipation is not associated with neuron loss 

or change in proportions of types of neurons in the ENS [71,72], as discussed earlier. The 

explanation for this discrepancy between the effect of PD-associated and toxin-induced 

nigral degeneration on ENS neurons is currently unclear. Systemic delivery of 

catecholaminergic toxins such as intravenous 6-OHDA to rhesus macaques [177] or 

intraperitoneal MPTP to mice [159,178,179] decreases tyrosine hydroxylase-

immunoreactivity in the ENS; in rhesus this decrease is associated with increased soft feces, 

while MPTP delivery to mice either increases [159] or decreases [179,178] colonic motility. 

Rotenone-induced colonic dysfunction in mice is sometimes [175], but not always [161] 

associated with changes in the ENS. Additionally, rotenone-treated mice frequently 

recapitulate the accumulation [174,180] and S129 phosphorylation [180] of α-syn in the 

colonic ENS observed in PD. The murine rotenone model of PD with constipation-like signs 

also shows increased α-syn in the intermediolateral column of the spinal cord, DMV [153], 

and nigrostriatal system [174,180] in addition to alterations in the fecal microbiome [180]. 

Interestingly, hemi-vagotomy has been reported to reduce α-syn accumulation in the 
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ipsilateral DMV and neurodegeneration in the ipsilateral substantia nigra following rotenone 

treatment [153].

Murine models of α-syn overexpression such as Thy1-α-syn [181,165,113], A53T mice 

generated using PAC transgenesis [116], and Prnp-α-syn-A53T [164,182], present 

constipation-like features. They also present α-syn accumulation in the ENS 

[165,113,116,182] and sometimes [164], but not always [113,116], in the DMV. Because 

these animals typically lack nigral cells loss [79], these findings suggest that α-syn 

accumulation in the ANS is a contributor to PD-like constipation.

Similar to studies discussed above related to upper GI function, different forms of α-syn 

have been injected in the descending colon of rats and the colon and stomach of crab-eating 

macaques [183] to test theories of trans-synaptic α-syn spreading from the peripheral to the 

central nervous system. One month after injection, the rats that received α-syn preformed 

fibrils in the colonic ENS had decreased fecal water content and α-syn accumulation in the 

DMV, yet both effects disappeared by 12 months [183]. Aggregated α-syn was found in the 

ENS of both species throughout the duration of the study (12 months). The monkeys showed 

neither functional deficits nor α-syn pathology outside of the ENS, suggesting differences 

between species or modeling strategies.

DISCUSSION

Successful management of autonomic dysfunction remains an unmet need in PD patient 

care. In addition to the signs and symptoms addressed in this review, dysautonomia can spill 

over into other facets of PD. Orthostatic hypotension compounds the effects of PD motor 

dysfunction on body movement and is associated with cerebral microbleeds which 

contribute to dementia [184]. Nocturia worsens daytime sleepiness [185]. Sexual 

dysfunction correlates with PD autonomic dysfunction [186], although whether this is a 

result of damage to the ANS or of autonomic dysfunction making sexual activity more 

difficult is not known. Unfortunately, the failure rate for drugs designed to prevent or slow 

cell loss in neurodegenerative diseases is extremely high in clinical trials [187,188], and 

treating PD dysautonomia is made more difficult by the limited understanding of 

pathophysiology.

As stated in the introduction, in this article we aimed to answer two questions: Can current 

animal models provide insight into PD dysautonomia causes and potential treatments. What 

signs and pathology should an ideal PD dysautonomia animal model display? Our review of 

the literature supports the value of animal models in discerning the neuroanatomy, 

pathology, and mechanisms precipitating each manifestation of PD dysautonomia. Toxin 

models give clues to the impact of loss of specific neuronal populations in the development 

of clinical signs and symptoms, while models of genetic mutations and/or protein 

aggregation inform on pathways of cell dysfunction. For example, models of central 

dopamine loss have provided evidence supporting a role for nigrostriatal neurodegeneration 

in a number of nonmotor symptoms, including oropharyngeal dysphagia [58,62] and urinary 

dysfunction [48,49]. Clinical investigation enhancing the understanding of PD itself aids 

researchers in the identification of which signs and pathology an ideal model of PD 
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dysautonomia should display (see Tables 1 and 2). A model does not need to exhibit all of 

the features to add to our understanding of PD autonomic dysfunction. An example is the 

research surrounding the cause of constipation in PD. It has previously been hypothesized 

that a loss of dopamine in the colonic ENS leads to PD-associated constipation [70]. 

However, a combination of research in patients illustrating a lack of neurodegeneration in 

the colonic ENS [71,72] and studies in animal models demonstrating that a loss of ENS 

dopamine is not sufficient to produce constipation [177,159] suggest an alternate cause. 

More recent work using transgenic α-syn overexpressing mice [165,113,116,164] and 

injection of α-syn into the ENS [183], together with evidence of LBs in human PD ENS 

[11], suggest that α-syn pathology in enteric neurons, and possibly elsewhere in the ANS, 

contributes to dysregulated GI motility. These models can serve as platforms to test therapies 

aiming to affect α-syn accumulation and to investigate the relationship between ENS α-syn 

pathology and the development of the hallmark PD CNS pathology and cardinal motor 

symptoms. Animal models also allow for interrogation of neurodegenerative mechanisms as 

they are occurring, ideally, at multiple time points to monitor progression of the disease. For 

example, our recent work in rhesus macaques used in vivo PET imaging to map cardiac 

inflammation and oxidative stress before, one, and twelve weeks after 6-OHDA-induced 

postganglionic sympathetic nerve loss [104], providing clues to mechanisms of 

neurodegeneration, possible biomarkers, and potential drug targets. This novel mechanistic 

research approach is difficult to apply in PD patients for several reasons, including the 

extensive neuronal damage and dysfunction already present by the time of diagnosis.

Honestly acknowledging the limitations of each animal model is critical to fruitful, 

translational experimental design. Toxin models can have confounding off-target effects, 

such as vascular damage, myocardial degeneration, and interstitial hemorrhages of the 

kidneys and lungs as observed in rotenone-treated rats [189]. Murine models utilizing α-syn 

transgenesis can result in aberrant expression of α-syn in nonneuronal cell types; although 

Thy1 is not expressed on human mature T cells, it is extremely abundant on murine T cells 

[190]. Age of the animal should also be considered. PD is typically observed in patients over 

60 years of age, and many PD symptoms worsen with age [191]. In that regard, 

oligomerized α-syn has been shown to increase in the aging cynomolgus ENS [192] and α-

syn to accumulate in the substantia nigra of aging rhesus [193]. Although the ANS is 

conserved across many species, differences in neuroanatomy should also be considered 

when selecting a research model. Notably, invertebrate species such as the model organism 

Drosophila melanogaster do not have a clear parallel to the human ANS [194]. Zebrafish 

autonomic innervation shows noticeable differences in the location of sympathetic ganglia 

[5] and in the lack of organized ganglia in the ENS [195]. Comparing rodents to humans, 

sympathetic preganglionic neurons are present in the T1-L3 vertebrae of humans and rats, 

but they are limited to T1-L2 in mice; parasympathetic preganglionic cell bodies are in S2-

S4 in humans but L6-S1 in rats and mice [196]. Additionally, rodent preganglionic 

sympathetic neurons typically lack myelin, in contrast to large mammals [197]. The exact 

number and location of sympathetic ganglia differ between species, but they also show 

variability between individuals within the same species [197], including in humans [198]. 

Finally, researchers should verify that methods of assessing autonomic function are species-
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appropriate, e.g.: application of species-specific corrections for cardiovascular parameters, 

including QT interval during ECG evaluations[199].

Progress understanding the pathological basis of signs and symptoms in clinically relevant 

animal models of ANS dysfunction moves investigators one step closer to finding solutions. 

Part of this scientific evolution is the recognition that, like human PD, no single model can 

encompass all the possible different risk factors of the disease (e.g.: LRRK2 G2019S 

mutation, SNCA A53T mutation, environmental toxin exposure, age). Furthermore, the 

diversity of PD clinical presentation cautions against oversimplification and 

overinterpretation, as no single model can recapitulate all of PD motor and nonmotor 

features, including the range of autonomic dysfunction. An ongoing effort to address these 

issues is the development of a new generation of PD models. A subset of them are based on 

the multiple-hit hypothesis that different pathways synergistically contribute to PD 

neurodegeneration. These mixed models combine catecholaminergic neurotoxins, 

transgenesis, and/or α-syn injection [200] to assess links between PD associated genes and 

toxin administration, such as DJ1−/− mice which are more vulnerable to MPTP [201]. 

Additionally, transgenic and genome-edited nonhuman primate PD models are currently 

being developed [202]. Genetically modified monkeys will allow investigators to study the 

impact of genetics in species more physiologically and anatomically similar to humans, 

helping to define the progression of PD, including when ANS dysfunction first appears, and 

the best timing for introducing disease-modifying therapies. Overall, future work in animal 

models has great potential to bring important insights into PD dysautonomia etiology and, 

ultimately, better treatments.
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Table 1.

Summary of dysautonomia signs and symptoms and proposed areas of associated pathology in Parkinson 

disease patients.

Organ/Organ
System

Major Sign(s) and 
Symptom(s)

ANS
Neurodegeneration ANS α-Syn Accumulation

Pathology
Outside of the

ANS

Decreased Heart Rate 
Variability

Cardiac
Parasympathetic Innervation 

(?)
a

Vagus Nerve
b

Cardiac Plexus
LBs and Neuron Loss in the 

Locus Coeruleus

Cardiovascular
System

Increased Blood 
Pressure Variability 

(OH)

Cardiac
Sympathetic
Innervation

Thoracic Intermediolateral 

Spinal Column
b

Cardiac
Sympathetic
Innervation

Cervicothoracic
Sympathetic

Ganglia
b

Thoracolumbar 
Intermediolateral Spinal 

Column
b

Cardiac Plexus

LBs and Neuron Loss in the 
Locus Coeruleus and 
Rostral Ventrolateral 

Medulla

Adrenal Medulla

Increased Blood 
Pressure Variability 

(OH) Associated with 
Decreased Plasma 

Norepinephrine

Chromaffin Cells of the 
Adrenal Medulla (Reduced 
Catecholamine Markers)

Adrenal Medulla NR

Skin/
Thermoregulation Axial Hyperhidrosis

Cutaneous Sympathetic 
Innervation of Blood Vessels 

and Sweat Glands

Cutaneous
Sympathetic

Fibers

Hypothalamic LBs and 
Dopamine Loss

Bladder
Urinary Frequency 

and Urgency
Nocturia

NR

Lumbar Spinal Cord
b

Sacral
Parasympathetic

Nuclei
b

Pelvic Plexus
b

Nigrostriatal
Neurodegeneration

LBs in Numerous Central 
Nuclei (Onuf's Nucleus, 

Raphe Nuclei, Locus 
Coeruleus)

Pupils Irregular Pupil 
Reactivity

Sympathetic Innervation of 
the Iris Dilator Muscle

(?)
a

Parasympathetic Innervation 
of the Iris Sphincter Muscle 

(?)
a

Superior
Cervical

Ganglion
b

Edinger-
Westphal
Nucleus

NR

Upper GI Tract

Dysphagia NR

Esophageal Enteric Neurons
Thoracic Intermediolateral 

Spinal Column
b

Cervicothoracic
Sympathetic

Ganglia
b

DMV and Vagus Nerve
b

Nigrostriatal
Neurodegeneration

LBs in the Submandibular 
Gland and 

Glossopharyngeal Nerve

Delayed Gastric 
Emptying NR

Gastric Enteric Neurons
Thoracic Intermediolateral 

Spinal Column and 

Sympathetic Ganglia
b

DMV and Vagus Nerve
b

Nigrostriatal
Neurodegeneration

Lower GI Tract Constipation

Colonic
Parasympathetic Innervation 

(?)
a

Colonic Dopamine Content 

(?)
a

Colonic Enteric Neurons
Thoracolumbar 

Intermediolateral Spinal 
Column and Sympathetic 

Ganglia
b

DMV and Vagus Nerve
b

Nigrostriatal
Neurodegeneration
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Abbreviations: ANS, autonomic nervous system; α-Syn; alpha-synuclein; LB, Lewy Bodies; OH, orthostatic hypotension; GI, gastrointestinal; 
DMV, dorsal motor nucleus of the vagus; NR, not reported in current literature

a
(?) refers to limited data or mixed evidence

b
anatomical areas of the ANS in which pathology could affect numerous organs/organ systems; areas are listed when literature strongly suggests a 

relationship between pathology and signs/symptoms
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Table 2.

Summary of key organ/organ systems with Parkinson disease (PD) dysautonomia-like signs and symptoms 

and pathology in animal models.

Animal Model of PD
b PD Dysautonomia-like Signs 

and Symptoms PD Dysautonomia-like Pathology
c

Neurotoxin 6-OHDA (CNS)

Cardiovascular System
Bladder

Upper GI Tract
Lower GI Tract

NR

6-OHDA 
(systemic) Adrenal Medulla

Cardiovascular (Loss of Sympathetic Innervation)
Adrenal Medulla (Loss of Catecholamine Producing Enzymes)

Skin/Thermoregulation (Loss of Sympathetic Innervation)
Pupil (Loss of Sympathetic Innervation)

MPTP (systemic)
Bladder

Pupil (?)
a

Cardiovascular (Transient Loss of Sympathetic Innervation)
Pupil (Loss of Sympathetic Innervation)

Rotenone

Cardiovascular System
Adrenal Medulla

Upper GI Tract (?)
a

Lower GI Tract

Cardiovascular (Rostral Ventrolateral Medulla Neurodegeneration)
Upper GI Tract (α-Syn Accumulation and Phosphorylation in the ENS, 

Intermediolateral Spinal Cord, and DMV)
Lower GI Tract (α-Syn Accumulation and Phosphorylation in the 

ENS, Intermediolateral Spinal Cord, and DMV)

Paraquat Upper GI Tract Upper GI Tract (Neurodegeneration and Increase in α-Syn in the 
DMV)

α-Syn Transgenic
d

Cardiovascular System
Bladder

Upper GI Tract
Lower GI Tract

Cardiovascular (α-Syn Aggregation in Nerves in the Heart)
Adrenal (α-Syn Oligomerization)

Upper Gastrointestinal Tract (α-Syn Aggregation in the Gastric ENS 
and Accumulation in the DMV)

Lower Gastrointestinal Tract (α-Syn Aggregation in the Colonic ENS 
and Accumulation in the DMV)

Fibrils (ENS) Lower GI Tract (Transient) Upper/Lower Gastrointestinal Tract (Increase in Phosphorylated α-Syn 
in the ENS and Transient Increase in the DMV)

Abbreviations: CNS, central nervous system; 6-OHDA, 6-hydroxydopamine; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; GI, 
gastrointestinal; α-Syn, alpha-synuclein; ENS, enteric nervous system; DMV, dorsal motor nucleus of the vagus; NR, not reported in current 
literature

a
(?) refers to limited data or mixed evidence

b
The information about each animal model combines reports from multiple species and agent delivery methods (e.g. mice administered 

intraperitoneal 6-OHDA and rhesus administered intravenous 6-OHDA in “6-OHDA (systemic)”; see text for more information)

c
Table does not describe the effect of the model on the nigrostriatal system, which may be involved in multiple dysautonomia signs and symptoms 

(see text for more information)

d
Includes multiple transgenic murine models (Thy1-α-syn mice, Prnp-α-syn mice, Thy1-α-syn-A53T, Prnp-α-syn-A53T, PAC generated α-syn-

A53T mice)

Clin Auton Res. Author manuscript; available in PMC 2020 August 01.


	Abstract
	INTRODUCTION
	CLINICAL FEATURES AND PATHOLOGY OF PD AUTONOMIC DYSFUNCTION
	Cardiovascular System
	Adrenal Medulla
	Skin/Thermoregulation
	Bladder
	Pupils
	Gastrointestinal Tract
	Upper Gastrointestinal Tract
	Lower Gastrointestinal Tract


	ANIMAL MODELS OF PD DYSAUTONOMIA
	Cardiovascular System
	Adrenal Medulla
	Skin/Thermoregulation
	Bladder
	Pupils
	Gastrointestinal Tract
	Upper Gastrointestinal Tract
	Lower Gastrointestinal Tract


	DISCUSSION
	References
	Table 1.
	Table 2.

