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Abstract

The utilization of inverse docking methods for target identification has been driven by an 

increasing demand for efficient tools for detecting potential drug side effects. Despite impressive 

achievements in the field of inverse docking, identifying true positives from a pool of potential 

targets still remains challenging. Notably, most of the developed techniques have low accuracies, 

limit the pool of possible targets that can be investigated or are not easy to use for non-experts due 

to a lack of available scripts or webservers.

Guided by our finding that the absolute docking score was a poor indication of a ligand’s protein 

target, we developed a novel “combined Z-score” method that used a weighted fraction of ligand 

and receptor-based Z-scores to identify the most likely binding target of a ligand. With our 

combined Z-score method, an additional 14%, 3.6%, and 6.3% of all ligand-protein pairs of the 

Astex, DUD, and DUD-E databases, respectively, were correctly predicted compared to a docking 

score-based selection. The combined Z-score had the highest area under the curve in a ROC curve 

analysis of all three datasets and the enrichment factor for the top 1% predictions using the 

combined Z-score analysis was the highest for the Astex and DUD-E datasets. Additionally, we 

developed a user-friendly python script (compatible with both Python2 and Python3) that enables 

users to employ the combined Z-score analysis for target identification using a user-defined list of 

ligands and targets. We are providing this python script and a user tutorial as part of the 

supplemental information.

Graphical abstract

Guided by our finding that the absolute docking score was a poor indication of a ligand’s protein 

target, we developed a novel “combined Z-score” method that successfully improved the 

identification of the most likely binding target of a ligand. We are also providing a user-friendly 

python script that enables non-expert users to employ the combined Z-score analysis for target 

identification using a user-defined list of ligands and targets.
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Introduction

While some drugs can be proteins or peptides, most pharmaceuticals are small molecules. 

These small molecules generally interact with a protein target, or receptor, and modulate its 

function. While in most drug discovery workflows the identity of the drug target is known 

and even required (1, 2), this is not always the case. Small molecule protein-target 

identification is important in a drug discovery process and for understanding molecular 

function. Being able to identify protein targets of small molecules has important 

implications for the detection of potential drug side effects (3–6) and in the repurposing of 

FDA approved drugs (7, 8). Additionally, protein target identification can be important to 

follow up on experimental cell-based screens or to confirm the binding target of a compound 

identified by either structure-based drug discovery or high-throughput screening in cases 

where the experimental assay contained multiple proteins. Protein target identification has 

certainly benefited from the dramatic increase in available high-resolution protein structures 

in the protein databank (9, 10). In combination with these experimentally determined high-

resolution protein structures, computational methods have the potential to play an important 

role in the process of protein target identification.

Molecular protein docking methods are used widely in the field of drug discovery as part of 

structure-based drug discovery (11). The docking process involves the prediction of ligand 

conformation and orientation within a specific targeted protein binding site (12) by modeling 

the interaction between a small molecule and a protein at the atomic level using a docking 

score (13). Since the implementation of the first docking algorithm in the early 1980s (14), 

there have been countless docking algorithms developed since, including Glide (15), Fred 

(16), AutoDock Vina (17), GOLD (18), FlexX (19), and RosettaLigand (20). Application of 

these algorithms has played a significant role in obtaining FDA approval for several 
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pharmaceutical drugs (21–23). Additionally, virtual screening, sometimes in combination 

with algorithms accounting for receptor flexibility (24, 25), has identified thousands of hit 

compounds for a variety of disease targets (26–32). Application of molecular docking 

methods in protein target identification (frequently also referred to as inverse virtual 

screening (33)) seems straightforward but is plagued by shortcomings. Most notably, 

molecular docking methods have been developed to identify a number of potential ligands 

for a given target by screening thousands to millions of ligands against a single protein (34, 

35). It has become apparent, however, that molecular docking methods are not particularly 

well equipped to identify a small number of potential targets (from a large set of possible 

targets) for a given ligand. Due to the binding environment’s significant contribution toward 

the docking score, selecting targets based on the raw docking scores has been shown to 

negatively impact the selection accuracy of inverse docking methods (36–38). Numerous 

protocols have been developed over the last 10 to 15 years to address this challenge.

The challenge of identifying true positives from a pool of potential targets has encouraged 

the development of various analysis methods and web-servers, predominantly with a focus 

on drug side effects detection. Among those protocols, INVDOCK (39), TarFisDock (40), 

SePreSA (41), and idTarget (42) are widely known molecular docking target identification 

servers (34, 35), where each server selects potential interactive targets of the users’ query 

compound from its own protein library. INVDOCK is the earliest version of a target 

identification server, and currently, the database contains 9,000 proteins and nucleic acids 

for screening. The selection method of INVDOCK is based on the energy threshold of 

interactive proteins, by which it compares the scoring of the query compound with the 

absolute energy threshold of the overall interactive energy of known ligand-protein 

complexes, including the competitor compounds. The performance of INVDOCK was 

evaluated with two test cases, Vitamin E and 4H-tamoxifen, which successfully identified 

50% of the experimentally verified targets. The TarFisDock server was developed in 2006, 

with a target library containing 698 proteins from the PDTD database (43). TarFisDock 

selects the targets by comparing the docking scores of the query compound within the 

proteins of the target library and selecting the top 2, 5 or 10 % ligand-target pairs as the 

potential interactive proteins. TarFisDock has also been benchmarked with Vitamin E and 

4H-tamoxifen and successfully identified 4 out of 12 experimentally verified binding 

proteins of Vitamin E, and 3 out of 10 known binding proteins of 4H-tamoxifen from the top 

2% candidates. The SePreSA server was developed in 2009, and currently, the server allows 

users to screen nearly all the well-known SADR (serious adverse drug reactions) targets (44, 

45). Unlike the aforementioned servers, which compared the interactive energy and the 

docking scores of the query compound-protein complexes, SePreSA introduced a new 

algorithm, the 2-directional Z-transformation (2DIZ). The authors demonstrated that 

SePreSA’s Z-transformation matrix (defined as the Z-score matrix normalized to a mean and 

a standard deviation of 0 and 1 respectively) enhanced the selection of true positives 

compared to the matrix of docking score and the Z-score matrix. The SePreSA algorithm 

was evaluated using a ROC curve and indeed resulted in the highest area under the curve 

(AUC), 0.82, among the three investigated matrices. Finally, the idTarget server is a more 

recent target identification tool, which covers 2,091 proteins in its library. The server 

virtually screens the target library with the query compound using AutoDock4 (46) and 
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ranks the target by the predicted binding affinity, which then filters out targets with positive 

Z-scores. The idTarget server also demonstrated its performance with three different test 

cases, and one of them was tested on an experimentally verified kinase inhibitor 6-bromo-

indirubin-3’ oxime (6BIO). It was reported that after screening 5,821 PDB entries of the 

protein kinases, the server successfully identified protein kinase targets that were known to 

interact with inhibitor 6BIO, resulting in an enrichment factor of 6.54 for the top 1% of 

compounds (42, 47, 48).

Besides the four target identification servers, other computational protocols that focus on 

drug side effect detection have been developed as well. Those protocols allow for a 

screening of a custom set of receptors. One study reported that applying a consensus scoring 

method (combining ICM (49) docking scores with the probability of the drug-protein 

interaction) resulted in the highest accuracy, 48.8%, after screening 252 human protein drug 

targets with 4,621 experimentally approved small molecules from the DrugBank (50). 

Another study proposed adding a custom score term to the Glide SP scoring function and 

improved the selection rate by 27% after cross docking (i.e. docking ligands into non-target 

proteins) a pre-filtered subset of 58 proteins from the Astex dataset (36).

Despite the listed achievements in the field of inverse docking, the challenge of reliable 

protein target identification is far from solved and many shortcomings remain. Notably, most 

of the developed techniques have low accuracies and are not easy to use for non-experts due 

to a lack of available scripts or webservers. Additionally, many of the available drug side 

effect detection servers (33, 40–42) have a preset list of protein targets that are screened, 

making them inadequate for screening specific assay proteins or if a custom list of protein is 

desired to be screened.

In this work, we aimed to address these above limitations. Guided by our finding that the 

absolute docking score was a poor indication of a ligand’s protein target, we developed a 

novel “combined Z-score” method that used a weighted fraction of ligand and receptor-

based Z-scores to identify the correct target for each ligand. We benchmarked our protocol 

using the Astex, DUD, and DUD-E databases. With our combined Z-score method, an 

additional 14%, 3.6%, and 6.3% ligand-protein pairs of the Astex, DUD, and DUD-E 

datasets, respectively, were correctly predicted compared to a docking score-based selection 

as shown in Table 1. The combined Z-score had the highest areas under the curve (AUCs) in 

a ROC curve analysis among the score based, receptor-average Z-score, and ligand-average 

Z-score selection protocols for all three datasets: Astex (AUC=0.82), DUD (AUC=0.76), and 

DUD-E (AUC=0.74). Furthermore, the enrichment factor for the top 1% of compounds 

using the combined Z-score analysis was the highest in Astex (EF=36.5), and DUD-E 

(EF=18.0). Additionally, we developed a user-friendly python script (compatible with both 

Python2 and Python3) that enables users who are familiar with python to analyze docking 

results for target identification. Unlike other web-servers, our python script allows users to 

screen a custom list of query ligands to a custom list of proteins. We are providing this 

python script and a user tutorial as part of the supplemental information.
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2. Materials and Methods

2.1 Datasets

Three datasets of protein targets with known binding ligands were used to investigate our 

combined Z-score method for the enhanced selection of true positives from inverse virtual 

screening. We used the Astex, DUD, and DUD-E databases for our study and detailed their 

properties below. Two of the three datasets (DUD and DUD-E) had multiple active ligands 

for each target protein, whereas the remaining dataset (Astex) only contained a single active 

ligand for each protein.

2.1.1 Astex—The Astex Diverse Set (51) contained a total of 85 proteins and a single 

unique corresponding active ligand for each target (totaling 85 active compounds), as shown 

in SI Figure 1. 99.9% of ligand pairs had Tanimoto indices below 0.6, suggesting that all 85 

ligands have a significantly unique structure. Therefore, each target has a unique active 

ligand and 84 decoys. The Astex Diverse Set provided the 3D structure of the target protein 

in mol2 format and its 3D active ligand in mol format. No separate box file with binding site 

coordinates of the target protein was provided. Since the 3D ligands of the Astex Diverse Set 

were directly extracted from the original PDB file, the midpoint of the given active ligand 

coordinates was used as the center for the docking box.

2.1.2 DUD—The DUD (A Database of Useful Decoys) database assembled 40 different 

targets with 2,950 active compounds and over 100,000 decoys (52). DUD provided 

individual downloadable packages for each target, which contained a 3D structure of the 

target in PDB format with a box file that listed the binding site coordinates. Each target 

package also included two separate sets of 3D compounds in mol2 format, actives and 

decoys. To ensure computational tractability, 8 targets were randomly selected from the 40 

targets, along with their respective active compound sets: ACE (49 actives and 230 decoys), 

ADA (23 actives and 256 decoys), ALR2 (26 actives and 253 decoys), AmpC (21 actives 

and 258 decoys), AR (74 actives and 205 decoys), CDK2 (50 actives and 229 decoys), 

COMT (11 actives and 268 decoys), and COX1 (25 actives and 254 decoys). We randomly 

selected at least 2 to 3 proteins from three different protein size categories: Protein size 

ranging from 100 to 300 residues (Group 1: small proteins), size ranging from 300 to 500 

residues (Group 2: medium proteins), and size ranging from 500 to 700 residues (Group 3: 

large proteins). The targets AR, CDK2 and COMT were selected from Group 1, ADA, 

ALR2 and AmpC from Group 2, and ACE and COX1 from Group 3.

2.1.3 DUD-E—The DUD-E (A Database of Useful Decoys: Enhanced) database is an 

enhanced version of the DUD database, containing 102 diverse targets with 22,886 active 

compounds and over a million decoys (53). DUD-E provided different subsets of target 

proteins: subsets categorized by the proteins’ biological functions, a diverse set containing 

representative targets of the entire database, and a set containing the entirety of the proteins 

available in DUD-E. Similar to the DUD database, DUD-E also provided a 3D structure of 

the target protein (“receptor.pdb”) with a box file listing the binding site coordinates. Finally, 

for each target, DUD-E also provided a list of active compounds categorized by their 

biological functions: actives, marginal actives, marginal inactives, and inactives. Among 
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those lists of compounds, “actives_combined.ism” was used for this study. From the 

combined actives list, the top 20 compounds with the strongest binding affinity to each target 

protein were extracted for our DUD-E ligand library. Therefore, each target has 20 active 

ligands and 2,020 decoys.

2.2 Preparation for docking

For each database, all ligands were docked to each individual protein. For the Astex 

database, a total of 85 ligands were docked to each of the 85 proteins. For the DUD database 

subset, a total of 279 ligands were docked to each of the 8 proteins. And finally, for the 

DUD-E database, 2,040 ligands were docked to each of the 102 proteins. Unless the 

database provided 3D compounds, compounds were prepared using Schrödinger’s LigPrep 

package (54) prior to virtual screening. The energy minimization step was conducted using 

the OPLS_2005 force field, and compounds were ionized at a target pH of 7.0 ± 2.0. An 

additional LigPrep step was applied to compounds that failed to dock with any of the targets. 

For this additional LigPrep step, the OPLS_3 force field was used for the energy 

minimization step.

2.3 In silico Docking

Each of the active ligands was cross docked to the receptor proteins with Glide. For 

Schrodinger’s Glide (15, 55), the grid was centered at the target’s given binding coordinates 

with an inner box size of 20Åx20Åx20Å, and an outer box size of 40Åx40Åx40Å. In Glide, 

compounds were docked to the receptor center with the OPLS_2005 forcefield, the van der 

Walls radii of ligand atoms were scaled by 0.8, a charge cutoff for polarity was set at 0.15, 

and we used GlideScore version SP 5.0.

2.4 Analysis (Methods)

We evaluated a total of 4 different selection protocols for the identification of the small 

molecule protein targets: 1) score, 2) receptor-average Z-score, 3) ligand-average Z-score, 

and 4) the combined Z-score. To calculate these measures, we evaluated the docking scores 

of all the possible ligand-target pairs. The ligands were ranked by their docking score for 

each target individually. Subsequently, we calculated the average docking scores (Equation 

1) and score standard deviations (Equation 2) for each receptor (receptor-average Z-score) 

and for each ligand (ligand-average Z-score).

x = i = 1
N xi, j

N #(1)

SD = i = 1
N xi − x 2

N #(2)
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For the receptor-average Z-score, the summation index i represents each query ligand, while 

j represents each target receptor, and N represents the total number of ligands of a dataset. 

For the ligand-average Z-score, the representation changes, where the summation index i 
now represents each target receptor, while j represents each query ligand, and N represents 

the total number of target proteins of a dataset. Based on those target-specific and ligand-

specific averages, we calculated Z-scores for each ligand docked into each receptor 

(Equation 3 and 4).

ZReceptor =
xi − xreceptor

SDreceptor
#(3)

ZLigand =
xi − xligand

SDligand
#(4)

In both equations 3 and 4, the index i represents each query ligand for both the receptor-

average and ligand-average Z-score. However, the average (x) and the standard deviation 

(SD) values are different from each other. As mentioned above, the receptor-average Z-score 

was calculated by taking the target-specific average score and standard deviation, whereas 

the ligand-specific average score and standard deviation were used for the calculation of the 

ligand-average Z-score.

In the score analysis, for each ligand, the receptor where that ligand had the lowest (i.e. most 

favorable) docking score was selected as the ligand’s potential binding partner. For the 

receptor-average Z-score and the ligand-average Z-score analysis, the receptor with the 

lowest Z-score, respectively, was selected as the potential target for each of the query 

ligands.

The combined Z-score was calculated as a linear combination of the receptor-average and 

ligand-average Z-scores:

ZComb = 0.7 ∗ ZReceptor + 0.3 ∗ ZLigand #(5)

As part of the combined Z-score analysis, for each ligand, the receptor with the lowest 

combined Z-score was selected as the potential target. For the parameters of the combined 

Z-score, a total of 10 different pairs of parameters were tested. Both coefficients of the 

receptor-averaged Z-score and the ligand-averaged Z-score ranged from 0.0 to 1.0 with a 

step size of 0.1, and the summation of each coefficient pair was equal to 1.

2.5 Percent accuracies, ROC curves, AUC calculation, and enrichments

The 4 selection methods for the identification of the small molecule protein targets were 

evaluated by the percent accuracy and the AUC (area under the curve) value of the ROC 

(receiver operating characteristic) curves. The percent accuracy of the selection was 
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calculated by counting the total number of correctly predicted ligand-receptor pairs and then 

dividing the number of correct hits by the total number of ligand-receptor pairs in the 

dataset. For the generation of the ROC curve, the ligand-receptor pairs were sorted by their 

scores and different versions of Z-scores, respectively. All the correct pairs were defined as 

the positives along the y-axis, and the rest of the pairs were considered as decoys along the 

x-axis for the ROC curve generation. A total of 6 different enrichment factors (for the top 

1%, 2%, 5%, 10%, 20%, and 50% of the respective ligand-receptor lists) for each selection 

method were calculated. We also compared enrichments for each receptor by calculating the 

top 5% enrichment factor of the individual receptors. The receptor enrichment factor of the 

ligands ranked by the raw docking score was compared to that of when ligands were ranked 

by the combined Z-score.

2.6 Baseline calculations for AUC and percent accuracies

For the evaluation of the overall performance of the 4 different protocols, each selection 

protocol’s AUC and selection accuracies were compared with the respective baseline value 

expected for random predictions. For the baseline calculation, we generated matrices with 

random docking scores for each dataset. For the Astex model, we generated an 85×85 matrix 

with random docking scores of 85 ligands to 85 target proteins of the Astex dataset. 

Similarly, a 279×8 matrix was generated for the DUD, and a 2040×102 matrix was 

generated for the DUD-E dataset. From the random docking score matrix, we then assigned 

targets to ligands based on their respective scores and various versions of the Z-score. The 

above procedure was repeated 100,000 times, then the average percent accuracy and the 

AUC of the ROC curves of the 4 different selection methods were calculated and used as the 

baseline.

Results and Discussions

Historically, the primary goal of molecular docking methods was to effectively identify 

potential ligand binders to a single protein. Existing docking algorithm scoring functions 

have been optimized to accomplish its primary purpose: ranking the true positive ligands 

towards the top of the list of sorted docking scores within one target receptor. However, 

limitations of these molecular docking methods emerged when they were applied to inverse 

docking, i.e. when the same set of ligands was docked into multiple target receptors (36–38). 

To investigate optimal ways of selecting true positive ligand-protein pairs from the inverse 

docking results, we worked with three different databases: Astex, DUD, and DUD-E. Our 

Astex dataset was comprised of 85 unique ligand-protein pairs, from the DUD we collected 

8 different proteins each paired with 11 to 74 active ligands, and from the DUD-E we 

selected 102 diverse proteins each paired with 20 unique active ligands. After docking all 

these ligands into each of the database protein targets, we then assigned targets to ligands 

based on their respective scores and various versions of the Z-score.

3.1 Variation in score ranges for different binding site environments make score-based 
target selection problematic

We first used the docking scores to assign the target-ligand pairs. In the score analysis, for 

each ligand, the receptor where that ligand had the lowest (i.e. most favorable) docking score 
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was selected as the ligand’s potential binding partner. Figure 1 summarizes the docking 

results of the Astex, DUD, and DUD-E databases. The targets are listed on the X-axes and 

the scores of the ligands docked into each target are shown on the Y-axes. True positive 

ligands are colored orange. A major limitation of applying the inverse docking methodology 

became apparent if the potential targets were selected by comparing their respective docking 

scores. The scoring function of a docking program keeps track of the favorable and non-

favorable interactions between the binding site and the query ligand, consequently resulting 

in a variation in score ranges for different binding site environments. Figure 1 clearly 

illustrates such score range variations of each protein. For example, Figure 1a shows the 

docking scores of 279 ligands docked into 8 protein targets (DUD dataset). All targets 

exhibited unique score ranges and score distribution widths. A similar trend was also found 

in the Astex (Figure 1b) and DUD-E datasets (Figure 1c), where docking score distributions 

were notably target-dependent. This effect renders the challenge of target identification by 

docking score since the targets exhibiting low score distributions would be predominantly 

favored. For example, in Figure 1a, the overall docking scores of AmpC and COMT are less 

favorable compared to the rest of the DUD proteins, which would most likely neglect those 

two proteins from the selection. Indeed, when each ligand’s potential binding partner was 

selected by the docking scores, none of the correct active ligands of AmpC and COMT were 

selected for these two proteins, resulting in 0% accuracy for the two receptors. However, the 

score-based selection accuracy for the DUD dataset was 43.4% (Table 1). This was not as 

low as it could have been based on the score distribution. The reason for this was that the 

DUD was the only dataset that consisted of unequal numbers of active ligands for each 

protein, which consequently led to an uneven distribution of true positive pairs. For example, 

the score distribution of AR ranged from 0.52 to −11.4 kcal/mol and had 74 active ligands, 

which is 27% of all 279 DUD subset ligands. Also, CDK2 had a wide range of score 

distribution, ranging from −1.05 to −10.2 kcal/mol, and contained 50 active ligands, 

covering 19% of the DUD ligands. This virtually diminished the negative effect of docking 

score-based selection for the DUD dataset. Even though the prediction accuracy for AmpC 

and COMT was 0% with the docking score-based selection, the total number of mispaired 

active ligands of the two proteins was only 11% of the entire DUD subset active ligands. Not 

surprisingly, however, when targets were selected based on the ligand docking scores for the 

other two datasets (Figure 1b and 1c), the selection prediction accuracy was significantly 

lower, compared to other selection methods. The Astex and DUD-E datasets exhibited 

accuracies of 27.1% and 12.2%, respectively, as shown in Table 1. In summary, due to the 

binding environment’s significant contribution toward the docking score, selecting targets 

based on the raw docking scores will generally negatively impact the selection accuracy of 

the inverse docking method. Hence, the idea for enhancing the selection accuracy by 

normalizing the docking scores prior to the selection step initiated this study.

3.2 Receptor-average Z-score vs. Score

The variation in score ranges for different binding site environments prompted us to use a Z-

score metric instead of the raw docking score to identify the target of a particular ligand. We 

used the receptor-average Z-score which normalized the raw docking score of a ligand by its 

deviation from the average ligand docking score of all ligands docked into that receptor. 

Thus, the receptor-average Z-score enabled a fairer comparison of different targets for a 
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single ligand. As a result, when a receptor with the lowest receptor-average Z-score was 

selected as the potential binding target of a ligand, the prediction accuracy for successfully 

matching the true target for a ligand increased by 12.9 and 5.9 percentage points for the 

Astex and DUD-E dataset. However, the receptor-average Z-score did not improve the 

prediction accuracy of the DUD dataset, in which the raw docking score performed 3.6 

percentage points better than the receptor-average Z-score. A ROC curve analysis evaluated 

how well the receptor-average Z-score distinguishes the true positives from the decoys. As 

shown in Figure 2, the AUCs for both Astex (AUC=0.82) and DUD-E (AUC=0.73) 

exceeded the respective docking score AUCs.

3.3 Ligand-average Z-score vs. Score

Even though applying the receptor-average Z-score, instead of the raw docking score, for the 

selection of ligand-protein targets successfully enhanced the prediction accuracy for the 

Astex and DUD-E datasets, it was not the ultimate solution. This led us to investigate a 

different type of Z-score analysis, the ligand-average Z-score, which was a method 

introduced in SePreSA (41). For the ligand-average Z-score, each ligand’s raw docking 

score was normalized by its deviation from the average ligand docking score of that 

particular ligand docked into each receptor. Subsequently, the receptor with the lowest 

ligand-average Z-score was selected as the potential target for that ligand. As such, the 

ligand-average Z-score was closely related to the raw docking score, however, it normalized 

the values by their deviation from the respective average values. As a direct consequence, 

the prediction accuracy of the ligand-average Z-score was identical to the score-based 

selection for all three datasets. Despite this, the AUCs for the ligand-average Z-score were 

different from the score-based selection. As shown in Figure 2, the AUCs for both Astex 

(AUC=0.79) and DUD-E (AUC=0.71) performed slightly better than the respective docking 

score AUCs, but not as well as the receptor-average Z-score.

3.4 Combined Z-score vs. Score

The above results of the receptor-average and ligand-average Z-scores inspired the 

generation of a combined Z-score. The combined Z-score was defined as a linear 

combination of the receptor-average and ligand-average Z-scores as defined in Equation 5. 

Subsequently, we selected the receptor with the lowest combined Z-score as the potential 

target for that ligand. One of the advantages of the combined Z-score was that it did not rely 

on a single Z-score term, but rather it merged the strengths of the two individual Z-scores. 

As a result, the combined Z-score selection had the highest accuracy compared to the three 

alternative selection methods for all three datasets. With the combined Z-score method, an 

additional 14% of the Astex ligand-protein pairs, an additional 3.6% of the ligand-protein 

pairs for DUD, and an additional 6.3% of ligand-protein pairs for DUD-E were correctly 

identified (see Table 1 and SI Figure 2). As shown in Table 2, the prediction accuracy 

enhancement of the combined Z-score compared to a random selection was the highest for 

all three cases. The Astex dataset had a prediction accuracy enhancement of 34.9, DUD had 

a prediction accuracy enhancement of 3.8, and DUD-E had a prediction accuracy 

enhancement of 18.9. Additionally, the combined Z-score had the highest AUCs for all three 

datasets. Astex’s AUC was 0.82, DUD’s AUC was 0.76, and DUD-E’s AUC was 0.74. As 

shown in Table 3, the enrichment factor within the top 1% scored ligand-protein pairs for the 
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combined Z-score was the highest in Astex (EF=36.5), and DUD-E (EF=18). Even though 

the top 1% enrichment factor of the combined Z-score for DUD (EF=7.2) was not the best 

among the other selection methods, it is important to note that it is seven times more likely 

to find correct ligand-protein pairs in the top 1% with the combined Z-score compared to a 

random selection.

As shown in the above results, when the combined Z-score was used as a tool for target 

identification instead of the raw docking score, we achieved the highest prediction accuracy 

among the other methods for all three datasets. We next compared the individual receptors’ 

enrichment of active ligands in the top 5% for a score and Z-score based selection. Figure 3 

illustrates the difference between the combined Z-score’s enrichment factor and the raw 

docking score’s enrichment factor for each receptor. As shown in Figure 3, the y-axis is the 

enrichment factor difference (ΔEF) between the two methods. A positive ΔEF represents a 

higher enrichment factor when using the combined Z-score based ranking, whereas a 

negative ΔEF represents a higher enrichment factor when docking-score based ranking is 

employed. If, for a particular receptor, both the combined Z-score and the raw docking score 

had an identical enrichment factor, ΔEF = 0 and no bar is shown. According to Figure 3, 

when ligands were ranked by the combined Z-score, 8 proteins of the Astex, 3 proteins of 

the DUD, and 47 proteins of the DUD-E dataset showed improvement in the enrichment 

factor, while only 2, 3, and 12 proteins, respectively, showed improvement when the ranking 

was performed based on the docking score. The range of improvement was significantly 

different between the two methods. For the DUD dataset, the improvement of the 3 proteins 

from the combined Z-score ranged from 1.6 to 6.1, whereas the docking score improvement 

ranged from 0.4 to 1. Similarly, for the DUD-E dataset, the combined Z-score enrichment 

factor improvement ranged from 1 to 14 for the 47 proteins, whereas the docking score 

enrichment factor improvement ranged from 1 to 6 for the 12 proteins.

3.5 Development of a user-friendly python script

A Python script, TargetID.py, was created that reads in a user-generated input file comprised 

of a list of the user’s docking results (regardless of the software used to perform the 

docking) and outputs the predicted target-ligand combination. The script was written with a 

focus on user-friendliness and only requires a single user input. The input docking results 

need to be formatted in a three column, whitespace separated list containing the protein 

receptor name, ligand name, and docking score (one set per line). This script, along with a 

tutorial, has been made freely available to whomever wishes to use it and is accessible 

through the supporting information.

Conclusions

The development of inverse docking methods and web-servers for target identification has 

been driven by an increasing demand for efficient tools for identifying off-target interactions 

to predict potential drug side effects. By virtually docking a single compound to multiple 

proteins, inverse docking methods allow facile screening of large protein libraries. However, 

limitations of applying such molecular docking methods for target identification became 

apparent when compound docking scores were used as the main criterion for target 
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selection. Thus, in this study, we investigated optimal ways of correctly selecting ligand-

protein pairs from inverse docking results by working with three different datasets: Astex, 

DUD, and DUD-E.

The variation in score ranges for different binding site environments prompted the use of a 

Z-score metric instead of the raw docking score to identify the target of a particular ligand. 

We introduced a novel “Combined Z-score” method for target identification of a ligand, 

which significantly enhanced the selection of correct ligand-protein pairs. With our 

combined Z-score method, an additional 14%, 3.6%, and 6.3% of ligand-protein pairs of the 

Astex, DUD, and DUD-E, respectively, were correctly predicted compared to a docking 

score-based selection. Additionally, the combined Z-score had the highest AUCs for all three 

datasets, and the enrichment factor at the top 1% for the combined Z-score was the highest 

in Astex and DUD-E. We also developed a user-friendly python script that will allow the 

non-expert users to readily analyze their inverse docking results for target identification. 

Unlike other web-servers, our python script allows users to screen their query ligands to a 

custom protein library.

As mentioned earlier, being able to identify protein targets of small molecules has become 

an important tool for detecting potential side effects of novel and commercialized drugs. 

Among other known detectors of drug side effects, inverse docking is an efficient tool for 

screening large protein libraries. By applying our combined Z-score method to the inverse 

docking, it will assist in further increasing the accuracy of target identification with 

molecular docking methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Glide SP docking results of the Astex, DUD, and DUD-E databases. The proteins of each 

dataset are shown along the x-axis and the Glide SP scores of the ligands docked into each 

target are shown on the y-axis. Correct ligands of each target are colored orange. (a) The 8 

targets of the DUD dataset and the Glide SP scores of the 279 ligands docked into each 

target. (b) The 85 targets of the Astex dataset and the Glide SP scores of 85 ligands docked 

into each target. (c) The 102 targets of the DUD-E dataset and the Glide SP scores of 2,040 

ligands docked into each target.
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Figure 2. 
ROC curves. The ROC curves of 4 different selection methods for inverse docking into three 

datasets (Astex, DUD, and DUD-E) are shown: Score-based (blue); Receptor average Z-

score (orange); Ligand average Z-score (green); Combined Z-score (red). The AUC value 

for each selection methods is shown in the legend.
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Figure 3. 
Top 5% enrichment factor enhancement of individual receptors. This figure illustrates the 

difference between the combined Z-score’s top 5% enrichment factor and the raw docking 

score’s top 5% enrichment factor for each receptor. The y-axis is the enrichment factor 

difference (ΔEF) between the two methods, where the length of the bar is a measurement of 

relative improvement. A positive ΔEF represents a larger improvement of the enrichment 

factor by the combined Z-score based ranking. If both the combined Z-score and the docking 

score had an identical enrichment factor, no bar is shown in the figure.
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Table 1.

Prediction accuracy. The number of correctly selected ligand-protein pairs and the prediction accuracy of the 

four different selection methods are shown. The first column lists the results of the Astex dataset, in which 85 

ligands were docked to every 85 proteins. The second column lists the results for the DUD dataset, in which 

279 ligands were docked to 8 proteins, and the third lists the results for the DUD-E, in which 2,040 ligands 

were docked to 102 proteins.

Number of hits 85 × 85 279 × 8 2040 × 102

Astex DUD DUD-E

Score 23 (27.1%) 121 (43.4%) 248 (12.2%)

Receptor-average Z-score 34 (40.0%) 111 (39.8%) 368 (18.1%)

Ligand-average Z-score 23 (27.1%) 121 (43.4%) 248 (12.2%)

Combined Z-score 35 (41.2%) 131 (47.0%) 376 (18.5%)
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Table 2.

Prediction accuracy enhancement of 4 different selection methods. The prediction accuracy of each selection 

methods was divided by the expected prediction accuracy of a random target selection to calculate the 

prediction accuracy enhancement, which is shown in the third column.

Astex Prediction Accuracy (%) Random
Prediction Accuracy (%) Prediction Accuracy Enhancement

Score 27.1 1.2 23.0

Receptor-average Z-score 40.0 1.2 33.9

Ligand-average Z-score 27.1 1.2 23.0

Combined Z-score 41.2 1.2 34.9

DUD Prediction Accuracy (%) Random
Prediction Accuracy (%) Prediction Accuracy Enhancement

Score 43.4 12.5 3.5

Receptor-average Z-score 39.8 12.5 3.2

Ligand-average Z-score 43.4 12.5 3.5

Combined Z-score 47.0 12.5 3.8

DUD-E Prediction Accuracy (%) Random
Prediction Accuracy (%) Prediction Accuracy Enhancement

Score 12.2 1.0 12.4

Receptor-average Z-score 18.1 1.0 18.5

Ligand-average Z-score 12.2 1.0 12.4

Combined Z-score 18.5 1.0 18.9
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Table 3.

ROC curve enrichment. A total of 6 different enrichment factors (for the top 1%, 2%, 5%, 10%, 20%, and 50% 

of the respective ligand-receptor lists) for each selection method were calculated.

Astex EF 1% 2% 5% 10% 20% 50%

Score 23.5 17.1 8.7 5.2 3.1 1.69

Receptor-average Z-score 32.9 19.4 11.1 6.5 3.6 1.65

Ligand-average Z-score 25.9 17.1 8.0 5.2 3.4 1.65

Combined Z-score 36.5 21.8 10.6 6.1 3.5 1.69

DUD EF 1% 2% 5% 10% 20% 50%

Score 7.2 6.1 4.8 3.8 2.6 1.56

Receptor-average Z-score 6.1 4.5 3.7 3.1 2.4 1.60

Ligand-average Z-score 7.5 7.2 5.8 3.9 2.6 1.54

Combined Z-score 7.2 6.8 4.7 3.7 2.7 1.62

DUD-E EF 1% 2% 5% 10% 20% 50%

Score 12.7 8.5 5.0 3.5 2.4 1.52

Receptor-average Z-score 16.7 12.1 6.9 4.3 2.8 1.56

Ligand-average Z -score 12.8 9.1 5.4 3.7 2.5 1.52

Combined Z-score 18.0 11.9 6.8 4.4 2.8 1.57
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