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Thermal performance curves are widely used to describe how ambient

temperature impacts different attributes of ectothermic organisms, from

protein function to life-history traits, and to predict the potential effects of

global warming on ecological systems. Nonetheless, from an analytical

standpoint, they remain primarily heuristic and few attempts have been

made to develop a formal framework to characterize these curves and disen-

tangle which factors contribute to their variation. Here we employ a

nonlinear regression approach to assess if they vary systematically in

shape depending on the performance proxy of choice. We compare curves

at contrasting levels of organization, namely photosynthetic rates in plants

(n ¼ 43), running speeds in lizards (n ¼ 51) and intrinsic rates of population

increase in insects (n ¼ 47), and show with discriminant analyses that differ-

ences lie in a single dimension accounting for 99.1% of the variation,

resulting in 75.8% of classification accuracy. Differences revolve primarily

around the thermal range for elevated performance (greater than or equal

to 50% of maximum performance), which is broader for photosynthetic

rates (median of 26.48C), intermediate for running speeds (19.58C) and nar-

rower for intrinsic rates of increase (12.58C). We contend, confounding

taxonomic factors aside, that these differences reflect contrasting levels of

biological organization, and hypothesize that the thermal range for elevated

performance should decrease at higher organization levels. In this scenario,

instantaneous or short-term measures of performance may grossly overesti-

mate the thermal safety margins for population growth and reproduction.

Taken together, our analyses suggest that descriptors of the curve are

highly correlated and respond in tandem, potentially resulting in systematic

variation in shape across organization levels. Future studies should take into

consideration this potential bias, address if it constitutes a general pattern

and, if so, explain why and how it emerges.

This article is part of the theme issue ‘Physiological diversity, biodiver-

sity patterns and global climate change: testing key hypotheses involving

temperature and oxygen’.
1. Introduction
Global climate change poses one of the greatest threats to biodiversity, with

climate forecasts predicting an increase in global average temperatures ranging

from 1.7 to 4.98C [1]. Theoretical and empirical approaches indicate that global

warming will impact the mean temperatures of local environments, as well as

the magnitude of geographical, diel and seasonal variation [1–3]. Furthermore,

the expected increase in frequency of extreme environmental conditions is

likely to have an even greater impact on biodiversity than the increase in average

temperatures [4–7]. For these reasons, temperature effects on energy turnover

rates and limits to survival and reproduction have been the focus of a large

body of research [8–11], and the repercussions of predicted changes in thermal

conditions are being assessed with mechanistic niche models that combine phys-

iological knowledge with climate projections [12,13]. This can be achieved either

by using theoretical approaches and biophysical ecology or by employing the
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information provided by thermal performance curves, which

describe the relationship between body temperature and

performance in ectotherms, and have been recurrently

employed to determine how different species will respond to

ongoing climate change [8,9,12,14].

Thermal performance curves provide a compelling heuris-

tic tool to describe and predict temperature effects on

biological systems across different levels of organization

[15–17]. Their overall shape presumably reflects the combined

effects of thermodynamics on biochemical rates of reaction

and on protein function and stability [18], physico-chemical

constraints with potentially widespread ecological and evol-

utionary repercussions given how often the unimodal and

asymmetric classic thermal performance curve is reported in

empirical studies at higher levels of biological organization.

Much attention has been given to understanding how thermal

performance curves or different proxies, such as critical

thermal limits, vary through space and time [10,11,19,20],

employing on multiple occasions short-term performance

measures that have been adopted for logistic reasons and

whose association with Darwinian fitness is often unclear

[12]. Although these studies remain highly informative, and

in spite of the enormous variation in thermal sensitivity

observed across taxonomic groups and biological systems

[17,21], to what extent these curves may be contingent on

the indices of performance employed and whether there is sys-

tematic variation across curves remain virtually unexplored.

As pointed out by Schulte et al. [18], for instance, it is not

entirely clear why thermal performance curves of aerobic

metabolism at the organismal level should exhibit the same

attributes or behaviour as the underlying biochemical com-

ponents, as evidenced in some organisms that exhibit

bimodal curves [22]; hence it remains to be seen whether

descriptors of thermal performance curves are invariant

across different levels of biological integration or complexity.

Here we study whether thermal performance curves vary

systematically with the level of organization in question.

Global change biologists have traditionally focused on traits

at specific levels of organization as indicators of the responses

to human-induced perturbations [8–11,20]. However, an

explanation of the mechanisms underlying global environ-

mental problems is becoming increasingly important, not

only for our understanding of cause–effect relationships, but

also for predicting the optimal range of habitats and stressor

thresholds for different organisms in natural and managed

ecosystems. As a preliminary step in this direction, we first

propose an intuitive mathematical framework to describe

thermal performance curves employing parameters that are

biologically realistic from a thermodynamic perspective

(figure 1). Subsequently, we apply this framework to

demonstrate with empirical data that some aspects of the

performance curves seem to vary systematically across differ-

ent levels of biological organization. And finally, we discuss

how this finding might impact predictions on the impact of

climate change on the vulnerability of organisms based on

the study of thermal performance curves.
2. Material and methods
(a) Datasets
We compiled thermal performance data on three different vari-

ables from the literature: photosynthetic rates in higher plants,
sprint speeds in lizards and intrinsic rates of population increase

estimated in insects. These variables were selected because they

provide illustrative examples at contrasting levels of biological

organization and thermal effects that have been documented

extensively in a relatively large number of studies. Raw tempera-

ture and performance estimates for a given set of species and/or

acclimation treatments were extracted from tables or original

plots (in which case the data were retrieved with GraphClick

3.0; http://www.arizona-software.ch/graphclick/). A total of

89 datasets comprising measurements of photosynthetic rates,

64 for sprint speeds and 78 for intrinsic rates across different

temperatures were obtained from the literature. Convergence of

the nonlinear model and adequate parameter estimation of the

thermal performance curve (see below) were the sole criteria

of inclusion in analyses. Thus, all curves whose parameters

could not be quantified owing to the limitations of the data

(e.g. a small number of measurements or a reduced temperature

range) or because the proposed model did not converge were

excluded. The resulting dataset discussed hereafter comprises

43 thermal performance curves for photosynthetic rates, 51 for

sprint speeds and 47 for the intrinsic rates of increase (total

n ¼ 141 curves). The raw data and the original references are

provided in the electronic supplementary material (appendix A).
(b) Statistical analyses
Our performance function describes the antagonistic effects of

temperature on chemical reaction rates and protein denaturation.

Whereas reaction rates increase nearly exponentially with temp-

erature, resulting in a positive effect on performance on the one

hand, denaturation should result in a loss of function and nega-

tively impact performance at higher temperatures on the other

hand (figure 1). In this context, the thermodynamic component

t of the model can be defined as:

t ¼ CeTlnQ10=10, ð2:1Þ

where T corresponds to ambient or body temperature (8C), Q10

defines the fold change in performance as a consequence of

increasing the temperature by 108C, and C is a constant describing

shifts in the vertical axis that are independent of temperature (for

instance, if one is studying the rate of degradation of a substrate

by a particular enzyme, C will be proportional to enzyme

concentration).

The effects of temperature on biochemical denaturation can

be expressed as a proportion of functional molecules/total

molecules. Assuming that these effects are triggered at a given

temperature, one can calculate the biochemical component b as:

b ¼ 1 if T , Tth

ð1� dðT � TthÞ2Þ if T . Tth

�
, ð2:2Þ

where d is a constant controlling the rate of decay from threshold

temperature Tth upwards (the curvature of the decaying function

is assumed to exhibit a quadratic form). Total performance pf is

then obtained by multiplying t � b, resulting in the full model:

pf ¼ ðCeTlnQ10=10Þ if T , Tth

ðCeTlnQ10=10Þ � ð1� dðT � TthÞ2Þ if T . Tth

(
: ð2:3Þ

Consequently, thermodynamics is primarily responsible for

changes in performance in colder temperatures, while denatura-

tion gains importance as temperature rises above Tth and

eventually causes a collapse in performance as b approaches 0

(figure 1).

We fitted the thermal performance curve to the empirical

data and estimated the four parameters Q10, C, Tth and d, with

nonlinear least-squares fitting. Nonlinear estimation is particu-

larly advantageous because it can accommodate empirical

estimates of performance ¼ 0 (i.e. the lower and upper critical

http://www.arizona-software.ch/graphclick/
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Figure 1. Studying thermal performance across levels of biological organization. (a) Graphical representation of our model (equation (2.3)), which combines temp-
erature effects on chemical reaction rates (function t for ‘thermodynamics’) and protein stability (b for ‘biochemistry’). (b) The thermal performance curve obtained
after fitting t � b for running speeds measured in Ctenotus regius [23]. (c) Taxa and level of biological organization studied here, illustrating the generality of the
proposed approach and the effects of taxonomic identity and organization level that are confounded in our analysis (but see figure 4).
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thermal limits), which is not mathematically possible when

log-transforming trait values to estimate parameters with a

linear model [24,25]. Additionally, maximal performance, the

optimal temperature Topt in which performance is maximized

and the temperature range in which performance remains

above 50% of its maximum (Tbreadth) [26] were obtained from

the fitted nonlinear model. All analyses were performed with R

(https://cran.r-project.org), employing an ad hoc script available

in the electronic supplementary material (appendix B).

Subsequently, parameter estimates describing the thermal

performance curves were compared between the three datasets

employing a regular ANOVA, followed by a linear discriminant

analysis to determine how the interaction between these par-

ameters give rise to performance curves with different shapes.

Even though several variables were right-skewed (Q10 and

Tbreadth), we report comparisons with the untransformed data

for simplicity because results remained qualitatively identical
after improving normality (the only exception was d, which

exhibited a lognormal distribution and was log-transformed

prior to analyses). Because we are primarily concerned about

the generality of the model and its potential applications to

study thermal performance curves across different traits, we esti-

mated parameter C but did not include it in analyses for two

reasons: C cannot be compared between two different measures

of performance because it is expressed in the same units as the

response variable (whereas Q10 is dimensionless, Tth is expressed

in 8C and d in 8C22, see equation (2.3)), and it describes primarily

changes on the vertical axis and has no impact on the overall

shape of the thermal performance curve (electronic supplemen-

tary material, figure S1). Thus, while parameter C can be

biologically informative and should be taken into consideration

to understand how a single measure of performance (e.g. photo-

synthetic rates, running speeds or intrinsic rates of increase)

might vary across lineages or treatments, here we focus primarily

https://cran.r-project.org
https://cran.r-project.org
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Figure 2. Thermal performance curves fitted to empirical data for (a) photo-
synthetic rates in plants (n ¼ 43), (b) running performance in lizards
(n ¼ 51) and (c) fitness in insects (n ¼ 47).

cietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180549
3. Results
(a) Parameter estimates and the shape of thermal

performance curves
The nonlinear regression analysis converged for a total of 141

performance curves, which contained a range of 5–26 empiri-

cal measurements per curve. Overall fit was good based on

visual inspection and R2 ¼ 0.957+ 0.044 (+s.d.) from pre-

dicted versus observed linear regressions, indicating that

the thermal performance function developed here (equation

(2.3)) provides an adequate description of the relationship

between performance measures and T for multiple curves

obtained across different traits (figure 2). Overall, analyses

indicate that Q10 and d differ significantly between traits

whereas Tth does not (table 1). Interestingly, a linear discrimi-

nant analysis including these three parameters suggests that

99.1% of the variation in shape across curves falls in a

single linear dimension (electronic supplementary material,

figure S2), which resulted in 75.8% curves correctly classified.

In accordance with results from univariate ANOVAs, Q10 and

log-transformed d exhibited the highest standardized coeffi-

cients in the discriminant function (Q10¼ 0.75, Tth¼ 0.09 and

d¼ 1.48); hence these are the parameters that best separate

the curves across traits.

The observed variation in parameter estimates translates

into striking differences in the overall shape of the thermal

performance curves across traits (figure 3). Succinctly, all

descriptors of the temperature performance curve were stat-

istically different according to univariate ANOVAs (table 1).

While observed differences in the temperature optimum

Topt across traits do not seem to reflect their level of organiz-

ation, the temperature range in which performance remains

elevated (i.e. above 50% of maximum performance) was

higher for photosynthetic rates, intermediate for running

speeds and lower for intrinsic rates of increase. Importantly,

differences in Tbreadth are quite large, with median estimates

for one trait generally falling outside the 95% confidence

intervals estimated for the other traits (figure 3b). To illustrate

the differences in Tbreadth across traits, and presumably across

levels of biological organization, we set the maximum per-

formance of the fitted curves to 1, centred the curves to the

mean Topt ¼ 32.158C observed across the entire dataset and

mapped the original measurements onto this normalized

temperature axis (figure 3d ). This can be readily accom-

plished without affecting the overall shape of the curve

because, analytically, Topt can be quantified by calculating

@pf=@T ¼ 0 (equation (2.3)), which leads to:

Topt ¼ Tth �
10

lnQ10
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d
þ 10

lnQ10

� �2
s

: ð3:1Þ

That is, manipulating Tth effectively shifts the thermal

performance curve along the temperature axis without affect-

ing its general shape, and after curves are centred on a

common Topt the differences in Tbreadth between traits

become quite evident (figure 3d ).
Importantly, the remainder of this equation is also

informative because DT ¼ Topt 2 Tth, or the temperature

difference between where the denaturation curve starts drop-

ping and where this effect fully compensates the rise in

performance due to thermodynamics (figure 1), depends

solely on Q10 and d. This is why the interaction between Q10

and d ultimately determines the shape of the curve, and

more specifically its thermal range, and why these two par-

ameters were the most important variables obtained in the

linear discriminant analysis above (electronic supplementary

material, figure S2). While this finding is interesting on its
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Figure 3. Thermal performance curves differ in shape across different levels of organization, as shown for (a) the optimal temperature where performance is
maximal, (b) the temperature range where performance remains above 50% of its estimated maximum and (c) the upper critical temperature where performance
drops to zero. Dashed lines show the distribution medians. (d ) Differences in the temperature range across curves are evident when the raw data are expressed as
relative performance and centred on the same optimal temperature. Colours as in figures 1 and 2.

Table 1. Parameter estimates of the thermal performance curves fitted for different traits and results from a regular ANOVA comparing them. Median and 95%
confidence intervals are reported.

rate of CO2 uptake running speed intrinsic rate of increase

Ca 5.77 (2.00, 17.02) 0.129 (0.035, 0.568) 0.008 (0.001, 0.048)

Q10 1.813 (1.331, 2.767) 2.356 (1.416, 3.675) 3.789 (2.326, 8.417) F2,138 ¼ 63.1 p , 2.2 � 10216

Tth (8C) 16.21 (6.98, 35.33) 17.45 (3.47, 36.88) 20.96 (10.72, 26.41) F2,138 ¼ 2.14 p ¼ 0.121

d (8C22)b 0.0013 (0.0005, 0.0069) 0.0016 (0.0007, 0.0268) 0.0051 (0.0018, 0.0262) F2,138 ¼ 33.9 p ¼ 1.1 � 10212

Topt (8C) 32.0 (25.93, 44.38) 34.8 (29.70, 38.17) 28.8 (22.40, 35.08) F2,138 ¼ 36.5 p ¼ 1.8 � 10213

Tbreadth (8C) 26.37 (16.98, 43.05) 19.54 (13.51, 24.64) 12.54 (9.15, 18.47) F2,138 ¼ 109.2 p , 2.2 � 10216

CTmax (8C) 46.02 (33.81, 55.71) 43.26 (38.48, 47.04) 34.20 (26.98, 41.00) F2,138 ¼ 87.3 p , 2.2 � 10216

aComparing C is not meaningful because its units vary with the measured traits (figure 2).
bANOVA on log-transformed values to improve normality.
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own merit, its repercussions are far from trivial as it indicates

that the relationship between Topt and the upper critical ther-

mal limit CTmax is expected to vary. Accordingly, the

thermal window estimated as CTmax 2 Topt differs
significantly between traits (F2,138 ¼ 107.6, p , 2.2 � 10216),

corresponding to 12.1+3.48C for photosynthetic rates, 8.0+
1.48C for running speeds and 5.5+1.18C for intrinsic rates

of increase (figure 3d).
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These analyses conclusively show that the overall shape

of the thermal performance curve differs between traits,

even though results include the confounding effects of taxo-

nomic identity (figure 1c). To determine if patterns hold in

analyses involving comparable taxa, we compared results

for running performance against the few curves described

for enzymatic activities that we are aware of in lizards (n ¼
4, electronic supplementary material, figure S3) [27], and

CTmax estimates at the population level in insects against

values obtained individually with ramping experiments

(n ¼ 215, data from supplementary material, table S1 in

[11]). Results remain qualitatively identical (figure 4). In

lizards, thermal breadth and CTmax estimated for enzymatic
activity are significantly higher than estimates for running

performance (Welch’s unequal variances t-test, t ¼ 3.89,

d.f. ¼ 3.5, one-tailed p ¼ 0.011 and t ¼ 3.18, d.f. ¼ 3.5, two-

tailed p ¼ 0.020, respectively). The same is true for CTmax in

insects, whose average of 42.7+ 4.68C obtained in ramping

assays is 8.88C higher than estimates obtained at the

population level (t ¼ 15.17, d.f. ¼ 101.9, one-tailed p , 1.1 �
10216). By contrast, estimates of CTmax at the organismal

level are virtually indistinguishable between lizards and

insects (figure 4b,c, t ¼ 0.14, d.f. ¼ 146.9, one-tailed p ¼
0.443), highlighting that different taxa may not necessarily

exhibit different thermal performance curves at comparable

levels of organization. Interestingly, the same result holds

for comparisons at the ‘molecular’ level (sensu figure 1), i.e.

if we compare Tbreadth (t ¼ 1.08, d.f. ¼ 7.67, one-tailed p ¼
0.16) and CTmax (t ¼ 1.01, d.f. ¼ 7.11, one-tailed p ¼ 0.17)

obtained for enzymatic activities in lizards versus photosyn-

thetic rates in plants. Thus, at least in this restricted set of

comparisons, differences across curves seem to emerge from

variation in the levels of biological organization instead of

taxonomic identity, supporting our contention that thermal

performance curves may vary systematically with biological

complexity.

(b) Thermal safety margins
Descriptors of the thermal performance curve, such as critical

thermal limits or optimal temperatures, are being increas-

ingly employed for predictive purposes. In this context,

differences in specific estimates such as CTmax across traits

may be substantial, as shown for the insect dataset, and

may have important effects on estimations of resilience to cli-

mate change such as temperature safety margins [9,12,28–

30]. To illustrate this point, we estimated the thermal safety

margin for running performance and intrinsic rates of

increase as CTmax – Tmax, where Tmax corresponds to the

average temperature of the warmest month encountered by

the studied populations [31], and analysed how it varies

with latitude. As expected, the thermal safety margins for

intrinsic rates of increase are considerably lower than those

inferred from locomotor performance (figure 5), in the

order of 9.18C according to a linear regression of thermal

safety margin estimates on absolute latitude (latitude effect,

F1,72 ¼ 61.8, P ¼ 2.8 � 10211 and trait effect, F1,72 ¼ 55.7,

P ¼ 1.5 � 10210). Importantly, the contrasting estimates of

thermal safety margins obtained with this approach are

comparable to the 8.88C difference observed between CTmax

estimated in insects at the organismal versus population

level (figure 4), suggesting that this result does not stem

from taxonomic differences and indeed reflects the effects

associated with distinct levels of biological organization.
4. Discussion
(a) Standard functions to study thermal performance

curves
Which mathematical model is best suited to characterize

performance curves remains a crucial and yet unanswered

question in thermal biology [32,33]. Here we provide a gen-

eral framework to analyse, describe and ultimately compare

thermal performance curves. The proposed mathematical

model is biologically realistic and contains few parameters
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(k ¼ 4) that are relatively straightforward to interpret and

whose contribution to the overall shape of the thermal per-

formance curve can be readily understood (electronic

supplementary material, figure S1). By contrast, previous

studies have either focused on the region of exponential

increase in performance [8,17,21,34,35], or worked with

ad hoc models that are primarily phenomenological [32,33]

or contain statistical parameters with limited biological

significance [9,32], or more realistic models that can be prohi-

bitively complex owing to the high number of parameters

involved (k ¼ 6) [36,37]. And while we have employed Q10

as an estimator of thermal sensitivity to thermodynamic

effects, which is generally more intuitive to interpret than

activation energy, the Boltzmann–Arrhenius model can

also be implemented with this approach and activation

energy calculated as Ea ¼ 2 T2RlnQ10/10, where R is

the gas constant and T is expressed in kelvin. While this

equality emphasizes that Q10 is not entirely constant across

different T [38], models employing equation (2.1) and its

Boltzmann–Arrhenius counterpart exhibit virtually identical

behaviours and indicate that assuming a constant Q10 consti-

tutes a good approximation (E. L. Rezende 2018, personal

observation).

Importantly, in the proposed model, the relationship

between classical descriptors of the thermal performance

curve, such as the critical thermal limits CTmin and CTmax,

the thermal breadth, Topt and maximum performance, and

parameters C, Q10, Tth and d is relatively intuitive. Whereas

C and Tth describe displacements of the curve in the vertical

and horizontal directions, everything else being equal, vari-

ation in Q10 and d falls in a single dimension that describes

thermal breadth (electronic supplementary material, figure

S2), with low values giving rise to broad curves and high

values narrow ones. The overall scenario is more complex,

however, because both the descriptors and the parameters

of the curve are highly integrated and expected to respond

in tandem (electronic supplementary material, figure S1).

For instance, one might intuitively expect selection for

increased cold tolerance (i.e. a lower CTmin) to favour a

lower Q10 or a lower Tth, but these responses will lead to a

major drop in performance, respectively, across the whole

thermal range or at higher temperatures. Accordingly, a
close inspection shows that all parameters contribute to maxi-

mum performance, which increases with C, Q10 and Tth and

decreases with d (electronic supplementary material, figure S1).

While this indicates, on the one hand, that organisms could

maximize their performance in multiple ways even under

this simple model, this result might also suggest that thermal

performance curves are highly constrained and that their

descriptors may not be able to respond in an independent

fashion to different selective pressures. This should not be sur-

prising because a crucial determinant of performance is

thermodynamics [8,15,17,21,34,35], which is expected to affect

the shape of performance curve in one way or the other

regardless of the formal functions employed to describe it.

In this context, we argue that adopting a set of standard

thermal performance curves, with biologically realistic

parameters and a mathematical behaviour that is well under-

stood, can be highly beneficial to the field for multiple

reasons. First, it opens the way to quantify and compare

different thermal performance curves employing common

mechanistic parameters, such as Q10 and Tth, and heuristic

descriptors, such as Topt and CTmax, to investigate broad

generalities in thermal biology and bridge the gap across

research areas. Here, for instance, we were able not only to

study the putative effects of biological complexity in thermal

breadth combining a set of different variables measured in

different units and contrasting conditions (figure 2), but

also to estimate CTmax for photosynthetic rates despite the

scarcity of empirical estimates reported for this physiological

variable (figure 3). Second, it provides an a priori set of rules

that describe how multiple descriptors of the thermal

performance curve might respond in tandem, effectively

constraining the range of possible responses and opening

up a way to disentangle presumably adaptive responses

from putative correlated ones. The interrelationship between

descriptors of the curve is expected to vary according to

different evolutionary scenarios—e.g. the warmer-is-better

hypothesis proposes that Topt and maximum performance

are positively correlated due to thermodynamic constraints

[39–41], whereas the allocation hypothesis suggests a gener-

alist-specialist trade-off and a negative association between

maximum performance and thermal breadth [42–44]—

hence a more holistic understanding of what is actually
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theoretically possible is not only desirable but also highly

necessary. Third, parameter estimation with standard

approaches might shed light on previously unnoticed general

rules. For instance, while it is generally acknowledged that

the sensitivity of physiological systems to temperature

change ranges between Q10 ¼ 2 and 3 [38,45], our analyses

might indicate that intrinsic rates of increase and other

descriptors of fitness exhibit a higher thermal sensitivity

with Q10 � 3 (electronic supplementary material, figure S2).

Accordingly, previous studies have reported Ea in the order

of 0.65 eV for physiological processes and respiration rates

[17,46], which corresponds to a Q10 approximately equal to

2.3 at 258C (see above), and in the order of 0.98 eV or Q10

approximately equal to 3.8 for population measures

[17,19,39,41,47]. While one could argue that these results

might reflect a bias towards smaller organisms whose popu-

lation dynamics are highly sensitive to temperature, these

alternative hypotheses might eventually be answered pre-

cisely by adopting standardized analytical functions to

study and describe thermal performance curves. Fourth, by

understanding what the general rules are we may also

study how exceptions emerge, such as the bimodal metabolic

curve reported in intertidal snails, which presumably reflects

the overlap of curves with different optima since these ani-

mals are active at cold temperatures underwater and must

also cope with high air temperatures during periods of inac-

tivity at low tide [22]. In this context, the adoption of a

common framework should also open the way to under-

standing how multiple processes, many of them dependent

on T and encompassing different levels of organization, inter-

act to give rise to patterns of thermal dependence that scale

up with biological complexity.
(b) Temperature range and biological complexity
The thermal performance curves describing the effects of

temperature on photosynthetic rates, running speeds and

intrinsic rates of increase vary substantially in shape (figures 2

and 3), with the pronounced reduction in the thermal range

in which performance is elevated being the most relevant pat-

tern unravelled by our analysis (figure 3d ). To put these

results in the appropriate context, Tbreadth extreme values

were 8.7 and 44.48C, which constitutes a massive difference

given that they estimate the temperature range in which the

system is functional at 50% of its maximum capacity at the

least. We argue that the levels of organization involved and

ultimately complexity are the main drivers of this pattern

even though, admittedly, observed effects are confounded

with taxonomic identity (figure 1c) and possibly, to a lesser

degree, with geographical origin (see below).

While the information remains highly fragmented

because measurements at different levels of organization

often involve different lineages for practical reasons—i.e.

measuring how locomotor performance varies with tempera-

ture in a lizard is fairly straightforward, whereas the same

sort of study estimating intrinsic rates of increase is logisti-

cally very difficult—multiple lines of evidence support our

general interpretation. For instance, comparisons, where we

can actually disentangle these effects, indicate that curves

differ between levels of biological organization but not

necessarily between taxa (figure 4). In addition, Dell et al.
[17, p. 10 593] reported in their exhaustive review that ‘level

of organization is also a strong predictor of mean rise
activation energies, with internal and individual having a

much lower mean Ea than population’, though once again

their analyses pool different variables measured across differ-

ent organisms. On the decreasing side of the curve, Somero

[48] reports 50% loss of protein structure at temperatures

between 45 and 688C in vertebrate species that encounter

maximum temperatures in the range of 228C and 478C,

showing that upper limits in protein structure far exceed

comparable estimates at the organismal or population level.

And last but not least, different ecological patterns, such as

seasonal reproduction or migration, reflect to a large degree

the common observation that individuals can frequently tol-

erate thermal conditions that, in the long term, would be

detrimental at the population level and ultimately be

unsustainable.

Importantly, while additional work is certainly necessary

to shed light on how thermal sensitivity may vary across

different biological systems, the fragmented evidence

compiled here indicates that differences across levels of bio-

logical organization may be substantial (e.g. 8.88C between

CTmax estimated at the organismal versus population level

in insects; figure 4). Future studies may address empirically

how thermal dependence varies within taxa across multiple

biological levels, which is realistic at least for some study

models. Biochemical reaction rates, whole-organism perform-

ance and intrinsic rates of population increase can all be

measured in some species of insects (e.g. aphids, Drosophila),

for instance, and experimental designs comparing cold-

versus warm-adapted populations and/or species would

open the way to studying how performance curves might

differ across levels of organization as a result of thermal

adaptation.
(c) Repercussions
Here we develop a theoretical framework to study thermal

performance curves and show that the range of temperatures

in which performance remains elevated becomes constrained

as biological complexity increases (figure 3). In hindsight, this

result is not entirely surprising, comparative physiologists

have long recognized that the thermal range for growth

and reproduction is narrower than the range required for

short-term survival [49,50], and here we were able to study

this phenomenon employing thermal performance curves.

More importantly, however, indices such as critical thermal

limits or optimal temperatures are being increasingly

employed for predictive purposes to assess how vulnerability

to climate warming varies across lineages or geographical

locations [9–12,20,28,29], rendering it imperative to assess

whether the bias we observe in our dataset constitutes a gen-

eral phenomenon. In this context, differences in specific

estimates such as CTmax across traits may be substantial, as

shown for the insect dataset (above), and may have impor-

tant effects on estimations of resilience to climate change

such as temperature safety margins and on niche distribution

models [13]. If the general pattern reported here holds across

traits, lineages and/or geographical locations, then both the

breadth of the performance curve as well as thermal safety

margins may have been grossly overestimated in previous

analyses employing organismal performance as a proxy for

fitness. It is also unclear whether qualitative patterns, such

as the presence of latitudinal variation in some descriptors

of the curve (of absence thereof), actually hold across levels
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of biological organization, which is particularly important

given that CTmax at the organismal level is seemingly inde-

pendent of latitude in many ectothermic lineages ([10,11],

but see [49]).

Ultimately, our analyses provide a reminder that the ade-

quacy of the overall framework of thermal performance

curves as a predictive tool relies on the validity of its under-

lying assumptions, a crucial one being that the index of

performance under study is correlated with fitness [12]. Cer-

tainly, thermal performance curves differ in shape even

across different life-history measures of fitness (i.e. the net

reproductive rate and the intrinsic rate of increase employed

here), and their correlation with different life-history com-

ponents such as development rates or life-time fecundity

can vary substantially, albeit being generally positive and

often high [51]. In spite of these uncertainties, multiple adap-

tive patterns and broad geographical trends have been

reported and, therefore, the main question remains how to

dampen the overall uncertainty in parameter estimation of

the curve to enhance predictive power. The use of instan-

taneous performance measures remains imperative in a

multitude of (if not most) organisms for practical reasons

[12,14], and therefore future studies must find a balance

between what is logistically feasible and what is biologically

informative. Given the increasing amount of information

available both on different proxies of thermal tolerance and

on climate forecasts, as a rule-of-thumb we would strive for

future analyses to consider the temporal dimension of both

the thermal stress [52] and the response [53,54] when fore-

casting biological responses to future climate scenarios.

While short-term fluctuations may affect instantaneous

performance and/or survival [53–55], in the long term,

cumulative effects of sub-lethal temperatures on energy bal-

ance [8], fecundity or developmental rates [51,54] may scale

up and ultimately impair fitness and population resilience.

Because thermal performance curves estimated at different

levels of organization implicitly involve a temporal dimen-

sion (i.e. an organism exposed to extreme temperatures

may die within minutes or hours, whereas generation times

underlying population dynamics may vary from days to

years), employing thermal descriptors that somehow

acknowledge this dimension, such as average daily maxima
when working with knockdown or lethal temperatures or

monthly means for fitness estimations in short-lived organ-

isms, might provide more reliable forecasts of resilience or

vulnerability to ongoing climate change.

From a mechanistic perspective, our results require

further examination. Given the general effects of temperature

in biological systems, ranging from biochemical reactions to

life-history attributes, an integrative theory of thermal adap-

tation must somehow address how temperature effects scale

up with biological organization. Our analysis could indicate

that, at a fundamental level, the temperature range in

which performance can be maximized decreases with bio-

logical complexity. In this scenario, ‘thermal adaptation’

might constitute an emergent property that varies systemati-

cally across organization levels, and if this happens to be the

case, one must wonder exactly how does this happen and

how to employ this knowledge with the ultimate purpose

of predicting, in the near future, the potential responses of

natural populations to ongoing global warming. In this con-

text, while we agree with the recent proposition that ‘we

need to better understand the relationship between instan-

taneous performance and long-term fitness, for example,

via longitudinal studies in nature, or via molecular or physio-

logical markers of performance characteristics of wild-caught

animals’ [14, p. 1382], we would also emphasize that much

has to be gained from more theoretical attempts to unravel

how responses to temperature and thermal performance

curves emerge with complexity from the bottom up [44,56].
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