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ABSTRACT: The objectives of this study were 
to identify informative genomic regions that 
affect the exterior traits of purebred Korean 
Yorkshire pigs and to investigate and compare 
the accuracy of genomic prediction for response 
variables. Phenotypic data on body height (BH), 
body length (BL), and total teat number (TTN) 
from 2,432 Yorkshire pigs were used to obtain 
breeding values including as response variable 
the estimated breeding value (EBV) and 2 types 
of deregressed EBVs—one including the parent 
average (DEBVincPA) and the other excluding 
it (DEBVexcPA). A  final genotype panel com-
prising 46,199 SNP markers was retained for ana-
lysis after quality control for common SNPs. The 
BayesB and BayesC methods—with various π and 
weighted response variables (EBV, DEBVincPA, 
or DEBVexcPA)—were used to estimate SNP ef-
fects, through the genome-wide association study. 
The significance of genomic windows (1 Mb) was 
obtained at 1.0% additive genetic variance and 
was subsequently used to identify informative 
genomic regions. Furthermore, SNPs with a high 

model frequency (≥0.90) were considered inform-
ative. The accuracy of genomic prediction was 
estimated using a 5-fold cross-validation with the 
K-means clustering method. Genomic accuracy 
was measured as the genomic correlation between 
the molecular breeding value and the individual 
weighted response variables (EBV, DEBVincPA, 
or DEBVexcPA). The number of identified in-
formative windows (1 Mb) for BH, BL, and TTN 
was 4, 3, and 4, respectively. The number of sig-
nificant SNPs for BH, BL, and TTN was 6, 4, 
and 5, respectively. Diversity π did not influence 
the accuracy of genomic prediction. The BayesB 
method showed slightly higher genomic accuracy 
for exterior traits than BayesC method in this 
study. In addition, the genomic accuracy using 
DEBVincPA as response variable was higher than 
that using other response variables. Therefore, the 
genomic accuracy using BayesB (π  =  0.90) with 
DEBVinPA as a response variable was the most ef-
fective in this study. The genomic accuracy values 
for BH, BL, and TTN were calculated to be 0.52, 
0.60, and 0.51, respectively.
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INTRODUCTION

External appearance traits such as body length 
(BL) and body height (BH) are major criteria in 
the pig breeding industry. Several studies have re-
ported positive genetic correlations between body 
conformation-related traits and body growth, sow 
reproductive efficiency, and longevity (Hoge and 
Bates, 2011; Nikkilä et  al., 2013; Le et  al., 2016). 
Teat number, another important exterior trait, has 
also been frequently reported for causing involun-
tary culling occurrences in the selection criteria for 
sow breeding goals. In the modern pig industry, 
dam lines have been selected for the genetic im-
provement of reproductive traits such as litter size. 
Accordingly, maternal ability, indicated by teat 
number, has become a more important trait in nur-
sery sows as litter sizes increase.

At present, the availability of commercial dense 
platforms of SNP markers from companies such 
as Illumina, Neogen-GeneSeek, and Affymetrix 
have offered new opportunities that may lead to 
greater genetic improvements compared with using 
only pedigree and phenotypic records in the live-
stock industry. A number of quantitative trait loci 
(QTLs) affecting external appearance traits in 
pigs have been reported (Pig QTLdb, https://www.
animalgenome.org/cgi-bin/QTLdb/SS/index; Hu 
et al., 2016). However, only a few research groups 
have attempted a genome-wide association study 
(GWAS) approach to investigate QTLs for body 
conformation- and teat number-related traits (Fan 
et  al., 2011; Fernández et  al., 2012; Wang et  al., 
2014; Yang et al., 2016; Le et al., 2017), rather than 
candidate gene associations using a linkage map-
ping approach. To date, 2 major QTL regions af-
fecting body conformation-related traits such as 
BH and BL have been identified, located on SSC17 
at 17 Mb (a candidate region for the BMP2 gene) 
and SSC1 at 270  Mb (a candidate region for the 
PAPPA gene). A region significantly affecting teat 
number-related traits, around the VRTN gene, was 
also identified using GWAS (Arakawa et al., 2015; 
Yang et al., 2016).

To maximize the response to selection in pig 
breeding, independent culling for poor external 
appearance traits should be minimized through 
genetic improvements. In addition, improving 
the accuracy of selection for external appearance 

traits using genomic information from dense SNP 
markers, also commonly referred to as genomic 
selection, would provide a great benefit to the pig 
breeding industry. To date, it has not been studied 
to have focused on assessing the accuracy of gen-
omic prediction for body conformation- and teat 
number-related traits in Korean Yorkshire pigs. 
Therefore, the objectives of the current study were 
1)  to identify putative QTL regions affecting the 
external appearance of pigs and 2)  to investigate 
and compare the accuracy of genomic prediction 
methods for response variables using dense SNP 
markers in purebred Korean Yorkshire pigs.

MATERIALS AND METHODS

Genotype and Phenotype Editing

A total of 3,195 Yorkshire pigs from 3 great 
grand parents (GGP) farms in Korea were geno-
typed using Illumina PorcineSNP60 version 2 
(Illumina, San Diego, CA) comprising 61,565 SNP 
markers. Of the 3,195 Yorkshire pigs, 600 genotyped 
animals (from 2 GGP farms) were only recorded for 
the total teat number (TTN) phenotype, whereas 
rest of the genotyped animals (from one GGP 
farm) were recorded for BH, BL, and TTN at 90 ± 
5.0  kg. The SNP markers were quality-controlled 
using the following 3 exclusion criteria: 1)  SNPs 
not mapped to the porcine reference genome build 
Sscrofa10.2 (http://www.ensembl.org/Sus_scrofa/
Info/Index), 2)  SNPs on sex chromosomes, and 
3) SNPs with a poor call rate (<0.95). This led to 
a total of 46,199 available SNP markers for ana-
lysis. Duplicated animals (n = 60), which occurred 
because of regenotyping for acceptable call rates, 
and animals with lower call rates (n = 30) were re-
moved after comparing the animals’ call rates; 
animals with <0.95 call rates (n = 33) were also re-
moved. Parentage tests were performed using the 
SEEKPARENTF90 software (Aguilar et al., 2014) 
with known parent–offspring in the pedigree file 
based on genotyped animals. A conflict threshold 
of 10% was used to detect paternity errors and to 
correct the pedigree file. Consequently, 274 geno-
typed animals were removed to correct the pedi-
gree file. Furthermore, genotype identifications 
that could not be matched to corresponding ani-
mals (n = 426) in the phenotypic and pedigree files 

https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
https://www.animalgenome.org/cgi-bin/QTLdb/SS/index
http://www.ensembl.org/Sus_scrofa/Info/Index﻿
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were removed. After applying such restrictions, 
2,432 genotyped animals remained for GWAS and 
genomic prediction. Imputation for missing SNP 
genotypes (0.24%) was performed using FImpute 
version 2.2 (Sargolzaei et al., 2014).

Estimated Breeding Values and Deregression of 
Estimated Breeding Values for Response Variables

The program ASReml version 4.1 (Gilmour 
et al., 2015) was used to estimate the variance com-
ponents and genetic parameters (Table 1), which 
were required as prior information for genomic 
prediction modeling, estimated breeding values 
(EBVs), and the corresponding reliability of the 
genotyped animals and their sires and dams for 
the 3 exterior traits BH, BL, and TTN. Phenotypes 
were adjusted for contemporary groups; farm of 
origin, birth-year and season, and sex were used as 
fixed effects. The effect of a common litter envir-
onment was also considered in our animal model 
for those parameters and EBV. We used the meth-
odology provided by Garrick et al. (2009) to define 
the 2 kinds of deregression of EBVs (DEBVs): 1) a 
combination of deregression (dividing by the reli-
ability of EBV) and adjusting for ancestral informa-
tion (parents’ average values), such that the values 
included only their own and their descendants’ in-
formation (hereafter referred as “DEBVexcPA”), 
and 2) in contrast to Garrick et al. (2009), the EBV 
parent average (PA) was added back to DEBV 
(hereafter referred to as “DEBVincPA”) to account 
for breed and family differences in subsequent ana-
lyses. Both DEBVexcPA and DEBVincPA were 
obtained using the following defined mixed model 
equation:

�

ñ
Z′

PAZPA + 4λ−2λ
−2λ Z′

iZi + 2λ

ô−1 ñ
y∗PA

y∗i

ô
=

ñ
ĝPA

ĝi

ô

where ĝPA is the PA for the EBV,ĝi is the individual 
EBV, and λ is calculated as (1 − h2)/h2. The diagonal 
elements on the left-hand side matrix were solved 

by Z′
PAZPA = λ(0.5α− 4) + 0.5λ

√
(α2 + 16/δ)

and Z′
iZi = δZ′

PAZPA + 2λ(2δ − 1) using a 

direct approach, where α = 1.0/(0.5 − r2
PA),  

δ = (0.5 − r2
PA)/(1.0 − r2

i ), and r2
PA =

r2
sire+r2

dam
4 . 

Through above mixed model equation, deregressed 
information and the corresponding reliability 
values—ignoring the PA—were obtained as 
y∗i /(λ+ Z′

iZi), and 1.0 − λ/(λ+ Z′
iZi). The DEBV 

was calculated by dividing by EBV reliability, 
y∗i /(λ+Z′

iZi)
1.0− λ/(λ+Z′

iZi)
. More details on these approaches 

for DEBV are described by Garrick et  al. (2009). 
The response variable was weighted to account for 
the heterogeneous variance of DEBV due to the 
differences in EBV reliabilities among genotyped 
animals. The weighting factor (wi) for each animal i 
was calculated following Garrick et al. (2009):

� wi =
(1 − h2){

c + [(1 − r2
i )/r2

i ]
}

h2

where r2
i  is the reliability of deregressed EBV, h2 is 

the heritability of the trait, and c is the proportion 
of genetic variation not explained by markers. In 
this study, c was assumed to be 0.40, as previously 
suggested (Saatchi et  al., 2012). Finally, after re-
moving animals with a reliability of <0.10, a total 
of 1,857 registered Yorkshire pigs were used for fur-
ther analysis.

Statistical Methods

We considered 3 models from the Bayesian 
alphabet family—BayesB (Hayes and Goddard, 
2001), BayesC (Kizilkaya et al., 2010), and BayesCπ 
(Habier et al., 2011)—as representative of the most 
widely used methods for genomic prediction in live-
stock industry; these methods depend on the real 
distribution of SNP marker effects relative to other 
genomic prediction methods, such as GBLUP and 
RR_BLUP. The BayesB and BayesC methods, with 
estimated π (BayesCπ) and various fixed π values 
and weighting factors, were used to estimate SNP 
marker effects using GenSel4R software (Garrick 
and Fernando, 2013) for GWAS and genomic pre-
diction models. The BayesB and BayesC methods 
use mixture models assuming that a fraction (π) of 
SNP markers have zero effects. The BayesB method 
assumes locus-specific variances with respect to 
SNP variances, whereas BayesC and BayesCπ con-
sider common variances across loci (Habier et al., 
2011). In addition, π is treated as an unknown with 
a uniform (0,1) prior in the BayesCπ model. Finally, 
π can be drawn from a beta distribution and the 

Table 1. Variance components and heritability 
estimates for growth and reproductive traits in 
Yorkshire pigs

Trait1

Additive  
genetic  

variance
Phenotypic  

variance Heritability

BH 2.169 6.994 0.310

BL 7.237 21.061 0.344

TTN 0.370 0.899 0.412

1BH = body height; BL = body length; TTN = total teat number.
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staring value for π was set to 0.5 in GenSel4R soft-
ware (Garrick and Fernando, 2013). For each trait, 
the following model was fitted to estimate SNP 
marker effects for these 3 Bayesian methods:

� yi = 1µ+
k∑

j=1

Zijujδj + ei

where yi is the response variables (DEBVexcPA, 
DEBVincPA, and EBV) for each animal i for each 
trait; μ is the population mean; k is the number of 
SNP markers; Zij represents allelic state at locus j 
(AA = −10, AB = 0, and BB = 10) in individual i; uj 
is the random substitution effect for marker j, which 
follows a mixture distribution for this random sub-
stitution effect according to indicator variable (δj)
, a random 0/1 variable indicating the absence or 
presence of marker j in the model, with uj assumed 
to be normally distributed N(0,σ2

u) when δj = 1, 
and otherwise uj assumed 0; and ei is a random re-
sidual effect assumed normally distributed N(0,σ2

e ).
The posterior distributions of the parameters 

and effects were obtained using Gibbs sampling for 
a total number of 110,000 Markov chain Monte 
Carlo (MCMC) iterations, where the first 10,000 
samples were discarded as the burning period. 
Finally, a total of 10,000 samples were collected 
after the burning period by saving every tenth 
sample to avoid autocorrelation (thinning). These 
samples were used for the estimation of the pos-
terior means of SNP marker effects and variances. 
All procedures for GWAS and genomic predic-
tions were implemented using GenSel4R software 
(Garrick and Fernando, 2013).

Identification of Significant Window Regions and 
SNP Markers

A value of  1.0% for additive genetic vari-
ance, which was estimated as a fraction of  the 

total genetic variance explained by all SNPs, was 
used for the significance level of  the putative in-
formative 1-Mb window region. A total of  2,451 
of  1-Mb windows located on autosomes were 
involved in the analyses. The theoretical pro-
portion to the genetic variance of  a trait was as-
sumed approximately 0.041% (100%/2,451), but 
the stringent cutoff  of  1% which indicates more 
than 25 times higher proportion was considered 
in subsequent analyses. Furthermore, SNPs with 
a high model frequency (≥0.90; i.e., the putative 
SNP was included in the model for over 90% of 
MCMC iterations), defined as the proportion 
of  fitted models to estimate SNP marker effects, 
were also used to determine SNPs with significant 
associations.

The Accuracy of Genomic Prediction

Cross-validation A 5-fold cross-validation 
strategy was used to estimate the accuracy of  gen-
omic predictions. For each exterior trait of  interest 
in this study, genotyped animals were split into 5 
groups using K-means clustering to reduce the re-
lationships between training and testing popula-
tions, following the procedures outlined by Saatchi 
et al. (2011). A total of  3,969 pedigree data values 
relating to 1,857 genotyped Yorkshire pigs were 
used for K-means clustering. The number of  indi-
viduals within each fold, within and between fold 
averages of  amax and aij, and their SD are given 
in Table 2, which also shows that the data were 
successfully partitioned by K-means clustering, 
whereby the relatedness was maximized within 
each partitioned group and minimized between 
each partitioned group.

Estimation of  the accuracy of  genomic predic-
tion We used a bivariate animal model with the 
molecular breeding value (MBV; sum of  all SNP 

Table 2. Comparison of the relationships among animals within and across clusters with 5-fold cross valid-
ations using the K-means clustering method

No. of clusters No. of animals inBreC1 amax_within
2 amax_between

3 aij_within
4 aij_between

5

1 456 0.043 0.54 (0.08) 0.44 (0.12) 0.14 (0.02) 0.07 (0.01)

2 337 0.037 0.52 (0.08) 0.44 (0.13) 0.13 (0.02) 0.07 (0.01)

3 410 0.042 0.53 (0.08) 0.44 (0.12) 0.13 (0.02) 0.07 (0.01)

4 269 0.048 0.56 (0.06) 0.19 (0.12) 0.13 (0.02) 0.01 (0.00)

5 385 0.026 0.50 (0.09) 0.44 (0.12) 0.08 (0.02) 0.06 (0.01)

1inBreC = inbreeding coefficients within clusters.
2amax_within = the average amax value (the maximum value of relationships for each individual) within clusters.
3amax_between = the average amax value between clusters (training and testing).
4aij_within = the average aij values (relationships) within clusters.
5aij_between = the average aij value between clusters (training and testing).
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marker effects) of  the genotyped animal from 
each validation set, weighted response variables 
(EBV, DEBVexcPA, and DEBVincPA), and pedi-
gree information related to genotyped animals 
for genetic correlations in the evaluation using 
ASReml version 4.1 (Gilmour et al., 2015). MBV 
and weighted response variables were used as de-
pendent variables. The model with MBV used a 
fixed effect for the intercept, a random additive 
genetic effect, and a residual with variance fixed 
at 0.0001% of  unweighted phenotypic variance 
of  the response variable. The model for each re-
sponse variable used a fixed effect for the inter-
cept, a random additive genetic effect, and a 
weighted random residual of  Var(e) = Wσ2

e, where 
W is the r-inverse weighting according to the re-
liability of  genotyped animals and similarity to 
that used in the training set for the estimation of 
SNP effects. The additive genetic and unweighted 
residual variances were fixed with 0.4 and 0.6, re-
spectively, based on the deregressed unweighted 
phenotypic variance of  the response variable. In 
addition, we provided the accuracy (accessed by 
simple Pearson’s correlation) and bias (accessed 
by regression) using single-step genomic BLUP 
approach with same cross-validation method in 
Supplementary Table S1.

RESULTS AND DISCUSSION

GWAS of 3 Exterior Traits

GWAS was performed using the BayesB method 
with a high π value (0.99) to allow only regions 
with the strongest associations to be identified, as 
well as the DEBVincPA response variable for 3 ex-
terior traits in Yorkshire pigs; these characteristics 
were chosen because the informative window re-
gion and significant SNP markers were similarly 
distributed across all 3 response variables, Bayesian 
methods, and various π values. The results of 
these associations are shown in Table 3 and Fig. 1. 
We performed a GWAS analysis using a commer-
cially developed Porcine SNP genotyping platform 
(PorcineSNP60 BeadChip) to identify the most in-
formative window regions and the most frequent 
model-selected SNPs within these regions. Table 3 
shows the results of our analysis of the 3 exterior 
traits, including chromosomal and window loca-
tion (Mb), the percentage variance of 1-Mb genome 
windows for the informative window regions or for 
the most significant windows, SNP name, physical 
genome position (bp), model frequency, gene fre-
quency, and the additive effect of significant SNPs 
within these regions in Yorkshire pigs. Manhattan 

Table 3. Informative 1-Mb genome windows and informative SNPs within windows associated with 
BH, BL, and TTN in Yorkshire pigs from genome-wide association study using markers from Illumina 
PorcineSNP60

Trait1

SSC_
Mb2 %GV3

Informative 
SNPs

Position 
(Mb) Effect

Model 
freq.4

Gene 
freq.

Region 
annotation Candidate gene annotation

BH 17_16 6.22 ALGA0093437 16.77 1.210 0.996 0.124 Intergenic CHGB (dist = 897485) BMP2 (dist = 285054)

1_156 1.28 INRA0004431 156.99 −0.117 0.249 0.163 Intergenic SELENOS (dist = 924259) UBE3A (dist = 793234)

ALGA0006162 156.15 −0.107 0.240 0.168 Intergenic SELENOS (dist = 86276) UBE3A (dist = 1631217)

H3GA0002868 156.89 −0.109 0.237 0.163 Intergenic SELENOS (dist = 820957) UBE3A (dist = 896536)

1_301 1.25 H3GA0004927 301.11 0.357 0.927 0.342 Intergenic MIR9793 (dist = 71100) LMX1B (dist = 42143)

7_70 1.02 MARC0112179 70.69 −0.295 0.808 0.719 Intergenic SNX6 (dist = 694738) NONE

BL 17_17 5.33 MARC0070553 17.48 1.890 0.938 0.130 Intergenic BMP2 (dist = 66669) HAO1 (dist = 1335045)

15_146 1.13 H3GA0045481 146.93 −0.268 0.428 0.286 Intergenic DIS3L2 (dist = 73972) EIF4E2 (dist = 32189)

H3GA0053491 146.13 −0.180 0.311 0.424 Intergenic NMUR1 (dist = 128051) NPPC (dist = 218413)

5_67 1.03 ALGA0032447 67.82 0.460 0.767 0.607 Intergenic KCNA5 (dist = 160778) AKAP3 (dist = 187257)

TTN 7_103 6.42 DIAS0000795 103.59 −0.126 0.531 0.613 Intergenic NPC2 (dist = 12395) DLST (dist = 340321)

ASGA0035500 103.57 0.104 0.438 0.387 Intronic NPC2  

7_105 1.88 ASGA0035563 105.28 −0.137 0.607 0.090 Intergenic TGFB3 (dist = 81987) GPATCH2L 
(dist = 90032)

MARC0027367 105.31 −0.038 0.311 0.598 Intergenic TGFB3 (dist = 115876) GPATCH2L 
(dist = 56143)

10_52 1.39 M1GA0025060 52.8 −0.044 0.358 0.304 Intergenic HSPA14 (dist = 1136282) PRPF18 (dist = 1978)

1BH = body height; BL = body length; TTN = total teat number.
2SSC_Mb = sus scrofa chromosome_magabase-pair.
3%GV = percentage of additive genetic variance explained by SNP markers within each 1-Mb window region
4Model freq. = proportion of Markov chain Monte Carlo iterations that included the corresponding SNP marker.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/skz158#supplementary-data
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plots based on the percentage of explained additive 
genetic variance in each 1-Mb window region for 3 
exterior traits in Yorkshire pigs are shown in Fig. 1. 
A  total of 2,451 of 1-Mb genome windows were 
found in the porcine genome, with an average of 
19 SNP markers per window. The most significant 
SNP marker (ALGA0075964), based on the model 
frequency of the SNP markers, was associated with 

BH and BL and was located on SSC14 at 21.70 Mb, 
between 2 novel candidate genes (NEK1 and 
SH3RF1). For TTN, the ASGA0035563 marker on 
SSC7 (105.28 Mb) was the most significant region. 
The highest percentage of additive genetic variance 
(6.22%) for BH was identified on SSC17, between 
the 16.46- and 16.99-Mb regions, and contained 15 
SNPs. Similarly, a region on the same chromosome 

Manhattan plot using BayesB method and Illumina60K for Body Height
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Manhattan plot using BayesB method and Illumina60K for Total Teat Number
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Figure 1. Manhattan plots of the results of Bayesian GWAS (BayesB with π = 0.99) on 18 porcine autosomes for 3 exterior traits. The y-axis 
represents the percentage variance within each 1-Mb genomic region, and the x-axis represents the chromosomal location of each window. The red 
dotted horizontal lines indicate the threshold of the 1-Mb window variance, which was set at >1.0% to identify associations within traits: (A) body 
height, (B) body length, and (C) total teat number.
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containing 10 SNPs (SSC17; 17.10 to 17.92  Mb) 
accounted for the highest percentage of additive 
genetic variance (5.33%) for BL. The BMP2 gene 
on SSC17, a member of the bone morphogenetic 
protein family regulating early myogenesis, also 
resides within these regions. Fan et al. (2011) also 
reported that this gene was associated with body 
conformation (BL and body depth) and loin muscle 
area traits, consistent with our results. We identified 
3 regions affecting TTN on SSC7 and SSC10; 2 re-
gions on the former were about 2  Mb apart from 
each other. On SSC7, 2 significant SNP markers 
(DIAS0000795 at 103.59  Mb; ASGA0035500 at 
103.57  Mb) accounted for the highest percentage 
of additive genetic variance (6.42%) based on the 
model frequency of SNP markers. Both markers 
were also found to be situated close to 2 candidate 
genes known as NPC2 and DLST. Previous studies 
(Mikawa et al., 2011; Fan et al., 2013) have identified 
a QTL from the VRTN gene, located at 103.40 Mb 
on SSC 7, using Sscrofa10.2. In addition, SSC7 
(105.16 to 105.98 Mb) harbored a significant SNP 
marker at 105.28  Mb (ASGA0035563), with the 
highest model frequency accounting for 1.88% of 
additive genetic variance. Other QTL windows were 
also identified on SSC10 at 52.00 Mb for TTN, ac-
counting for 1.88% of additive genetic variance for 
TTN. However, the detection of multiple markers 
for body conformation in adjacent regions could be 
due to their high linkage disequilibrium within the 
same QTL. To account for this, future studies will 
require a fine-mapping study using a high-density 
genotyping array from Affymetrix (Axiom porcine 
660K), or sequencing data, to pinpoint the causal 
variants in these identified QTL regions, especially 
for those containing the BMP2 and VRTN genes, 
which are associated with the 2 body composition 
and TTN traits.

Comparison of Genomic Accuracy

In this study, the comparison of genomic ac-
curacy was performed using various levels of π (0.50, 
0.80, 0.90, and 0.99), estimated pi (πe), and 2 Bayesian 
methods (BayesB and BayesC). The πe value was 
derived from the BayesCπ method, and the differ-
ences due to the levels of π were assessed according 
to the response variables and traits. Using EBV as a 
response variable, the estimated value of πe for BH, 
BL, and TTL were 0.997, 0.995, and 0.999, respect-
ively. Using DEBVexpPA and DEBVincPA, distinct 
variable measures of πe were derived for BH (0.986; 
0.981), BL (0.982; 0.976), and TTL (0.999; 0.998), 

respectively (Table 4). The genomic accuracy ranges 
for different response variables using the BayesB 
method also differed slightly for the investigated traits. 
The genomic accuracy ranges for BH at different π 
and πe values were between 0.390 and 0.415 (EBV), 
between 0.396 and 0.411 (DEBVexcPA), and between 
0.507 and 0.516 (DEBVincPA). Using the BayesC 
method, the obtained accuracy ranges for BH based 
on EBV, DEBVexcPA, and DEBVincPA from 0.382 
to 0.408, 0.350 to 0.370, and 0.473 to 0.486, respect-
ively. The genomic accuracy for BL using BayesB 
ranges from 0.416 to 0.451 for EBV, 0.503 to 0.543 
for DEBVexcPA, and 0.568 to 0.613 for DEBVincPA, 
whereas the BayesC-based ranges were 0.408 to 0.424, 
0.390 to 0.467, and 0.499 to 0.539, respectively. The 
obtained BayesB-based ranges for TTN also varied 
among response variables; we obtained values of 
0.399 to 0.416 (EBV), 0.370 to 0.399 (DEBVexcPA), 
and 0.485 to 0.507 (DEBVincPA). For the same trait, 
the BayesC estimates for genomic accuracy using 
EBV, DEBVexcPA, and DEBVincPA were found to 
be 0.395 to 0.423, 0.323 to 0.396, and 0.444 to 0.491, 
respectively. Of the 3 exterior traits, the genomic ac-
curacy ranges for BL were higher than those for BH 
or TTN (Table 5). The differences in genomic accur-
acies among different π values were not significant 
for the studied traits. However, the BayesC method 
is generally more sensitive to the actual distribu-
tion of the marker effects than the other Bayesian 
methods (Fernando and Garrick, 2013). Thus, it is 
likely that there would be a significant difference in 
the accuracy using BayesC according to levels of 
π. However, we did not find such differences in this 
study. In this study, the genomic accuracy for exterior 
traits using the BayesB method was slightly higher 
than the accuracy using BayesC. The differences 
between the accuracies among traits were generally 
within the ranges of their SE, except with those of 
the BL trait using π values of 0.50, 0.80, and 0.90. 
The heterogeneous marker variance values assumed 
in BayesB were often more effective than the homo-
geneous marker variance values assumed in BayesC. 

Table 4. Estimated pi (πe) values using the BayesCπ 
method based on various response variables

Trait1 EBV2 DEBVexcPA3 DEBVincPA4

BH 0.997 0.986 0.981

BL 0.995 0.982 0.976

TTL 0.999 0.999 0.998

1BH = body height; BL = body length; TTN = total teat number.
2EBV = estimated breeding value.
3DEBVexcPA = deregressed EBV excluding parent average.
4DEBVincPA = deregressed EBV including parent average.
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According to Fernando and Garrick (2013), the per-
formance of BayesB is generally better than that of 
BayesC if an approximated value of π is used. In add-
ition, diversity factors would influence the accuracy 
of genomic prediction. The response variables in this 
study, deemed the most influential factor in terms of 
their derived outcomes, were dependent on the struc-
ture and characteristics of the data. Previous studies 
reported that using EBV as a response variable was 
more suitable due to the limited applicability of the 
information (Guo et al., 2010; Gao et al., 2013). In 
contrast, in this study, the use of EBV as a response 
variable showed a lower accuracy than DEBVs for all 
studied traits. One possible explanation for this low 
performance could be the double counting of pedi-
gree information (Ostersen et al., 2011; Song et al., 
2018). Another possible explanation could be the low 
reliability of EBV, which caused a double shrinkage 
of the genomic values (Ostersen et  al., 2011). In 
general, the use of EBV, as opposed to DEBV, is con-
sidered to be preferable when the EBV reliability of all 
genotyped animals is somewhat similar. However, the 
reliability of the genotyped animals was highly vari-
able in this study. An advantage of excluding PA was 
that double counting was avoided, as this would have 
shrunk the individual EBV toward the PA (Garrick 
et al., 2009). On the other hand, the inclusion of PA 
after deregression had the added advantage of ac-
counting for differences in PA among genotyped ani-
mals, such as between-family differences (Lee et al., 
2015). For the studied exterior traits, DEBV, as the 
response variable, showed higher genomic accuracies 
when PA was included. Model performance was 
less strongly affected by double counting because it 
targeted both offspring and parents with genotype 
information, and our study included genotypic in-
formation from sires only. The farm breeding scheme 
also facilitated the genotyped animals in this study to 
be less connected from families. Therefore, we believe 
that the DEBVincPA was the most advantageous for 
the genomic selection of exterior traits in Korean 
Yorkshire pigs. This study is the first to attempt to 
predict the genomic accuracy of exterior traits and 
could be a useful resource for future studies. However, 
due to the scarcity of other investigations to support 
these findings, further studies are required with larger 
animal samples to confirm these outcomes in Korean 
Yorkshire pigs.

CONCLUSION

In this study, we identified candidate genes af-
fecting exterior traits in Korean Yorkshire pigs and 
then evaluated and compared the accuracy of the T

ab
le

 5
. A

cc
ur

ac
y 

an
d 

st
an

da
rd

 e
rr

or
s 

of
 g

en
om

ic
 p

re
di

ct
io

n 
ac

co
rd

in
g 

to
 2

 B
ay

es
ia

n 
m

et
ho

ds
, v

ar
io

us
 r

es
po

ns
e 

va
ri

ab
le

s,
 a

nd
 v

ar
io

us
 π

 v
al

ue
s

T
ra

it
s1

R
es

po
ns

e 
va

ri
ab

le
2

B
ay

es
B

R
es

po
ns

e 
va

ri
ab

le

B
ay

es
C

π
 =

 0
.5

0
π

 =
 0

.8
0

π
 =

 0
.9

0
π

 =
 0

.9
9

π
e3

π
 =

 0
.5

0
π

 =
 0

.8
0

π
 =

 0
.9

0
π

 =
 0

.9
9

π
e3

B
H

E
B

V
0.

39
 (

±
 0

.0
34

)
0.

40
 (

±
 0

.0
34

)
0.

40
 (

±
 0

.0
34

)
0.

42
 (

±
 0

.0
33

)
0.

40
 (

±
 0

.0
33

)
E

B
V

0.
38

 (
±

 0
.0

34
)

0.
39

 (
±

 0
.0

34
)

0.
39

 (
±

 0
.0

34
)

0.
41

 (
±

 0
.0

33
)

0.
40

 (
±

 0
.0

33
)

D
E

B
V

ex
cP

A
0.

40
 (

±
 0

.0
45

)
0.

40
 (

±
 0

.0
45

)
0.

41
 (

±
 0

.0
45

)
0.

40
 (

±
 0

.0
45

)
0.

40
 (

±
 0

.0
45

)
D

E
B

V
ex

cP
A

0.
35

 (
±

 0
.0

46
)

0.
35

 (
±

 0
.4

60
)

0.
36

 (
±

 0
.0

46
)

0.
37

 (
±

 0
.0

45
)

0.
37

 (
±

 0
.0

45
)

D
E

B
V

in
cP

A
0.

51
 (

±
 0

.0
42

)
0.

52
 (

±
 0

.0
42

)
0.

52
 (

±
 0

.0
42

)
0.

51
 (

±
 0

.0
42

)
0.

51
 (

±
 0

.0
42

)
D

E
B

V
in

cP
A

0.
47

 (
±

 0
.0

43
)

0.
48

 (
±

 0
.0

43
)

0.
48

 (
±

 0
.0

43
)

0.
48

 (
±

 0
.0

43
)

0.
49

 (
±

 0
.0

43
)

B
L

E
B

V
0.

44
 (

±
 0

.0
34

)
0.

45
 (

±
 0

.0
34

)
0.

45
 (

±
 0

.0
34

)
0.

43
 (

±
 0

.0
34

)
0.

42
 (

±
 0

.0
35

)
E

B
V

0.
42

 (
±

 0
.0

35
)

0.
42

 (
±

 0
.0

35
)

0.
42

 (
±

 0
.0

34
)

0.
42

 (
±

 0
.0

35
)

0.
41

 (
±

 0
.0

35
)

D
E

B
V

ex
cP

A
0.

54
 (

±
 0

.0
46

)
0.

54
 (

±
 0

.0
46

)
0.

53
 (

±
 0

.0
46

)
0.

50
 (

±
 0

.0
47

)
0.

51
 (

±
 0

.0
47

)
D

E
B

V
ex

cP
A

0.
39

 (
±

 0
.0

50
)

0.
40

 (
±

 0
.0

50
)

0.
41

 (
±

 0
.0

49
)

0.
47

 (
±

 0
.0

48
)

0.
46

 (
±

 0
.0

48
)

D
E

B
V

in
cP

A
0.

61
 (

±
 0

.0
42

)
0.

60
 (

±
 0

.0
42

)
0.

60
 (

±
 0

.0
42

)
0.

57
 (

±
 0

.0
44

)
0.

59
 (

±
 0

.0
43

)
D

E
B

V
in

cP
A

0.
50

 (
±

 0
.0

45
)

0.
50

 (
±

 0
.0

45
)

0.
51

 (
±

 0
.0

45
)

0.
54

 (
±

 0
.0

44
)

0.
54

 (
±

 0
.0

44
)

T
T

N
E

B
V

0.
40

 (
±

 0
.0

36
)

0.
41

 (
±

 0
.0

36
)

0.
42

 (
±

 0
.0

35
)

0.
42

 (
±

 0
.0

35
)

0.
40

 (
±

 0
.0

35
)

E
B

V
0.

40
 (

±
 0

.0
36

)
0.

41
 (

±
 0

.0
35

)
0.

41
 (

±
 0

.0
35

)
0.

42
 (

±
 0

.0
35

)
0.

40
 (

±
 0

.0
35

)

D
E

B
V

ex
cP

A
0.

37
 (

±
 0

.0
42

)
0.

38
 (

±
 0

.0
42

)
0.

39
 (

±
 0

.0
42

)
0.

40
 (

±
 0

.0
42

)
0.

39
 (

±
 0

.0
42

)
D

E
B

V
ex

cP
A

0.
32

 (
±

 0
.0

43
)

0.
33

 (
±

 0
.0

43
)

0.
34

 (
±

 0
.0

43
)

0.
40

 (
±

 0
.0

42
)

0.
39

 (
±

 0
.0

42
)

D
E

B
V

in
cP

A
0.

50
 (

±
 0

.0
39

0.
51

 (
±

 0
.0

39
)

0.
51

 (
±

 0
.0

39
)

0.
50

 (
±

 0
.0

39
)

0.
49

 (
±

 0
.0

39
)

D
E

B
V

in
cP

A
0.

44
 (

±
 0

.0
40

)
0.

45
 (

±
 0

.0
40

)
0.

46
 (

±
 0

.0
40

)
0.

49
 (

±
 0

.0
39

)
0.

48
 (

±
 0

.0
39

)

1 B
H

 =
 b

od
y 

he
ig

ht
; B

L
 =

 b
od

y 
le

ng
th

; T
T

N
 =

 t
ot

al
 t

ea
t 

nu
m

be
r.

2 E
B

V
 =

 e
st

im
at

ed
 b

re
ed

in
g 

va
lu

e;
 D

E
B

V
ex

cP
A

 =
 d

er
eg

re
ss

ed
 E

B
V

 e
xc

lu
di

ng
 p

ar
en

t 
av

er
ag

e;
 D

E
B

V
in

cP
A

 =
 d

er
eg

re
ss

ed
 E

B
V

 in
cl

ud
in

g 
pa

re
nt

 a
ve

ra
ge

.
3 E

st
im

at
ed

 π
-v

al
ue

s 
de

ri
ve

d 
fr

om
 B

ay
es

C
π

 m
et

ho
d.



2801Genome-wide association study and genomic predictions in Yorkshire pigs

genomic predictions using various levels of π, re-
sponse variables, and 2 Bayesian methods (BayesB 
and BayesC). A total of 11 informative window re-
gions for exterior traits were identified. Diversity π 
showed no influence on the accuracy of genomic 
prediction. The BayesB method displayed a slightly 
higher genomic accuracy for exterior traits than the 
BayesC method in this study. In addition, the gen-
omic accuracy when using DEBVincPA as a response 
variable was higher than when other response vari-
ables were used. The genomic accuracy values using 
BayesB (with π  =  0.90) based on DEBVincPA for 
BH, BL, and TTN were 0.52, 0.60, and 0.51, respect-
ively. Therefore, we suggest that a fine-mapping study 
is necessary to pinpoint the causal variants within 
these informative genomic regions to improve the 
genomic accuracy for exterior traits. Furthermore, 
this genomic selection model for exterior traits could 
be a useful tool for future genomic evaluations in 
purebred Korean Yorkshire pigs.

SUPPLEMENTARY DATA

Supplementary data are available at Journal of 
Animal Science online.
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