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Synthetic modeling reveals HOXB genes are critical
for the initiation and maintenance of human
leukemia
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Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but

are limited by in vitro adaptation and species context issues, respectively. More recent efforts

have utilized patient-derived xenografts; however, these are hampered by variable genetic

background, inability to study early events, and practical issues with availability/reproduci-

bility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral

transduction of normal human cord blood yields aggressive leukemia that appears indis-

tinguishable from natural disease. We utilize this synthetic model to uncover a role for

oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists

in established tumors where it defines a novel subset of patients distinct from other known

genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes

are specifically activated in human T-ALL by an epigenetic mechanism and confer growth

advantage in both pre-leukemia cells and established clones.
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Despite the many and important conceptual insights mouse
models have brought to our understanding of human
cancer, they are, by definition, incapable of revealing

mechanisms that are dependent on human-specific elements. It is
clear there are important differences between mouse and human
cells, particularly with respect to cellular transformation1. Parti-
cularly noteworthy is the observation that 40–90% of transcrip-
tion factor binding events are not conserved between mouse and
human2,3. Importantly, the translational impact of findings
derived from cancer models based on transformation of mouse
cells is immediately hampered by the need to verify if and to what
extent the identified molecular mechanisms remain similarly
operative in human cells. In the case of the hematopoietic system,
the complement of cell surface markers used to define hemato-
poietic stem cells in mouse and human are completely different4,
thus limiting for instance the ability to translate work on leuke-
mia stem cells identified in mouse models to human disease.

To mitigate species-specific limitations, many studies now
incorporate validation of findings using patient-derived xenografts
(PDX). Short of in-patient clinical trials, PDX models currently
represent the closest we can get to bona fide human disease in terms
of a platform for functional studies5,6. Of course, established human
cell lines have and will continue to provide valuable insights into
molecular mechanisms, but suffer the well-recognized caveat of
rigorous selection for growth in vitro that can distort, and thus may
not be representative of natural biological processes. The extent of
genetic variation present in large PDX collections, however, both in
terms of the mutational complement in each tumor and the genetic
background of each patient, raises daunting challenges to under-
standing the mechanistic contribution of individual genetic ele-
ments and how they manifest on varied genetic/mutational
backgrounds. Finally, neither established cell lines nor PDX models
are able to functionally interrogate the earliest of molecular events
as oncogenes redirect cells from normal to malignant develop-
mental trajectories.

We thus sought here to take a synthetic approach and create
custom-designed tumors using prespecified combinations of
genetic elements. We opted for normal human cells as starting
material in order to study the process of malignant transforma-
tion from beginning to end, and used multipotent hematopoietic
progenitor/stem cells from umbilical cord blood (CB) as they
are a consistent and renewable resource. We attempted to create
synthetic T-cell acute lymphoblastic leukemia (T-ALL) as the
genetics have been well described by landscape sequencing7,8 with
several oncogenes and tumor suppressors validated by transgenic
mouse studies9. The major genetic classes of T-ALL involve
TLX1/3, TAL1/SCL, LMO1/2, LYL1, CALM-AF10, SET-NUP214,
and NOTCH1 as defined by chromosomal translocation or over/
contextually inappropriate expression10. Importantly, tumor
suppressors p16INK4a and p14ARF are deleted/silenced in over
80% of cases11 and thus represents a near-requisite event for T-
ALL establishment. We delivered specified combinations of these
various oncogenes into CD34+ CB cells by lentiviral transduc-
tion, followed by culture in vitro on OP9-DL1 feeders to examine
molecular events occurring in the initial stages of malignant
reprogramming of normal T-cell progenitors, and then injection
into immunodeficient mice to score for leukemogenesis in vivo.

Results
Transduced oncogenes drive expansion of CB cells in vitro. We
sought here to create human T-ALL de novo from normal CD34+
CB progenitors by lentiviral transduction with a combination of
known T-ALL oncogenes. We combined activated NOTCH1
(NOTCH1ΔE) with LMO2/TAL1, LYL1, TLX1, TLX3, HOXA9,
MEF2C, and NKX2.1, which were marked with GFP and Cherry

fluorescent reporters, respectively (Fig. 1a). We included BMI1
with each of the Cherry vectors on the premise its transcriptional
repression/silencing of CDKN2A, which encodes both p16INK4a
and p14ARF12, would be critical for T-ALL establishment. BMI1
has also been identified as essential for self-renewal of hemato-
poietic, neural, and intestinal stem cells13. Coexpression of mul-
tiple genes from a single lentivirus was accomplished by linking
cDNAs with picornaviral 2A sequences14. Transduced cells were
passaged on OP9-DL1 stromal feeders every 4–5 days to study
their behavior in vitro. DL1-expressing feeders were utilized so
that nontransduced control cells would undergo early T-cell dif-
ferentiation15 and thus serve as a close comparator for effects of
the delivered oncogenes. Importantly, cells cultured in this man-
ner maintain the ability to engraft live animals and contribute to
immune reconstitution15. Strikingly, doubly transduced GFP+
Cherry+ (hereafter referred to as G+C+) cells progressively
outcompeted singly- and nontransduced populations in vitro for
six of seven assayed gene combinations, comprising the majority
of cells within 30–50 days (Fig. 1b, c). Of note, G+C− cells
expanded for the first few weeks, but were outcompeted thereafter
by G+C+ cells (Fig. 1c). Further, in cultures transduced with
NOTCH1-only, G+ cells expanded initially, but regressed some-
what and never grew to exceed G− cells (Supplementary Fig. 1).
In the NOTCH1ΔE (N)+ LMO2/TAL1/BMI1 (LTB) gene com-
bination, G+C+ cells typically attained ~106-fold expansion by
day 50 (Fig. 1d) and exhibited an immature CD34+/− CD38+
CD7+ CD1a− CD2− sCD3− T-cell phenotype whereas non-
transduced cells in the same cultures differentiated further to a
CD34− CD1a+ stage (Fig. 1e, Supplementary Fig. 2)16.

Transduced CB cells produce lethal T-cell leukemias in vivo. To
score for leukemia-initiating activity in vivo, transduced CB cells
cultured up to 25 days in vitro on OP9-DL1 feeders were injected
into NSG mice. In initial protocols, human CD45+ cells were
FACS sorted from day 10 cultures and injected intrahepatically
into sublethally irradiated neonatal recipients17. Of note, the
injected hCD45+ cells included a mixture of nontransduced
(G−C−), singly transduced (G+C− and G− C+), and doubly
transduced (G+C+) populations (Fig. 1c). Subsequent protocols
involved sorting of doubly transduced CB cells (hCD45+ G+C+)
from day 24–25 cultures and intravenous injection into adult
recipients. As our data are most mature for the N+ LTB gene
combination, we will focus here on those results.

We obtained malignant leukemias with T-ALL-like features in
36/43 primary recipients from seven different N+ LTB
transduction experiments with overall median latency of 161 days
(range 79–321 days) (Fig. 2a, Supplementary Data 1). Clinically
morbid animals typically exhibited hepatosplenomegaly, lymph
node and thymic masses, hypercellular bone marrow with
extensive infiltration by leukemic blasts, and circulating leukemia
cells with immature blast-like cytomorphology (Fig. 2b). Tumors
also exhibited clonal TCRG rearrangements as assessed by clinical
BIOMED-2 assay18 (Fig. 2c).

In 22/24 recipients injected with hCD45+ G+C+ cells (FACS
sorted from day 24–25 N+ LTB-transduced CB cultures), we
obtained G+C+ leukemias of T-cell lineage, typically CD7+ CD2+
sCD3+/− CD1a+/− and variable CD4/CD8 pattern including
CD4− CD8− (DN), CD4+ CD8+ (DP), and CD4− CD8dim
(SP8dim) (Supplementary Fig. 3, Supplementary Data 1). Among
19 recipients of hCD45+ cells (FACS sorted from day 10–11 N+
LTB-transduced CB cultures), seven mice developed G+C+
leukemias, seven developed G+C− leukemias, and one showed
persistent low-level G+C+ engraftment (1–2% in PB) (Supple-
mentary Data 1). Whereas G+C+ leukemias demonstrated a
spectrum of CD4/CD8 phenotypes, G+C− leukemias were
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mostly DP, but did include one DN case (6 DP+ 1 DN in total;
Supplementary Fig. 3, Supplementary Data 1). Given the ~6-fold
greater abundance of G+C− over G+C+ cells in day 10–11
hCD45+ inocula (Fig. 1c, Supplementary Data 1), these findings
suggest there is selection for the full NLTB (G+C+) oncogenic
payload in vivo similar to that observed in vitro, although N alone
(G+C−) is also capable of producing aggressive leukemia in
primary recipients.

CB leukemias with both N and LTB are readily transplantable.
We next tested primary leukemias for their ability to produce
disease in secondary recipients. We tested five different primary
G+C+ leukemias and one low-level engrafted, but nonlethal case,
and found all six to produce lethal G+C+ leukemias in secondary
recipients (Fig. 2d, Supplementary Data 2). We also tested four
different primary G+C− leukemias and sorted G+C− cells from
a primary recipient harboring both G+C+ and G+C− sub-
populations, and found only two of the five to produce lethal
G+C− leukemias in secondary recipients (Fig. 2e, Supplementary

Data 2). Thus, whereas the combination of N+ LTB consistently
yielded fully transformed, serially transplantable leukemias, N
alone was less efficient in doing so, yielding lethal, yet non-self-
renewing lymphoid expansions in about half of instances (Fig. 2e,
3/5 clones). We also performed limiting dilution transplants to
compare leukemia-initiating cell (LIC) frequencies in transplan-
table G+C+ vs. non-transplantable G+C− leukemias. Whereas
the G+C+ primary leukemia from mouse #62 exhibited an LIC
frequency of greater than 1 in 4100 cells, the G+C− primary
leukemia from mouse #63 showed an LIC frequency of less than 1
in 1,200,000 cells, for a difference of at least ~300-fold (Supple-
mentary Fig. 4). These data reveal that while both N+ LTB and
N-only can produce serially transplantable (i.e., self renewing)
leukemias, this process occurs with much lower efficiency when
only N is provided, presumably due to the need for stochastic
acquisition of additional oncogenic hits.

Transduced CB cells show no evidence of clonality in vitro. To
ascertain what stage of leukemogenic transformation the
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transduced CB cells had attained in vitro prior to transplantation,
we applied the clinical BIOMED-2 assay to detect and track
clonal TCRG rearrangements. TCRG profiles of in vitro-
expanded cells showed no convincing evidence of a dominant,
clonally rearranged population in any of the four different CB
trials tested (Fig. 3a). Further, comparison of TCRG profiles from
in vitro-expanded CB cells and the leukemias they produced after
transplantation revealed no clear evidence for perdurance of a
dominant clone (Fig. 3b, Supplementary Fig. 5). As well, leuke-
mias arising in animals transplanted with the same pool of
transduced CB cells exhibited distinct clonal TCRG rearrange-
ments (Figs. 2c, 3b; Supplementary Fig. 5) and also distinct donor

STR patterns (Fig. 3c, Supplementary Fig. 6), suggesting that
dominant, clonally rearranged leukemias had not already arisen
in vitro prior to transplantation.

We also submitted gDNA for commercial ImmunoSEQ TCRG
assay from transduced CB cells that had been expanded in vitro
for 14–38 days. Analysis of CDR3 fragment lengths revealed
normal Gaussian distributions for both transduced G+C+ cells
and G−C− controls (Supplementary Fig. 7). Read counts were
about 5–6× higher for G−C− samples, consistent with a higher
proportion of cells progressing through early T-cell development.
Tracking of individual rearrangements showed no evidence of
dominant clones emerging over time in culture among G+C+
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cells, with the clone distribution pattern appearing highly similar
to that of control G−C− cells (Fig. 3d). Taken together, these
results support the interpretation that NLTB-transduced CB cells
do not progress to the point of dominant clonal populations for
up to 38 days in culture, and thus do not represent clonal
leukemias prior to transplantation.

CB leukemia can be generated from multiple different donors.
For most of these experiments we used pooled CB cells from
hundreds of donors. To determine from how many donors we
were able to generate leukemias, we performed STR profiling on
genomic DNA isolated individual leukemic mice. From two
independent experimental trials that used cells from same CB
pool, we were able to identify leukemias with at least five different
STR profiles (four donors A−D shown in Fig. 3c, fifth donor F
shown in Supplementary Fig. 6). Six of seven experimental trials
used cells from three different CB pools, while the seventh was
performed using CB cells from a single donor (Supplementary

Data 1). In total, we were able to generate leukemias from at least
eight different individual CB donors, supporting that the ability of
N+ LTB to transform CB cells is not limited to rare individuals
in the population.

CB leukemias show clonal evolution including NRAS muta-
tion. We performed whole exome sequencing on a set of three
lethal G+C+ leukemias from secondary recipient mice which
had all been injected with cells from a primary recipient that
showed persistent low-level engraftment by G+C+ cells, but was
otherwise healthy. Analysis of single nucleotide variants (SNVs)
confirmed the three leukemias had derived from a common
ancestral clone as evidenced by 542 common SNVs. Interestingly,
2/3 were highly similar to one another, but the third showed
substantial divergence with 3063 private SNVs (Fig. 4a). One of
the private SNVs in this third leukemia was an NRAS gain-of-
function mutation, which occurs commonly in human
T-ALL7,8,19, and thus these findings would suggest that clonal
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Fig. 3 NLTB-transduced CB cells do not develop into clonally rearranged leukemias in vitro. a, b BIOMED-2 TCRG clonality assay. a CB cells were
transduced with N+ LTB lentiviruses and cultured on OP9-DL1 feeders for up to 28 days. Doubly transduced (G+C+) and nontransduced (G−C−)
subsets of cells were FACS sorted and genomic DNA extracted for analysis. No dominant peaks indicative of clonal T-cell populations were identified in any
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Biosystems). Dotted red lines are overlaid to facilitate comparison of peak sizes between samples. Peak sizes are reproducible within less than 0.5 bp. c
STR profiling of CB leukemias. Genomic DNAs from primary CB leukemias were profiled by Promega PowerPlex 16HS assay. STR patterns from four
different individual donors (A, B1, C, D) can be discerned. The minor B2 pattern was not represented after serial transplant. d ImmunoSEQ TCRG clonality
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evolution similar to that which occurs in natural disease is
operative in this synthetic model.

RNA-seq reveals CB leukemias are highly similar to PDXs. To
determine how similar/dissimilar the synthetic leukemias were
compared to bona fide human T-ALL, we performed RNA-seq on
a set of 17 CB leukemias and compared them to a collection of 22
different PDX T-ALLs6. Using the top 1000 variable genes among
PDX samples and unsupervised hierarchical clustering (Fig. 4b),

we observed that G+C+ leukemias were highly similar to one
another, even across different experimental trials and originating
from different donors, and that G+C− leukemias clustered
separately, indicating that inclusion of LTB alters the transcrip-
tional signature. Importantly, correlation distances between CB
leukemias and individual PDXs fell within the range of distances
between individual PDXs, revealing that CB leukemias reside
within the spectrum of natural T-ALL variation and do not
appear instead as distant outliers. We would interpret these data
to support that synthetic leukemias are highly reproducible and
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represent a reasonable approximation of naturally occurring
human T-ALL.

We also performed unsupervised hierarchical clustering using
the top variable genes among just NLTB G+C+ leukemias to
determine how they differed from one another (Supplementary
Fig. 8). The most notable feature was that leukemias clustered
according to donor as defined by STR profiling. Since each donor
leukemia represents by definition a distinct cell-transduction
event, we would conclude that the source of greatest variation
among synthetic NLTB leukemias is genetic/epigenetic back-
ground of the donor and/or viral integration effects.

We also extracted CDR3/V(D)J junctional reads for each of the
TCR loci from RNA-seq data using the MiXCR software
package20. We found CB leukemias to show mostly mono/
oligoclonal TCR rearrangements with G+C+ leukemias tending
to express rearranged TCRG and TCRD when of CD4− CD8−
(DN) phenotype, and rearranged TCRB when of CD4+ CD8+
(DP) phenotype. G+C− leukemias, which were typically DP
phenotype, tended to express rearranged TCRB (Fig. 4c).
Together with immunophenotyping data, these findings suggest
that while NLTB (G+C+) leukemias likely span both pre- and
post-β-selection stages of T-cell development, N-only (G+C−)
leukemias are most often post-β-selection21.

HOXB genes are upregulated in nascently transduced CB cells.
The in vitro component of the CB model allows direct access to
transduced cells as they undergo the very first molecular changes
as they are redirected from normal to malignant developmental
trajectories. Accordingly, we harvested cultures at various time
points and FACS-sorted singly and doubly transduced subsets as
well as nontransduced control cells for RNA-seq. We focused on
genes differentially expressed between NLTB doubly (G+C+ and
nontransduced (G−C−) cells from the earliest sets of cultures
(days 14 and 24), and identified 468 differentially expressed genes
(Fig. 5a, Supplementary Data 3). We performed Reactome
pathway analysis22 and found pathways relating to HOX genes in
development/differentiation were second only to activated
NOTCH signaling among top upregulated pathways (Supple-
mentary Table 1), and immune/cytokine signaling multiply
represented among the top downregulated pathways (Supple-
mentary Table 2). The apparent coordinate regulation of multiple
HOXB genes was notable and so we examined mRNA read
counts across the entire HOXB locus and flanking regions. We
found HOXB genes from B2 through B5 were significantly
upregulated in NLTB G+C+ cells as compared to G−C− control
cells (Fig. 5b). Of note, N-only (G+C−) cells showed variably
significant, but overall intermediate levels of HOXB gene
expression, suggesting that N alone can activate HOXB gene
transcription, but that this effect is amplified in the context of
LTB. Interestingly, we found that upregulation of multiple HOXB
genes was unique to the combination of N+ LTB, as it did not
occur for N in combination with any of the other T-ALL onco-
genes tested (LYL1, TLX1, TLX3, HOXA9, MEF2C, NKX2.1)
(Supplementary Fig. 9). Thus, NLTB uniquely induces tran-
scriptional activation of a contiguous cluster of anterior HOXB
genes.

We also took the opportunity to compare RNA-seq data
between NLTB-transduced CB cells in vitro and corresponding
primary NLTB leukemias that had developed in vivo (Supple-
mentary Data 4) to gain insight into transcriptional programs
enacted during tumor evolution/progression. Reactome pathway
analysis of 31 genes upregulated in vivo emphasized Notch and
RAS/RAF/MAPK signaling (Supplementary Table 3), suggesting
that growth in vivo selects for further enhancement of Notch
signaling and corroborating our finding of acquired NRAS G12D

mutation from exome analysis (Fig. 4a). Pathways down-
regulated in vivo were dominated by interleukin/cytokine
signaling (Supplementary Table 4), suggesting that cytokines/
growth factors may be limiting in vivo, or perhaps that a
substantial proportion of cells in vivo reside in less replete
microenvironments. Alternatively, fully evolved leukemias may
include subsets of cells that are less receptive to signaling
agonists.

NLTB induces altered epigenetic patterning over HOXB genes.
The contiguous distribution of upregulated genes within the
anterior (3′) HOXB locus led us to wonder if altered epigenetic
patterning might underlie the gene expression changes. Indeed,
ChIP-seq analysis from the same set of samples showed sig-
nificant H3K27me3 loss in G+C+ cells as compared to G−C−
control cells at two regions, one near the 3′ end of HOXB2 and
the other spanning from upstream of HOXB3/B4 to downstream
of HOXB6 (regions 1 and 2, respectively, in Fig. 5c). Region 2
was particularly notable as it showed a corresponding enrich-
ment of H3K27ac marks in G+C+ over G−C− cells (Fig. 5d).
Taken together, these results reveal that NLTB-transduced cells
exhibit an altered chromatin pattern consistent with gene acti-
vation over the HOXB locus (corresponding RNA-seq tracks in
Supplementary Fig. 10), and suggest that NLTB may initiate the
leukemogenic process by remodeling of chromatin to achieve
coordinate regulation of multiple genes required for cellular
transformation.

High HOXB is associated with poor clinical outcome in T-ALL.
To begin to address what role HOXB genes may play in natural/
spontaneous human T-ALL, we examined RNA-seq data from a
large pediatric cohort comprising 264 diagnostic T-ALL samples
(COG TARGET study)8. HOXB2, B3, and B4 were expressed in a
subset of cases, and in a notably coordinated fashion (Fig. 6a),
corroborating mRNA expression data from transduced CB cells
(Fig. 5b). HOXB5 was expressed in only a minority of cases, and
was expressed at lower levels as compared to HOXB2/B3/B4 in
transduced CB cells. Strikingly, cases with higher levels of
HOXB2-B5 mRNA expression exhibited significantly poorer
event-free survival (Fig. 6b, Supplementary Table 5). HOXB4
alone was also significant (Fig. 6c), while HOXB2 and HOXB3
were not significant (Fig. 6d, e). These data support that HOXB
genes are coordinately expressed in primary human T-ALL and
higher levels of expression are associated with more aggressive
clinical disease.

High HOXB defines a distinct disease subgroup in T-ALL. The
poorer clinical outcomes of patients with high HOXB gene
expression led us to wonder if they might overlap with cases of
ETP-ALL23. We found only limited overlap between these two
groups by PCA (Fig. 7a) and no positive statistical association,
but instead a trend towards negative association (Fig. 7b). We also
examined whether high HOXB cases were enriched/depleted
within any particular transcription factor/translocation-defined
subgroup8. Interestingly, high HOXB cases were significantly
associated with TAL1, NKX2-1, and so-called “unknown” sub-
groups, while low HOXB cases were significantly associated with
TLX1 and TLX3 subgroups (Fig. 7c). Accordingly, HOXB2/B3/B4
gene expression levels were consistently elevated in TAL1, NKX2-
1, and “unknown” subgroups, and consistently decreased in TLX1
and TLX3 subgroups (Supplementary Fig. 11). Of note, cases in
the top quintile for expression of TAL1 show higher expression of
HOXB2/B3/B4, although this difference was statistically sig-
nificant only for HOXB4. There was no evidence for increased
HOXB gene expression in the top quintile of LMO2 expressers
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(Supplementary Fig. 12). Additional studies will be needed to
assess what genetic contexts are most permissive to HOXB gene
upregulation.

To explore further what features might characterize patient T-
ALL cases with high vs. low HOXB gene expression, we
performed gene expression enrichment analysis (GSEA) using
gene signatures derived from an RNA-seq dataset that included
normal hematopoietic progenitors from human bone marrow
and thymus24. PCA suggested three groupings of normal cells: (1)
HSC and LMPP subsets; (2) early thymic progenitors through
DN stage; and (3) late thymic progenitors including DP, SP4, and
SP8 subsets (Fig. 7d). Defining gene signatures by pairwise
differentially expressed gene sets, we found high HOXB cases to
show significant enrichment for the late thymic over early thymic,
late thymic over HSC/LMPP, and early thymic over HSC/LMPP
gene signatures (Fig. 7e). These findings describe high HOXB
cases as bearing a gene signature of late thymic progenitors, and
are associated with TAL1, NKX2-1, and “unknown” genetic
subgroups. The association with multiple different genetic
subgroups would suggest that commonality among high HOXB

cases is defined by a biologic process orthologous to conventional
transcription factor groupings.

HOXB3 promotes cell growth in pre- and established leukemia.
Following on evidence that HOXB gene upregulation occurred as an
early event in NLTB-transduced CB cells, we examined RNA-seq
data from established CB leukemias and a collection of T-ALL PDXs
and found HOXB2/B3/B4 mRNA levels were coordinately elevated
in both contexts (Fig. 8a). We also looked at HOXB gene expression
in other acute leukemias and found that both T-ALL and B-ALL
PDXs were characterized by specific elevation of anterior HOXB
genes, while AML PDXs showed a pattern of HOXB gene expression
that extended more broadly across the locus (Supplementary Fig. 13).
Interestingly, levels of HOXB2/3/4 were significantly higher in T-ALL
than in B-ALL, suggesting perhaps a particular relevance of anterior
HOXB gene action in T-ALL.

To assess formally whether these HOXB genes play a functional
role in established leukemia, we performed a limited scale, pooled
shRNA dropout screen using primary CB leukemia cells cultured
in vitro. The shRNA pool included a total of 56 shRNAs targeting
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multiple HOXB (2, 3, 4, 5) and HOXA (5, 7, 9, 10) genes
(5–10 shRNAs per gene) plus three non-targeting controls
(Supplementary Table 6 and Supplementary Fig. 14). We included
four HOXA genes in the screen as they were significantly
downregulated in G+C+ vs. G−C− cells (Supplementary Data 3),
raising the possibility they may antagonize T-ALL growth. We found
significant depletion of four different shRNAs against HOXB3 and
two against HOXB5 (Fig. 8b; Supplementary Fig. 15), suggesting their
knockdown had resulted in growth disadvantage. We also performed
the same screen using established T-ALL cell lines HSB2 and PEER
and found consistent depletion of shRNAs against HOXB3, but less
consistent depletion of shRNAs against HOXB5 (Supplementary
Fig. 16).

We focused further efforts on HOXB3 since HOXB5 expression
was detectable in only a small number of primary T-ALLs (Fig. 6a).
We confirmed accelerated depletion of three different
HOXB3 shRNAs as compared to nonsilencing controls in singleton
transduction experiments by flow cytometry using NGFR-tagged
viral shRNA constructs in the same primary NLTB leukemia as used
for the 59-plex shRNA screen, and also in a second, independent
primary NLTB leukemia (Fig. 8c). Similar results were obtained using
three different established human T-ALL cell lines (Fig. 8d) selected
for study as they expressed relatively high levels of HOXB3 in
combination with TAL1 and/or LMO2 (Supplementary Fig. 17).
These findings are consistent with the notion that HOXB3
contributes to maintenance of established leukemias.

To address whether HOXB3 also played a role in the early
stages of leukemia initiation, we went back to normal CB cells

nascently transduced with NLTB to test the effect of
HOXB3 shRNAs on clonogenic cell growth. We employed a
variation on conventional methylcellulose colony forming cell
(CFC) assays, but compatible with OP9-DL1 co-cultures in which
transduced CB cells were sorted at limiting dilution into
individual wells of a 96-well plate containing OP9-DL1 feeders
and then assayed ~3 weeks later by flow cytometry. Net yields per
well of viable, triply transduced hCD45+ cells (N/GFP+, LTB/
Cherry+, shRNA/NGFR+) were significantly decreased for
shHOXB3_644 down to ten input cells per well and for
shHOXB3_643 down to 50 input cells per well as compared
to shScr control (Fig. 8e). If we analyze the data according to a
single-hit model/Poisson distribution where a positive well is
defined as containing at least 500 triply transduced hCD45+ cells,
we are able to calculate the frequency of well-initiating cells, or
WIC. By this approach, we find the WIC frequency for control
shRNA-transduced cells to be ~1/41 cells (95% CI 1/30–56 cells),
while shHOXB3-transduced cells showed statistically significant,
6- to 12-fold lower WIC frequencies of ~1/240 cells (95% CI 1/
140–430) for shHOXB3-643 and ~1/510 cells (95% CI 1/
230–1100 cells) for shHOXB3-644 (p= 6.9e-10 and 1.6e-13,
respectively; chi-square test) (Fig. 8f). Similar, statistically
significant differences were also observed using alternate cell
yield cutoff values as low as 200. Importantly, the goodness of fit
test for shScr cells supports that the null hypothesis/single-hit
model is not rejected (p= 0.78; chi-square test). Taken together,
these results support the notion that NLTB-induced HOXB3 gene
expression is required for clonogenic expansion of T-progenitor
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cells undergoing the earliest stages of malignant transformation,
and that this dependency persists in established leukemia cells.

Discussion
The synthetic leukemia model described here provides an efficient
and reproducible means for generating human T-ALL that
appears indistinguishable from spontaneously arising patient
tumors. In addition to overcoming limitations associated with
models involving transformation of mouse cells, it allows custom
design/specification of the tumor’s genetic composition, thus
facilitating creation of near isogenic sets of tumor samples
necessary to deconvolute the contributions of individual genetic
elements to tumor phenotypes. This approach holds several
advantages over deploying large collections of PDXs which con-
tain a wide assortment of genetic variants that can obscure dis-
covery/validation of bona fide genetic associations, and are
logistically difficult to generate and share. As well, all tumors
continue to evolve during serial propagation in vivo and

obtaining early passage vials from PDX lines can be difficult if not
impossible. In contrast, synthetic leukemias can be generated
again and again from normal cells, thereby resetting the cancer
evolutionary clock.

The ability to achieve multilog expansion of transduced CB cells
in vitro afforded us the unique opportunity to explore the earliest
of biochemical events that occur as cells were redirected from
normal to malignant developmental trajectories. We used this
approach to uncover a pro-oncogenic role for anterior HOXB
genes in preleukemia cells at a very early stage in their genesis.
While there is substantial prior literature on the role of HOXA in
human T-ALL25–28 and AML29, and even of HOXB in normal
HSC expansion, this study emphasizes a functional role for
anterior HOXB genes in human T-ALL not appreciated in several
genome-wide efforts8,30–32. We might surmise that upregulation
of HOXB genes may be omnipresent in human leukemia, and only
revealed when silhouetted against a proximal normal counterpart
without confounding effects of additional genetic hits.
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We had initially thought HOXB high cases might exhibit an
HSC-like signature; however, our results suggest instead that
these cases are more similar to late thymic progenitors. In com-
bination with our functional data showing that HOXB3 and
perhaps also HOXB5 support net cell growth in this context, we
would posit that HOXB genes may be more accurately char-
acterized as promoting expansion of lineage-restricted but
immature progenitors, rather than the more prevalent view that
they act to expand existing multipotent stem cells33,34, an idea
that has been proposed recently by others as well35.

Exploration of the earliest events in cellular transformation
may also favor identification of mechanisms operative in

leukemia stem cells or that are shared by all cells in the tumor as
opposed to later events that variably accumulate within individual
subclones. Others have used variant allele frequencies to provide
insight into the subclonal structure of tumors; however, this
approach cannot inform on the cellular contexts in which var-
iants occur or their associated phenotypes in isolation from
subsequent mutational events. The synthetic approach affords an
experimentally tractable way to model both the complement of
genetic alterations and the cellular contexts in which they
may occur.

Synthetic modeling offers a straightforward approach to
deconvoluting the contributions of individual genetic
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components in the leukemogenic process. For instance, we
delivered NOTCH1ΔE and LTB on two separate viruses and thus
could readily discern from in vitro cultures that NOTCH1ΔE
provided an initial growth advantage, whereas LTB caused
developmental arrest at an early stage with no apparent growth
advantage. Further, while both NLTB and N-only produced
aggressive leukemia in primary recipients, NLTB leukemias were
consistently transplantable whereas most N-only leukemias were
not transplantable. We interpret this to indicate that NOTCH1ΔE
provides for prodigious expansion of immature T cells (enough
even to overwhelm the primary recipient mouse), but in itself
does not confer self-renewal properties required for serial trans-
plantability. It is notable that in transplants using unsorted cells,
G+C−/N-only cells always outnumbered G+C+/NLTB cells by
~6-fold on average, and yet G+C+/NLTB cells prevailed in over
half of resulting leukemias. This supports the notion that LTB
contributes positively to the leukemogenic process, perhaps even
specifically to self-renewal. As further studies will be needed to
identify what additional hits may be consistently present, we
regard NLTB not as sufficient for leukemogenesis, but rather as
sufficiently enabling to yield transplantable disease with high
penetrance and reasonable latency. Of note, a similar CB T-ALL
model was recently reported which utilized activated NOTCH1
only36; however, it was unclear how many independent trans-
plantable clones were generated in that study, and according to
our data, NOTCH1ΔE only does not reproducibly yield trans-
plantable disease.

One limitation of our synthetic model is expression of onco-
genes from viral elements; however, primary CB cells are amen-
able to CRISPR/Cas9-mediated gene editing with targeting
efficiencies ~80% reported in the literature37, thus allowing more
refined means of specifying the complement of genetic altera-
tions. Another potentially limiting aspect is the in vitro culture
phase prior to transplantation which may select for features
dissimliar to propagation in vivo; however, the high level of
similarity by RNA-seq between PDX samples and synthetic CB
leukemias generated by transplantation after 10–24 days on OP9-
DL1 feeders (Fig. 4b) suggests that untoward effects of culture
in vitro may be limited. In counterbalance, the in vitro culture
phase enables access to cells for biochemical and phenotypic
assays that are not feasible otherwise, and thus represents a
necessary evil if the earliest of events in cellular transformation
are to be examined. Observations made in vitro will of course
need to be verified using exclusively in vivo models and in pri-
mary patient samples.

Methods
Isolation of human hematopoietic stem/progenitor cells. Anonymized normal
human cord blood (CB) samples were obtained with informed consent from women
undergoing caesarian deliveries of full-term births according to protocols approved by
the Research Ethics Board of the University of British Columbia and Children’s &
Women’s Hospital of BC. CD34+ CB cells were obtained at >95% purity from pooled
collections using a two-step Rosette-Sep/EasySep human CD34-positive selection kit
(StemCell Technologies) according to the manufacturer’s protocols and/or FACS
sorting. The purity of FACS-sorted cells was >99% as determined by post-sort ana-
lysis. CD34+ cells were seeded into 96-well round bottom plates and prestimulated
in StemSpan SFEM II (StemCell Technologies) with 100 ngmL−1 human SCF,
100 ngmL−1 human FLT3L, 50 ngmL−1 human TPO, and 20 μgmL−1 human LDL,
or 10 ngmL−1 human SCF, 20 ngmL−1 human TPO, 20 ngmL−1 human IGF2, and
10 ngmL−1 human FGFa (Peprotech) for 16 h.

Lentiviral constructs and transduction. Human NOTCH1 (ΔE allele), TAL1,
BMI1, and mouse LMO2 cDNAs obtained from Dr. J Aster (Boston), Harvard
PlasmID, and Dr. E. Lawlor (UCLA). NOTCH1ΔE and GFP cDNAs were con-
nected with equine rhinitis A virus 2A (E2A) peptide14. LMO2, TAL1, BMI1 and
Cherry cDNAs were similarly connected with thosea asigna virus 2A (T2A), foot-
and-mouse disease virus 2A (F2A), and E2A peptides, respectively. These poly-
cistronic cDNAs were cloned into pRRL-cPPT/CTS-MNDU3-PGK-GFP-WPRE38

immediately downstream of the MNDU3 promoter. All constructs were verified by
sequencing. Additional vector construction details are available upon request.

High-titer lentiviral supernatants were produced by transient transfection of
293T cells using polyethyleneimine HCl MAX (Polysciences) with second-
generation packaging/envelop vectors pCMV dR8.74 (Addgene #22036), pRSV-
Rev (Addgene #12253), and pCMV VSV-G (Addgene #8454), followed by
ultracentrifugal concentration (25,000 rpm for 90 min at 4 °C; Beckman SW32Ti
rotor).

CB cells were transduced in 96-well plates coated with 5 μg/cm2 fibronectin
(StemCell Technologies) by direct addition of concentrated viral supernatants and
transferred to OP9-DL1 co-cultures 6 h later. CB transduction efficiencies are
shown in Fig. 1b, c, and Supplementary Data 1. CB leukemia and cell lines were
transduced by spinoculation (1800 × g for 2 h at 33 °C) with viral supernatants in
4 μg mL−1 polybrene. Primary CB leukemia transduction efficiencies were 15–30%
for 105_LEP and 10–15% for m160. Cell line transduction efficiencies were 20–35%
for HSB2, 20–30% for PEER, and 55–60% for PF382.

Cell culture. Transduced CB cells and explanted primary CB leukemia cells were
cultured on top of confluent monolayers of OP9-DL1 cells in αMEM media sup-
plemented with 20% FBS (Invitrogen) plus 10 ng mL−1 SCF, 5 ng mL−1 FLT3L and
3 ng mL−1 IL-7 (Peprotech). Human T-ALL cell lines were cultured in RPMI 1640
media supplemented with 10% FCS, with 1 mM sodium pyruvate, 2 mM Gluta-
MAX (Gibco), and antibiotics.

Cell lines. OP9-DL1 cells were obtained from J.C. Zuniga-Pflucker (University of
Toronto). 293T, HSB2, PEER, and PF382 cells were obtained from J. Aster
(Brigham & Women’s Hospital, Boston). Cell line authentication by PowerPlex
16HS multiplex STR DNA profiling (Promega) was performed by Genetica DNA
Laboratories (Burlington, NC). Cultures were confirmed mycoplasma-free and
regular surveillance testing performed using the MycoAlert mycoplasma detection
kit (Lonza).

Patient-derived xenograft samples. PDX samples from the PRoXe repository6

are identified by “TA” prefix (n= 17). PDX samples established in the Weng lab
include H3255-4, M22-7, M69-26, M71-1-2, and M30-2v2, and have been reported
previously39,40.

Mice. NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice were bred and housed in a
specific pathogen-free animal facility at the British Columbia Cancer Research
Centre. All experimental procedures were approved by the University of British
Columbia Animal Care Committee.

Transplantation by intrahepatic/intravenous injection. Neonatal NSG mice
(4–10 days of age) were sublethally irradiated (100 cGy X-ray at 150 cGy min−1),
then injected intrahepatically with ~0.1 to 1.0 × 106 sorted CB cells (hCD45+ or
hCD45+ GFP+ Cherry+) mixed with rhIL-7 (0.5 μg per mouse; Peprotech) and
anti-IL-7 mAb (2.5 μg per mouse; clone M25; Bio X Cell, West Lebanon, NH) in
PBS (total volume 30 μL). Mice were boosted with IL-7/IL-7 mAb cocktail by IP
injection every 4–5 days for the first 28 days post transplantation. Adult NSG
recipients were sublethally irradiated (200 cGy X-ray at 150 cGy min−1) prior to
intravenous injection of transduced CB cells (primary recipients) or CB leukemias
(secondary recipients). Transplanted animals were monitored by monthly per-
ipheral blood (PB) sampling and sacrificed at predefined, humane clinical mor-
bidity endpoints.

Histology. Mouse tissues (spleen, thymus, lymph node, sternum) were fixed in
10% neutral-buffered formalin for 48 h, then stored in 70% ethanol before paraffin
embedding. Hematoxylin and eosin staining was performed on 4 μm paraffin
sections.

Flow cytometry. Absolute cell counts were obtained in flow data using AccuCheck
counting beads (Invitrogen). Live/dead cell gating was performed by staining with
propidum iodide or DAPI (Invitrogen). We used anti-hCD271 (Miltenyi Biotec,
Biolegend) to detect the lentiviral NGFR marker. We performed flow cytometric
analyses on FACSCalibur and LSRFortessa instruments and sorting on FACSAria3
and Fusion instruments (BD Biosciences). We analyzed flow cytometry data using
FlowJo software (TreeStar). Example gating strategies are provided in Supple-
mentary Figs. 18 and 19.

Western blot. Whole-cell lysates were separated by SDS-PAGE, transferred to
Hybond-ECL membranes (Amersham) and blocked with 5% nonfat dry milk.
Membranes were probed with primary antibodies the FLAG epitope (M2 clone;
Sigma) or β-actin (AC-15; Sigma Aldrich), then with HRP-conjugated secondary
antibodies (Jackson ImmunoLaboratories) and detected with enhanced chemilu-
minescence (ECL; Pierce). Band intensities were quantified with Image Studio Lite
(LI-COR) software.
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BIOMED-2 TCRG assay. The BIOMED-2 TRG gene clonality assay for ABI
fluorescence detection (InVivoScribe) was performed by the BC Cancer Agency
Cancer Genetics Lab.

ImmunoSEQ assay. Genomic DNA was prepared from FACS-sorted cells using
Qiagen AllPrep DNA/RNA micro kit according to the manufacturer’s instructions.
Samples were quantified using Nanodrop, diluted for library preparation in buffer
EB, and submitted to Adaptive Biotechnologies (Seattle, WA) for immunoSEQ
TCRG assay (survey resolution). Briefly, somatically rearranged human TCRG
CDR3 was amplified from genomic DNA using a two-step, amplification bias-
controlled multiplex PCR approach41,42. The first PCR consists of forward and
reverse amplification primers specific for every V and J gene segment, and amplifies
the hypervariable complementarity-determining region 3 (CDR3) of the immune
receptor locus. The second PCR adds a proprietary barcode sequence and Illu-
mina® adapter sequences43. CDR3 libraries were sequenced on an Illumina
instrument according to the manufacturer’s instructions. Raw sequence reads were
demultiplexed according to Adaptive’s proprietary barcode sequences. Demulti-
plexed reads were then further processed to: remove adapter and primer sequences;
identify and correct for technical errors introduced through PCR and sequencing;
and remove primer dimer, germline and other contaminant sequences. The data
are filtered and clustered using both the relative frequency ratio between similar
clones and a modified nearest-neighbor algorithm, to merge closely related
sequences. The resulting sequences were sufficient to allow annotation of the V(N)
D(N)J genes constituting each unique CDR3 and the translation of the encoded
CDR3 amino acid sequence. V, D and J gene definitions were based on annotation
in accordance with the IMGT database (www.imgt.org). The set of observed bio-
logical TCRG CDR3 sequences were normalized to correct for residual multiplex
PCR amplification bias and quantified against a set of synthetic TCRG
CDR3 sequence analogs41. Data were analyzed using the immunoSEQ Analyzer
toolset.

Whole exome sequencing. Genomic DNA was prepared from FACS-sorted cells
using Qiagen AllPrep DNA/RNA mini kit according to the manufacturer’s
instructions. The SureSelectXT Human All Exon V5 predesigned capture library
(Agilent #5190-6208) was used along with the SureSelect XT Library Prep Kit ILM
(Agilent #5500-0132) in order to generate human exome libraries from gDNA as
per the manufacturer’s instructions. Libraries were paired-end 125 bp sequenced
on an Illumina HiSeq 2500 at seven samples per lane. Reads were aligned to the
human reference genome (hg19) using bwa-mem version 0.7.5a44 with optical and
PCR duplicates removed using the Picard tool (http://broadinstitute.github.io/
picard/). Somatic SNV/indel variants were identified by VarScan45 and were fil-
tered for a minimum allele frequency of 1% and ten variant reads. Putative
germline variants were removed based on a GMAF > 1%. All variants were
annotated using SnpEff (version 4.2)46 and filtered for effects predicted to have a
moderate or high impact at the protein level.

RNA-seq. Total RNA was isolated from live cells with TRIzol reagent followed by
purification over PureLink RNA Mini Kit columns (Invitrogen). RNA-seq was per-
formed using a polyA-enriched or ribosomal RNA-depleted (NEBNext rRNA
Depletion Kit; New England Biolabs, cat# E6310) strand-specific library construction
protocol and paired-end 125 bp or 75 bp sequencing on an Illumina HiSeq 2500
instrument at eight samples per lane. Paired-end reads were trimmed from the 3′ end
based on quality score (end min quality level (Phred)= 20) using Partek Flow soft-
ware (version 6.0.17.0503; Partek Inc, St Louis, MO). Samples were then aligned to
human genome reference assembly GRCh37/hg19 using STAR 2.5.2b 47 in Partek
Flow software. All further analysis steps were done in RStudio 0.99.903 (R version
3.3.1). Raw gene expression counts were calculated using featureCounts in Rsubread
v1.24.2 with GRCh37 Ensemble release 75 as annotation48. Genes with summated
counts of 1 or less across all included samples were filtered out. mRNA expression
values were then derived after normalization with rlog function in DESeq2 v1.18.1,
which log2 transforms and normalizes the data for library size, as well as minimizes
the effect of low-expression genes49. Differential gene expression analyses were per-
formed using filtered raw counts with DESeq2 v1.18.1.

To remove batch effects between PDX and synthetic CB leukemia samples, we
used ComBat function in sea 3.20.0 with nonparametric adjustments and specified
biological covariates50,51. To determine relationships between PDX and synthetic
CB leukemia samples, the top 1000 variable genes across PDX samples only were
selected using genefilter v1.56.0 rowVars function52, and Spearman correlation for
all samples was calculated based on this gene list. Hierarchical clustering with
complete linkage and distance measured as (1− Spearman correlation) was
performed and plotted with pheatmap 1.0.8 (https://CRAN.R-project.org/
package=pheatmap). Multiscale bootstrap resampling was performed using pvclust
in R (http://stat.sys.i.kyoto-u.ac.jp/prog/pvclust/).

Native histone ChIP-seq. We performed native chromatin immunoprecipitation
(ChIP) using validated antibodies against H3K27me3 and H3K27ac and con-
structed ChIP-seq libraries according to established protocols53,54. Libraries were
sequenced on an Illumina HiSeq 2500. Raw sequences were inspected for quality,
sample swap, and reagent contamination using custom in-house scripts. Paired-

end 125 bp reads were aligned to human genome build GRCh37-lite using BWA
v0.5.7 55 and the alignment files were converted to bam format through SAM-
tools56. Wig files were converted from the bam files via custom program BAM2-
WIG (http://www.epigenomes.ca/tools.htm), excluding reads that were unmapped,
duplicate, or having mapping quality score <5. Wig files were subsequently con-
verted into big wig format for visualization in UCSC genome browser. Peak calling
was performed using MACS2 (Model-based Analysis for ChIP-Seq, v2.1.1)57 by
pairing the IP bam and the corresponding input bam, with q value cutoff= 0.01 for
narrow histone mark (H3K27ac), and 0.1 (in broad mode) for broad histone mark
(H3K27me3).

shRNA library construction and transduction. Separate 5 mL bacterial overnight
cultures were grown for each of 56 different lentiviral shRNA constructs targeting a
total of eight genes (average seven shRNAs per gene) (Supplementary Table 6), which
were then pooled for a single plasmid DNA prep (Qiagen). The final plasmid prep
was sequenced on an Illumina MiSeq to assess representation of each shRNA species.
All input shRNA clones were detected in the final plasmid prep, with ~55% within 4-
fold and ~75% within 10-fold of the mean read counts (Supplementary Fig. 14).

Lentiviral preps for the 56-plex pooled shRNA library and three negative
control shRNAs (shScramble, shLuc, empty vector) were done separately and then
mixed prior to transducing cells. Cells were transduced at a target multiplicity of
infection of 0.3 to favor single lentiviral integration in the majority of
transduced cells.

shRNA knockdown growth screen. The lentiviral shRNA vector, pLKO contains
a puromycin selection cassette; however, we did not apply puromycin selection
after transduction in order to minimize the time duration between initial shRNA
transduction and collection of the t0 time point sample. Since cultures thus con-
tained both transduced and nontransduced cells, an excess of cells was carried in
culture for the duration of the screen in order to maintain at least ~60,000
transduced cells, corresponding to ~1000-fold representation of each shRNA clone.
Cultures were passaged at regular intervals as needed to maintain logarithmic
growth phase for a total of ~5 population doublings.

shRNA enumeration by NGS. shRNA hairpins were PCR amplified from DNAzol
extracted genomic DNA (Thermo Fisher) according to protocols developed by the
RNAi Consortium (GPP Web Portal). Briefly, we used PCR primers mapping to a
region of the U6 promoter directly upstream of the shRNA sequence and that
included P5 and P7 attachment sequences for binding to the Illumina flow cell,
Illumina primer binding sites, a 6-nucleotide barcode sequence for library multi-
plexing, and a staggered region to create sequence diversity during cluster identifi-
cation (Supplementary Table 7). In order to maintain library representation
throughout the PCR amplification process, we processed all genomic DNA from each
sample. No more than 825 ng of total DNA was included per reaction58, corre-
sponding to at least 500 templates per shRNA species (59-plex library, assuming 25%
transduction efficiency). We performed a total of 30 cycles of amplification with Q5
High-Fidelity 2X Master Mix (New England Biolabs). Amplicons of the predicted size
(300 bp) were gel purified from precast E-Gel EX 2% agarose gels (Invitrogen) using
QIAquick gel extraction kit (Qiagen). The size and concentration of the each of the
final libraries was verified by Agilent Bioanalyzer prior to pooling for sequencing on
an Illumina MiSeq instrument. Paired-end FASTQ files from t0 and t1 were aligned
to a reference list of shRNA hairpin sequences with 0 mismatches allowed. Differ-
ential shRNA representation was analyzed using the edgeR package in Bio-
conductor59. Results were plotted using the ggplot2 package in R. PCR primers and
amplification conditions are available upon request.

Statistics. Quantitative data were analyzed using GraphPad Prism 8.0.1 software
and various R packages. Well-initiating cell (WIC) frequencies were calculated
from limiting dilution culture results using the online ELDA tool available at http://
bioinf.wehi.edu.au/software/elda/ 60.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data from 17 of 22 T-ALL, 24 B-ALL, and 24 AML PDX samples referenced
during the study are available in the NCBI SRA database under the accession code
SRP103099. RNA-seq data and associated clinical annotations for samples from the COG
TARGET study referenced during the study are available in the database of Genotypes
and Phenotypes (dbGaP) under the accession code phs000218/000464. RNA-seq data for
normal hematopoietic progenitors referenced during the study are available in the
National Center for Biotechnology Information Gene Expression Omnibus (GEO)
database under the accession code GSE69239. RNA-seq data for T-ALL cell lines
referenced during the study are available in the European Genome-phenome Archive
(EGA) database under the accession code EGAS00001000536. Whole exome sequencing
(WES), RNA-seq, and ChIP-seqdata generated during the current study excluding that in
Supplementary Fig. 9 have been deposited in the EGA database under accession code
EGAS00001003627. ChIP-seq peak call (BED) files have been deposited in the GEO
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database under accession code GSE130743. SNV calls from WES data underlying Fig. 4a
are provided as Supplementary Data 5. Gene expression values from RNA-seq data
underlying Figs. 4b/8a, 5a/b, and Supplementary Fig. 8 are included as Supplementary
Data 6–8, respectively. Data from Supplementary Fig. 9 are available from the
corresponding author upon reasonable request. All other data supporting the findings of
this study are available within the article and its Supplementary Information files, or
from the corresponding author upon reasonable request. A reporting summary for this
article is available as a Supplementary Information file.
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