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gene knockout and knockdown methods, has enabled large-scale annotation and exploration of gene and protein
functions in eukaryotes. Knowing which genes are essential for the survival of eukaryotic organisms is para-
mount for an understanding of the basic mechanisms of life, and could assist in identifying intervention targets
in eukaryotic pathogens and cancer. Here, we studied essential gene orthologs among selected species of eukary-
otes, and then employed a systematic machine-learning approach, using protein sequence-derived features and
selection procedures, to investigate essential gene predictions within and among species. We showed that the
numbers of essential gene orthologs comprise small fractions when compared with the total number of orthologs
among the eukaryotic species studied. In addition, we demonstrated that machine-learning models trained with
subsets of essentiality-related data performed better than random guessing of gene essentiality for a particular
species. Consistent with our gene ortholog analysis, the predictions of essential genes among multiple (including
distantly-related) species is possible, yet challenging, suggesting that most essential genes are unique to a spe-
cies. The present work provides a foundation for the expansion of genome-wide essentiality investigations in eu-
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karyotes using machine learning approaches.
© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

The sequencing and annotation of whole-genomes of eukaryotic
‘model organisms’, including the budding and fission yeasts (Saccharo-
myces cerevisiae and Schizosaccharomyces pombe), the elegant worm
(Caenorhabditis elegans), the vinegar fly (Drosophila melanogaster), the
house mouse (Mus musculus) and human (Homo sapiens) between
1995 and 2002 [1-6] provided a solid foundation for structural and func-
tional genomics explorations of these organisms. The integration of
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genomic and associated functional data sets as well as transcriptomic
and proteomic information into specialised databases, including the Sac-
charomyces Genome Database [7], PomBase [8], FlyBase [9], WormBase
[10], Mouse Genome Database [11] and Ensembl [12], has paved the
way for large-scale comparative genomic and multi-omics investigations
of these organisms. Combined with the development of gene knock-
down methods, such as double-stranded RNA interference (RNAi) as
well as gene-editing and -disruption technologies, including chemical
and transposon mutagenesis, homologous recombination and CRISPR/
Cas9, these advances have enabled genome-wide evidence-based gene
annotation and the identification of genes that are crucial (i.e. essential)
for life [13]. The curation of functional genomics data for essential genes,
made available through specialised gene essentiality databases, has facil-
itated the prediction of essential homologs in both prokaryotes and eu-
karyotes by comparative genomics [14-17]. Moreover, characteristics
extrinsic to a gene sequence, such as gene transcription, protein function,
subcellular localisation, phyletic retention and gene copy number varia-
tion, have been considered as predictors of essentiality [18,19].

The recent popularisation and expansion of high-throughput sequen-
cing and bioinformatics tools have facilitated large-scale genomic-
phenomic investigations and comparisons between or among species
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[20,21]. In particular, machine-learning (ML) algorithms are enhancing
essentiality predictions and comparative analyses by exploring features
that differentiate essential from non-essential genes [22]. For example,
based on the assumption that essential genes are likely to have more mo-
lecular interaction partners [23], studies have used protein-protein inter-
action (PPI) network centrality measures as features for genome-scale
essentiality classification using ML algorithms. However, the validity of
the relationship between centrality and essentiality in PPI networks
has been questioned due to a possible experimental bias [24,25], al-
though a recent study [26] has indicated or suggested that this relation-
ship is valid based on results from genetic interaction (GI) network
analyses. Until recently, most studies of eukaryotes have applied ML
methods, trained with centrality measures derived from interaction net-
works, focussing primarily on yeast (reviewed by [22]). However,
experimental interaction studies are laborious, costly and challenging,
particularly in non-model eukaryotic organisms that cannot be produced
in sufficient quantities in vitro. In this context, alternative, informatic
methods for essential gene prediction using features derived directly
from sequence data would be advantageous, given the increasing avail-
ability of genomes and predicted proteomes. Therefore, showing that it
is possible to predict essential genes within and among model species
using ML algorithms, trained with features extracted directly from pro-
tein sequences (intrinsic), would significantly accelerate gene essential-
ity predictions in non-model species. The bioinformatic prediction of
essential genes using ML models trained with features derived from
gene/protein sequences has been employed and assessed in S. pombe,
M. musculus, H. sapiens and Arabidopsis thaliana [27-30]. Although
some amino acid sequence composition features appear to be suitable
predictors of gene essentiality within a species [17], systematic predic-
tions and evaluations among species are lacking. While most genome-
wide studies of essential genes have usually focused on single species
of model eukaryotes, ML algorithms have the potential to be employed
for predicting essential genes between or among species. However, no
published study has yet systematically assessed or compared the perfor-
mance of multiple ML algorithms for the prediction of essential genes
employing protein-sequence derived features using publicly available
functional genomics data, curated for essentiality. Here, we trained and
evaluated the prediction performance of five classical ML models, with
afocus on essentiality classification within and among eukaryotic species
using intrinsic protein sequence features.

2. Materials and Methods

The workflow for data collection, preparation steps and analysis are
depicted in Fig. 1. The data analysis was conducted in R (https://www.r-
project.org), and the session information (containing software packages
and versions) used here are included in the “Sessioninfo” file available in
the Supplementary material.

2.1. Collection and Filtering of Data

In the present study, we used eukaryotic essential and non-essential
genes obtained from a reference gene-essentiality database and two in-
dependent curations. Initially, protein sequences (FASTA) representing
essential and non-essential genes derived from large-scale functional
genomics experiments six model eukaryotic species were obtained
from the Online GEne Essentiality (OGEE) database [16,31]. Species
for which >80% of genes in their genome had been tested for essentiality
and curated by OGEE were included, namely: S. cerevisiae (Sc_OGEE), S.
pombe (Sp_OGEE), C. elegans (Ce_OGEE), D. melanogaster (Dm_OGEE),
M. musculus (Mm_OGEE) and a data set representing H. sapiens cancer
cell lines (Hs_OGEE). Additionally, an independent curation of the data
for the same human cancer cell lines (Hs_GUO) [29] and another of es-
sential genes from mouse (Mm_KABIR) [32] were included to investi-
gate the effect of different curation strategies within a species on
downstream analysis. Protein sequences with ambiguous entries
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Fig. 1. Bioinformatic workflow for essential gene classification and evaluation using
protein sequence-derived features and machine-learning methods.

regarding gene essentiality in OGEE (designated “inconsistent”) or con-
taining <50 amino acids, stop or ambiguous amino acid characters
were removed from the sequences.

2.2. Assigning and Comparing Essential Gene Orthologs

We assigned ortholog groups based on The Orthologous Matrix
(OMA) database [33]. Briefly, we used the “oma-groups” and “oma-
ensembl” files to map the Ensembl identifiers of essential genes included
to their corresponding ortholog groups in the OMA database. Using the
lists of ortholog groups identified in each data set, a diagram of common
ortholog identifiers was generated using the “UpSetR” library for R. Ad-
ditionally, a bar plot, showing pairwise essential gene orthology, was
produced using the overLapper function from the “systemPipeR” pack-
age in R. We also conducted this orthology analysis using the complete
gene sets for selected species for comparisons.

2.3. Gene Ontology Enrichment of Molecular Function of Essential Genes

We calculated the ‘molecular function’ enrichment of essential genes
using the “clusterProfiler” [34] and “AnnotationHub” packages for R.
Briefly, essential gene identifiers were first mapped to Gene Ontology
(GO) identifiers using “AnnotationHub”. Then, enrichment analysis of
molecular function was performed for each data set using
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“clusterProfiler::enrichGO”, and plots containing the top-five most
enriched molecular functions were generated using “clusterProfiler::
dotplot”.

24. Feature Extraction and Selection Procedures

We extracted 9920 intrinsic features from all individual protein se-
quences using the “protr” package for R [35] (see Table 1 for the full
set of features). This package implements several protein feature extrac-
tion methodologies that have been used widely in ML approaches (see
[35]). These features are based on amino acid composition, autocorrela-
tion and chemical properties of individual protein sequences. For each
data set, a design matrix, containing the multiple features extracted
from individual protein sequences, was created with labels assigned to
differentiate essential from non-essential genes. Next, we performed a
standardised feature-selection approach prior to ML training. Firstly,
we performed ElasticNet (alpha parameter = 0.5) feature selection
using the “glmnet” package for R with cross-validation (cv.glmnet)
[36], aiming to maximise the area under the receiver operating charac-
teristic curve (ROC-AUC). Secondly, the “cv.enspls” method from the
“enpls” package was used to perform Ensemble Sparse Partial Least
Squares (SPLS) feature selection with cross-validation [37]. Finally, rel-
evant features, identified by an intersection of the ElasticNet and the En-
semble SPLS methods, were selected for ML training.

2.5. Subsampling, ML Training and Performance Evaluation within a
Species

To estimate the prediction performance fluctuation using different
data set sizes, we generated random subsamples (bootstraps; [38]) con-
taining 10% to 90% (stepwise 10% increments) of the sequences of es-
sential and non-essential genes in each data set for training, using the
remaining data for testing (test sets). Then, we trained the following
(classical) ML algorithms: Generalised Linear Model (GLM), Artificial
Neural Network (NN), Gradient Boosting Method (GBM), Support-
Vector Machine (SVM) and Random Forest (RF) using the “caret”
package for R, performing hyperparameter tuning (for a list of parame-
ters tested, see code provided at https://bitbucket.org/tuliocampos/
essential or the static version referring to this publication at https://
doi.org/10.6084/m9.figshare.8063069. For comparison, we also created
a default classifier (DF), which randomly classified the test sets using
the probability of essentiality calculated from the training sets defined
as the ratio between the number of essential genes and the total number
of reported genes for each data set. At the end of each incremental train-
ing iteration, performance evaluation metrics, including ROC-AUC and
area under the precision-recall curve (PR-AUC), were obtained using
the “PRROC” package in R.

2.6. ML Training and Performance Evaluation among Species
We also trained data sets containing all available data for each indi-

vidual species and data set, to then perform and evaluate pairwise pre-
dictions among data sets (one-to-one), and to rank the feature

Table 1
Protein sequence-derived features utilised in the present study.

Description Number of features
Amino acid composition 20

Dipeptide composition 400

Tripeptide composition 8000

Protein autocorrelation features 720

Conjoint triad 343
Composition/Transition/Distribution 147
Quasi-Sequence-Order 160

Pseudo amino acid composition 130

Total 9920

importance (varlmp function from “caret”) of each ML method trained
with each data set. For the leave-one-out (species) approach, we used
Sc_OGEE, Sp_OGEE, Ce_OGEE, Dm_OGEE, Mm_KABIR, and Hs_GUO to
prepare the data sets. Six new data sets of protein sequences
representing essential and non-essential genes were created, each leav-
ing out one of the species for testing. Finally, we carried out feature se-
lection using the ElasticNet and Ensemble SPLS consensus, followed by
ML training. The performance of prediction was evaluated in the left-
out species using ROC-AUC and PR-AUC metrics, as described in
Subsection 2.5.

3. Results
3.1. Comparing Proportions and Ratios of Essential Genes

For each annotated data set obtained and used here, we summ-
arised and compared the numbers of essential, non-essential, incon-
sistent, and undetermined (i.e. essentiality not reported) genes as a
proportion of the available gene complement for individual species
(Fig. 2A). We observed that the proportions of essential genes were
considerably smaller (< 20%) than those of non-essential genes (>
80%) in most data sets, except in Mm_OGEE (~50%). In addition, the
proportions of genes with inconsistent phenotypes in OGEE were
low for all data sets (< 5%), except for Hs_OGEE (~28%). Almost all
reference genes of S. cerevisiae and S. pombe genomes were present
in the Sc_OGEE and Sp_OGEE data sets. For C. elegans, ~60% of the ref-
erence genes were present in Ce_OGEE. Hs_OGEE and Dm_OGEE
contained the smallest total gene count ({(300), and the ratios of es-
sential to non-essential genes were small (<1%). The Mm_OGEE data
set contained approximately three times more essential genes than
did the Mm_KABIR data set, and both had high proportions of unde-
termined genes (~65% and ~82%, respectively) (Fig. 2A). After filter-
ing, the number of essential genes was considerably lower in
Hs_OGEE (n = 182) than in Hs_GUO (n = 1516), whereas the num-
ber of non-essential genes was higher (n = 14362) and (n = 10499),
respectively.

3.2. Analyses for Orthologous Genes and Functional Enrichment for
Essential Genes

An analysis among data sets revealed that approximately half of the
orthologs of essential genes were exclusive to individual data sets
(Fig. 2B), except between Mm_OGEE and Mm_KABIR, for which the
number of orthologs (n = 1274) was almost the same as the total num-
ber of essential genes in Mm_KABIR (n = 1287), of which most (n =
1009 ortholog identifiers) were shared between these two data sets
representing mouse. Hs_GUO had ~ 500 orthologs with Mm_OGEE,
Sp_OGEE or Sc_OGEE. A similar number of orthologs was shared be-
tween Sp_OGEE and Sc_OGEE (Fig. 2C). Although many pairwise
orthologs were identified between or among species/data sets, no es-
sential genes were shared among all data sets used here. In three occur-
rences, with 19, 16 and 9 genes, orthologs were shared among five data
sets, respectively, and other genes were shared among <4 species
(Fig. 2C). When performing a similar analysis of orthologs using com-
plete gene sets of the species studied here, we observed that most
genes were exclusive to individual species and that 536 were shared
among all six species (see Fig. S1).

Overall, the five most enriched functions in each species related to
DNA/RNA binding and processing (Fig. S2). In total, enriched functions
represented >50% of the essential genes in the Ce_OGEE, Dm_OGEE
and Mm_KABIR data sets. The same functions were enriched when
Mm_OGEE and Mm_KABIR were compared. By contrast, enriched mo-
lecular functions of essential genes for Sc_OGEE and Sp_OGEE accounted
for <30% of the respective essential genes, and these data sets shared en-
richments for “catalytic activity on RNA” and “snoRNA binding”. The top
5 enriched functions for Hs_OGEE and Hs_GUO included <30% of their
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Fig. 2. A. Summary of gene essentiality data obtained from different sources and used in the present study. Included are the number of genes found with multiple conflicting entries
(inconsistent) as well as genes not reported as either essential or non-essential, complementing the predicted proteomes. B. Diagram exhibiting the total (red) and shared (blue)
ortholog identifiers of essential genes from the OrthoOMA database used in the present study (selected species and data sets). C. Pairwise essential gene orthologs identified using the
OrthoOMA ortholog groups (format: species1_sourcel_species2_source2).
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respective essential genes, but these data sets did not share the same
enriched functions.

3.3. Performances of Essentiality Classification Inferred by ML Models
within a Species

The performances of the ML models for essential gene predictions on
training sets are shown in Fig. 3. Feature selection procedures were
employed at each training/test step (10% to 90%), but only the final set
of selected features when using 100% of each data set are reported
here (see Subsection 3.4 and Fig. S4). Overall, all ML methods out-
performed the default classifier (DF), in terms of both ROC-AUC and
PR-AUC metrics, showing that they performed better than random
classification based on known probability of essentiality. RF achieved
ROC-AUC of ~ 1, and PR-AUC of ~ 1 for all data sets tested. SVM and
GBM exhibited similar performances to RF using the Ce_OGEE,
Dm_OGEE and human data sets. As more data were included in training
sets, SVM and GBM models rapidly achieved ROC-AUC of >0.9 and PR-
AUC of >0.8 for predicting Sc_OGEE, Sp_OGEE, and Mm_OGEE. The PR-
AUC calculated for Mm_KABIR improved slowly when the amount of
training data increased, and ranged from ~0.55 to 0.7, with ROC-AUC
values of ~0.75 to 0.85. PR-AUC of GLM decreased as more data were
added to the training sets, while NN performance decreased for most
data sets, but increased for Sc_OGEE, Ce_OGEE and Mm_OGEE. GLM
and NN, however, achieved ROC-AUC of >0.8 using small training sets
(10%).

Subsequently, we evaluated the performance of the ML models for
essentiality predictions on test sets within a species (Fig. 4). Again, the
trained ML methods outperformed random classification (DF), and
both ROC-AUC and PR-AUC of all ML models increased as more data
were added to the training sets. In most cases, the performance of NN
models improved slower compared with other ML models. In the fungal
species, ROC-AUC using RF and GBM increased from ~0.6 to 0.75
(Sc_OGEE) and to ~0.67 (Sp_OGEE). PR-AUC increased from ~0.25 to
0.40 (Sc_OGEE) and from ~0.33 to 0.42 (Sp_OGEE). Applying GBM to
Ce_OGEE and Dm_OGEE, ROC-AUC values ranged from ~0.75 to >0.80,
while PR-AUC improved from ~0.25 to 0.32 (Ce_OGEE) and from ~0.1
to 0.15 (Dm_OGEE). Using each of the data sets for mouse, RF and
GBM achieved ROC-AUC values ranging from ~0.6 to 0.70, and the
highest PR-AUC was achieved using RF (~0.65 for Mm_OGEE, and
~0.45 for Mm_KABIR). For the human data sets, GBM achieved ROC-
AUC values ranging from ~0.67 to 0.75 (Hs_OGEE) and from ~0.75 to
0.82 (Hs_GUO), while PR-AUC values ranged from ~0 to 0.26
(Hs_OGEE) and ~0.32 to 0.45 (Hs_GUO).

3.4. Selected Features and Prediction Performance of ML Models Using One-
to-One and Leave-One-Species-out Approaches

Using each complete essentiality data set, the number of features se-
lected by both ElasticNet and Ensemble SPLS methods ranged from 44
for Mm_KABIR to 251 for Hs_GUO (Fig. S3). By comparing the features
selected among data sets, no feature was common among all. Only
one feature (CTriad_VS666, a feature related to the composition of
negatively-charged amino acid triplets in a protein sequence - see
“protr” for R documentation) was shared among most data sets, except
for Ce_OGEE and Dm_OGEE, and 12 distinct features were shared among
4 or 5 data sets (Fig. S3). The importance of the selected features of each
data set on gene essentiality prediction varied, depending on the data
set and the ML method used (see Table S1).

Regarding model performance in our pairwise training/prediction
approach (Fig. 5), ROC-AUC of ~ 1, and PR-AUC of ~ 1 were consistently
obtained with RF when predictions were performed and evaluated on
training sets. SVM also achieved similar performances, except for
Mm_KABIR (ROC-AUC of <0.8 and PR-AUC of <0.6). GBM achieved
ROC-AUC values of ~1 for most data sets, except for Mm_OGEE (~0.85
to 0.9) and Mm_KABIR (~0.75 to 0.8). Finally, GLM and NN achieved

similar and more variable ROC-AUC values (~0.65 to 0.9) for predictions
from training sets, while PR-AUC varied from ~0.6 to 0.7 for NN and
from ~0.35 to 0.65 for GLM.

When models were trained with a data set to predict independent
data (e.g., training with Ce_OGEE and predicting for Dm_OGEE; Fig. 5),
the ROC-AUC values varied from ~0.6 to 0.75, whereas PR-AUC ranged
from ~0.1 to 0.65. In addition, ML models trained with Hs_GUO and
Mm_OGEE data sets achieved overall ROC-AUC values of >0.7. PR-AUC
values of >0.5 were achieved for Mm_OGEE predictions, regardless of
the training set used. Regarding ROC-AUC, gene essentiality in Ce_OGEE
seems to be partially and consistently predicted by any other data set
(~0.70 to 0.80). Interestingly, Sc_OGEE and Sp_OGEE are reasonable pre-
dictors of gene essentiality for the two human data sets (~0.65 to 0.8),
considering the ROC-AUC metric, but not for the mouse and Dm_OGEE
data sets (<0.65).

Finally, we evaluated the performance metrics using the leave-one-
species-out approach (Fig. 6). The performance of the essentiality pre-
dictions on the training sets achieved ROC-AUC and PR-AUC values of
>0.9. Overall, predictions for the left-out species achieved ROC-AUC
values of >0.7, and PR-AUC values were variable (~0.1 to 0.6). We
observed that the PR-AUC metric was penalised more when the exter-
nal target data set was highly imbalanced (i.e. the number of non-
essential was markedly greater than that of essential genes), as
observed for Ce_OGEE and Dm_OGEE (Fig. 1). The numbers of selected
features common to leave-one-out-data sets were as follows: 190
shared by six data sets, 184 by five and 126 by four (Table S1).

4. Discussion

This study showed that, using selected features from protein se-
quences linked to functional genomics data sets, ML methods can pre-
dict essential genes in eukaryotes. ML-based predictions within a
species were reliable, and those between or among species were better
than random guessing by a default classifier. Integral to prediction per-
formance were: (i) the nature, extent and curation of data sets, (ii) the
selection of features and/or (iii) the algorithm/approach used.

ML prediction performance, measured by ROC-AUC and PR-AUC,
and the selected best predictive features varied, depending on algo-
rithm used and species studied, but RFs out-performed other methods
in most scenarios. The ML methods used here consistently outperfo-
rmed random guessing based on true probabilities, showing that they
can successfully learn and enhance the classification of essential genes.
Random Forests are known to be robust, even when features exhibit
non-linear relationships with the response variable, in the presence of
correlated features and/or with high-dimensional data [39]. The sys-
tematic ML approach using data subsets of variable sizes (10% to 90%)
within a species revealed that, in most cases, the prediction perfor-
mance increased as more data were added to the training set(s). How-
ever, the rate of improvement was variable among ML models and
data sets. For C. elegans and D. melanogaster data sets, essentiality pre-
dictions employing ML methods trained with protein sequence features
achieved high ROC-AUC (> 0.80), with PR-AUC values between >0.30
and >0.10, respectively. For Hs_GUO, ML performance (ROC-AUC >
0.80, PR-AUC > 0.45) was comparable with that of a published study
using an SVM model trained with nucleotide composition features
(ROC-AUC = 0.88 [29];. Compared with our study, [30] improved ML
performance for S. pombe (ROC-AUC = 0.84) using nucleotide sequence
features to train an RF model, although their study used equal numbers
of essential and non-essential genes for training and performance as-
sessments, and thus under-sampled non-essential-genes. By contrast,
[27] collected sequence features from curated data from mice, per-
formed feature selection and trained an RF method for essentiality pre-
dictions, achieving a ROC-AUC value of 0.73, which is comparable with
the results obtained here (ROC-AUC of ~ 0.68, PR-AUC of >0.4) for
both Mm_KABIR and Mm_OGEE using the same algorithm. In the same
study [27], complemented sequence features PPI and transcription
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Fig. 3. Performance evaluation of essential gene classification of training sets (self-predictions) within selected eukaryotic species using Area Under Receiver Operating Characteristic and
Precision-Recall Curves (ROC-AUC and PR-AUC; training set sizes between 10 and 90%, using 10% increments). The dots represent the calculated ROC-AUC/PR-AUC values, and
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Fig. 5. Heatmaps depicting the prediction performances (y-axis: ROC-AUC and PR-AUC for each test set) of five machine-learning models (x-axis) trained using multiple essentiality data
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Fig. 6. Heatmaps depicting the prediction performances (y-axis: ROC-AUC and PR-AUC) of four machine-learning models (x-axis) using a leave-one-species-out approach. Labels on top of
each heatmap represent the species that was excluded from the training set. The Mm_OGEE and Hs_OGEE data sets were not included in any of the training sets.

data, and the ROC-AUC value increased to 0.78, showing the comple-
mentation of intrinsic and extrinsic features can achieve improved re-
sults. In the present study, predictions between or among species,
using either one-to-one or leave-one-out approaches, also performed
considerably better than random guessing, but the ML methods and fea-
tures used here were insufficient to achieve results of high confidence
(i.e. ROC-AUC of ~ 1 and PR-AUC of ~ 1). However, this outcome might
reflect a large evolutionary distance between some of the taxa studied
here. Indeed, predictions among closely related species deserve detailed
and critical evaluation in the future.

Here, we elected to include features that can be extracted directly
from the protein sequences without performing sequence similarity
comparisons or using any extrinsic data. Feature selection procedures
identified the best predictors for individual data sets, markedly reducing
ML model complexity, while maximising prediction performance. In
agreement with previous studies, we showed that ElasticNet and En-
semble SPLS methods were highly effective at selecting the best predic-
tive features [37]. An alternative feature selection and reduction method
commonly used in ML-based essentiality studies is LASSO [27,29,40];
this method was not used herein, as it tends to discard variables unnec-
essarily [41]. A comparison of the many, alternative methods and ap-
proaches for feature selection [42] could be evaluated in future
systematic studies - this was not within the scope of the present
study. Results from the comparison of selected protein features for indi-
vidual data sets revealed that gene essentiality appears to be partly
species-specific, because no feature was shared among all data sets.
Conversely, by comparing the features among the leave-one-out data
sets, more features were selected from individual data sets, and many
of them were shared among data sets, suggesting that, although the
ML model complexity increased, there are protein features that might
be generic predictors of essential genes in eukaryotes. In this study,
we selected features using intrinsic protein sequence characteristics,
but in the future, nucleotide sequence features and extrinsic features,
such as expression levels, gene ontology and network centrality

measures [22,43,44], might be included to improve the performance
of our models. From a biological perspective, it is challenging to infer
the reasons why certain sequence features are predictors of essentiality,
although a previous investigation [45] has shown the relationship be-
tween codon or amino acid usage and increased gene expression as
well as translation efficiency. The present study presents the most pre-
dictive protein features for each species and data set. Understanding
why these features are associated with gene essentiality remains un-
clear, and warrants further investigation.

Previous large-scale orthology analyses have shown that only a
small number of genes is conserved across the Tree of Life, meaning
that many essential genes can be specific to each species [46]. Here,
we showed that most essential genes were inferred to be species-
specific or were shared only by closely-related species, indicating chal-
lenges associated with homology-based comparisons. This information
suggests that the sets of essential genes of distantly related species ap-
pear to be markedly different, and that essential orthologs comprise a
small fraction of all orthologous genes. Although this finding contradicts
previous assumptions [47], it should be considered that the methods
used by the OMA Orthology database to define orthologs appear to be
highly stringent, which may inhibit the detection of evolutionarily dis-
tant orthologs [48]. However, the present results indicate the potential
limitations of sequence alignment approaches to define orthologs be-
tween or among distantly related species, with implications for gene es-
sentiality studies. In a previous investigation of essential genes, it had
been observed that orthologs of genes linked to lethality in at least
one model species were more likely to be essential in another [49].
However, essentiality predictions based solely on orthology can impose
challenges on the identification of non-conserved essential genes.
Moreover, the assumption that orthologs have the same function may
not always be true [50]. These inferences may also have implications
for studies that use orthology data to identify features for ML-training
and -predictions. By evaluating functional enrichment of essential
genes in each data set, we established that molecular functions usually
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related to conserved cellular functions such as DNA and RNA processing,
but the top-five enriched functions did not include most essential genes
of a respective data set. This information shows that other unknown
functions might be enriched, or that there is a weak relationship be-
tween essential genes and functional enrichment. However, the variable
results found among species may be, to some extent, a consequence of
incomplete or inconsistent essentiality data curation.

The nature and extent of curation of functional genomics data
and criteria used to predict essential genes can affect both ML- and
orthology-based approaches. In this study, many genes of a species
were excluded from analysis, either because functional genomics data
were lacking and/or because there were multiple conflicting entries in
OGEE. This aspect affected ML performance and evaluation as well as
the essential gene orthology analysis. Data sets Sc_OGEE and Sp_OGEE
contained most genes of their respective species and were the most
complete data sets, whereas the other data sets contained many genes
that remain to be validated functionally and/or curated regarding essen-
tiality before being integrated into OGEE.

When defining essential genes from phenotypic data in the curation
process, it is important to make decisions about genes that exhibit var-
iable essentiality, which can impact subsequent analysis using ML ap-
proaches. To highlight the implications of incomplete and inconsistent
gene essentiality curations, we elected to include two additional curated
data sets [29,32] external to OGEE and showed that subsequent analyses
were affected. For instance, Mm_KABIR is based on the analysis of mul-
tiple functional genomics studies available in the best-curated mouse
database (MGD) [32], which contrasts with Mm_OGEE - a data set de-
rived from a single large-scale study. We showed that essential genes
in Mm_OGEE are almost entirely within Mm_KABIR, which means that
there is consistency between these data sets. Conversely, the number
of essential genes in Hs_OGEE was markedly lower, because it excluded
“inconsistent” data from the OGEE database, thus sharing only a small
number of orthologs with Hs_GUO, which had undergone a more thor-
ough curation of data derived from functional genomics in cancer cell
lines. The similarities and differences observed among curations for
the same species are also reflected in ML performances using these
data sets. Moreover, Ce_OGEE data is derived from a single, large-scale
study, although many genes have been tested by multiple studies and
have been available in WormBase [10]. Data sets Dm_OGEE and
Sc_OGEE were each derived from two studies, Sp_OGEE from seven,
and the human data sets from 18 studies [16,31].

Currently, the same eukaryotic essentiality-related data are present
in both OGEE [16] and DEG [14]. Clearly, a wealth of gene essentiality in-
formation derived from multiple functional genomics investigations is
accessible from species-specific databases [9-11] and remains to be in-
tegrated into available essentiality databases. However, given the chal-
lenges associated with inconsistent data by multiple experiments and
the lack of standardised essentiality annotations among these data-
bases, the present work did not involve data curation. When curating
functional genomics data for gene essentiality [51], there are multiple
aspects that need to be considered. For instance, in unicellular organ-
isms, the essentiality of a gene is defined by its influence on organismal
growth. In multicellular organisms, genes can be essential/non-essential
for embryonic development, for other developmental stages or for re-
production. Essentiality in cell culture (in vitro) or in specific tissues
may not translate into the lethality of a whole organism (in vivo), and
different functional genomics methods might identify distinct sets of es-
sential genes. Some genes are essential or non-essential in or to an or-
ganism, depending on certain genetic and environmental backgrounds
or conditions. This context needs careful consideration. Moreover,
some functional genomics methods can more effectively block the activ-
ity of genes than others [52]. Indeed, functional genomics studies using
multiple methods should be undertaken to verify the specificity of gene
essentiality and exclude off-target effects and technical biases [53]. In
addition, some organisms are more amenable to functional genomic ex-
perimentation than others [54,55]. For instance, it has been shown that

the characterisation of essential genes by RNAi and CRISPR may not al-
ways concur, but a combination of results from multiple methods can
improve performance [49]. A recent study compared functional geno-
mics data for human cell lines using mouse knockout genes, highlight-
ing that different biological systems and experimental methods may
lead to discrepant inferences or conclusions, and should be compared
with caution [56]. Therefore, gene essentiality investigations by multi-
ple studies and functional genomics platforms, followed by careful
curation for essentiality are central to identifying essential and
non-essential genes, in addition to genes that are essential under
specific experimental/developmental/environmental conditions (i.e.
“conditionally essential” genes). It should also be considered that essen-
tiality might be a quantitative trait rather than a simplistic essential/
non-essential classification, which would require standard methods
for quantification [57]. Considering all of these aspects, criteria for the
inclusion/exclusion of genes to train ML models for essentiality predic-
tions should be defined with caution, depending on the purpose of a
study.

Clearly, much remains to be discovered regarding the character-
istics that underpin gene essentiality in eukaryotic organisms, and
to what extent these characteristics can be explored to predict es-
sential genes within and among species. The current and future
availability of genomic data and functional genomics platforms for
non-model organisms should allow the discovery of common and
specific essential genes, ultimately contributing to our understand-
ing of eukaryotic cells and organisms. Whether there is a minimum
set of genes that is essential for the survival of a cell is one of the
most fundamental and unresolved questions in biology [58-60]. If
there is a minimum set, it would be present and essential to all or
most cells and organisms. Although comparative analyses of homo-
logs/orthologs are often used to predict conserved essential genes,
which, in most cases, share similar functions in different species
[48], computational methods using ML approaches and feature se-
lection technologies should now facilitate explorations of large
data sets, enabling the prioritisation of essential gene candidates
for functional genomic verification. Rigorous and consistent curation
of essentiality information from functional genomics data are
needed for both orthology- and ML-based approaches, and adequate
consideration needs to be given to the essential roles of genes in dif-
ferent cell types, tissues, developmental stages and environments,
and their characterisation in different experimental platforms, both
in vitro and in vivo.

5. Conclusion

We believe that the present study provides a basis for essential gene
predictions using ML approaches, which can be extended to include
other intrinsic or extrinsic features, and for evaluating other ML
methods such as deep-learning [61]. We share the source code for the
systematic analysis used in our study with the scientific community
and suggest that future work should focus on identifying novel features
and improving ML approaches to enhance the prediction of essentiality.
We are confident that predictions, experimental validation and compar-
ative analysis of essential genes will contribute to understanding the bi-
ology and evolution of eukaryotes.
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