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Ventromedial Prefrontal Cortex Tracks Multiple
Environmental Variables during Search

Priyanka S. Mehta,' Jiaxin Cindy Tu,' Giuliana A. LoConte,! Meghan C. Pesce,? and “Benjamin Y. Hayden'
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To make efficient foraging decisions, we must combine information about the values of available options with nonvalue information.
Some accounts of ventromedial PFC (vmPFC) suggest that it has a narrow role limited to evaluating immediately available options. We
examined responses of neurons in area 14 (a putative macaque homolog of human vmPFC) as 2 male macaques performed a novel
foraging search task. Although many neurons encoded the values of immediately available offers, they also independently encoded
several other variables that influence choice, but that are conceptually distinct from offer value. These variables include average reward
rate, number of offers viewed per trial, previous offer values, previous outcome sizes, and the locations of the currently attended offer. We
conclude that, rather than serving as specialized economic value center, vmPFC plays a broad role in integrating relevant environmental

information to drive foraging decisions.
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ignificance Statement

economic decisions.

Decision makers must often choose whether to take an immediately available option or continue to search for a better one. We
hypothesized that this process, which is integral to foraging theory, leaves neural signatures in the brain region ventromedial PFC.
Subjects performed a novel foraging task in which they searched through differently valued options and attempted to balance their
reward threshold with various time costs. We found that neurons not only encode the values of immediately available offers, but
multiplexed these with environmental variables, including reward rate, number of offers viewed, previous offer values, and spatial
information. We conclude that vmPFC plays a rich role in encoding and integrating multiple foraging-related variables during
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Introduction

Foragers typically encounter prey stochastically and must decide
whether to pursue them or continue searching for superior ones
(Stephens and Krebs, 1986). Deciding whether to pursue a prey
or bypass it requires identifying its value (i.e., the value of the
immediately available option), but also contemplating the
broader context of other variables that influence the expected
value of moving on. Such variables include the risk and cost of
pursuit, state variables (such as hunger) that change the subjec-
tive reward value, information that predicts the delay to and qual-
ity of the next reward encountered, and the availability of
information which can improve later decisions (Daw et al., 20065
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Pearson et al., 2009; Kolling et al., 2012, 2014; Hills et al., 2015).
Moreover, the decision-maker needs to not just decide, but act.
Many approaches to modeling choice presume that action selec-
tion is divorced from core evaluative processes (Rangel et al.,
2008; Padoa-Schioppa, 2011; Levy and Glimcher, 2012; Chen and
Stuphorn, 2015). However, some recent work suggests that ac-
tion selection cannot be dissociated from evaluation and com-
parison (Cisek and Kalaska, 2010; Pezzulo and Cisek, 2016;
Hayden and Moreno-Bote, 2018). We will use the term “environ-
mental variables” to refer to parameters that are conceptually
distinct from the value of the encountered prey but that must be
combined with it to determine choice and action.

Because the need to forage has been a driving force in the
evolution of brain structure and function, understanding the
neural basis of foraging decisions is an important goal (Wise et
al., 1996; Passingham and Wise, 2012; Calhoun and Hayden,
2015; Hayden, 2018; Mobbs et al., 2018). An important foraging-
related region is the ventromedial PFC (vmPFC), which appears
to assign values to available options (Boorman et al., 2009, 2013;
Kable and Glimcher, 2009; Wunderlich et al., 2009; Lim et al.,
2011; Kolling et al., 2012). This proposed role is consistent with
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its putative role as derived from neuroeconomic studies (Rush-
worth et al., 2011; Levy and Glimcher, 2012; Monosov and Hiko-
saka, 2012; Bartra et al., 2013; Strait et al., 2014). Specifically, an
emerging consensus holds that vmPFC is critical and specialized
for signaling the values of immediately available offers.

However, the status of vmPFC is contentious (Delgado et al.,
2016). It is not clear whether it plays a broader role in choice
beyond computing immediate offer values. Indeed, direct tests
indicate that human vmPFC hemodynamic activity correlates
with economic decision-making variables, whereas dACC, but
not vimPFC, encodes environmental variables, such as the cost
and value of search (Kolling et al., 2012). This immediate value
view is also consistent with self-control literature showing that
vmPFC encodes immediate values of offers (Kable and Glimcher,
2007; Hare et al., 2009; Smith et al., 2010).

Other evidence suggests a more integrative role for vmPFC:
that its responses track multiple state and cognitive variables that
are conceptually distinct from immediately available value (e.g.,
Gusnard and Raichle, 2001; Bouret and Richmond, 2010; Mono-
sov and Hikosaka, 2012). Likewise, there is at least some evidence
that vmPFC carries a modest amount of motor-related spatial infor-
mation in simple binary choice tasks (Strait et al., 2016). We there-
fore hypothesized that vmPFC plays a role in guiding foraging
decisions that goes beyond computing the values of immediately
available offers by encoding a variety of additional environmental
variables.

We examined responses of neurons in area 14, a presumed
macaque homolog of human vmPFC (Mars et al., 2016). The best
name for this region is currently unclear, for several reasons.
First, the specific macaque homolog of human vmPFC is not fully
known, nor is the microstructure of the vmPFC in humans fully
elucidated. Most importantly, our recording site, within area 14,
probably does not cover the entirety of the region homologous to
human vmPFC, which may also include at least parts of areas 10
and 32. Second, this homology to primates has not yet been uni-
versally adopted, although we believe that Mars et al. (2016) have
made the strongest case so far. Third, the primate ventromedial
network is large and heterogeneous (Ongur and Price, 2000).
Nonetheless, area 14 is likely a central player in the region homol-
ogous to human vmPFC (Mars et al., 2016). We will continue to
use the term vimPFC, as we have in our past studies of this region
(Strait et al., 2014, 2016; Azab and Hayden, 2017), with the un-
derstanding that a more precise functional name is wanting, and
that we may only really be examining one subregion of the area
homologous to human vmPFC.

On each trial of our novel search task, macaques were pre-
sented with an array of obscured offers randomly positioned on a
monitor. Revealing an offer’s value required a fixed time cost,
after which subjects could pay an additional time cost to obtain
the reward. Although neurons encoded offer values, these were
multiplexed with information, including the value of the current
and previous offers, reward rate, and spatial information. These
results indicate that encoding immediate offer value is not a spe-
cialized function of vmPFC, but is just one of several variables
that it tracks, and suggest it plays a rich role in influencing forag-
ing decisions.

Materials and Methods

All procedures were designed and conducted in compliance with the
Public Health Service’s Guide for the care and use of animals and approved
by the University Committee on Animal Resources at the University of
Rochester. Subjects were 2 male rhesus macaques (Macaca mulatta: Sub-
ject J, age 10 years; Subject T, age 5 years). We used a small titanium
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prosthesis to maintain head position. Training consisted of habituating
animals to laboratory conditions and then to perform oculomotor tasks
for liquid reward. A Cilux recording chamber (Crist Instruments) was
placed over the vmPFC. Position was verified by MRI with the aid of a
Brainsight system (Rogue Research). After all procedures, animals re-
ceived appropriate analgesics and antibiotics. Throughout all sessions,
the chamber was kept sterile with regular washes and sealed with sterile
caps.

Recording site. All recordings were performed at approximately the
same time of day, between 10:00 A.M. and 3:00 P.M. We approached
vmPFC through a standard recording grid (Crist Instruments). We de-
fined vmPFC according to the Paxinos atlas (Paxinos et al., 2000).
Roughly, we recorded from an ROI lying within the coronal planes situ-
ated between 42 and 31 mm rostral to interaural plane, the horizontal
planes situated between 0 and 7 mm from the brain’s ventral surface, and
the sagittal planes between 0 and 7 mm from medial wall. This region falls
within the boundaries of area 14 according to the atlas. We used our
Brainsight system to confirm recording location before each session with
structural magnetic resonance images taken before the experiment. Neu-
roimaging was performed at the Rochester Center for Brain Imaging, on
a3T MAGNETOM Trio Tim (Siemens) using 0.5 mm voxels. To further
confirm recording locations, we listened for characteristic sounds of
white and gray matter during recording. These matched the loci indi-
cated by the Brainsight system in all cases.

Electrophysiological techniques, eye tracking, and reward delivery. All
methods used have been described previously and are summarized here
(Strait et al., 2014). A microdrive (NAN Instruments) was used to lower
single electrodes (Frederick Haer, impedance range 0.7-5.5 M()) until
waveforms of between one and four neurons were isolated. Individual
action potentials were isolated on a Plexon system. We only selected
neurons based on their isolation quality, never based on task-related
response properties. All collected neurons for which we managed to ob-
tain at least 300 trials were analyzed. In practice, 86% of neurons had
>500 trials (this was our recording target each day).

An infrared eye-monitoring camera system (SR Research) sampled eye
position at 1000 Hz, and computer running MATLAB (The MathWorks)
with Psychtoolbox and Eyelink Toolbox controlled the task presentation.
Visual stimuli were colored diamonds and rectangles on a computer
monitor placed 60 cm from the animal and centered on its eyes. We used
a standard solenoid valve to control the duration of juice delivery, and
established and confirmed the relationship between solenoid open time
and juice volume before, during, and after recording.

Experimental design. Subjects performed a diet-search task (see Fig. 1)
that is a conceptual extension of previous foraging tasks we have devel-
oped. Previous training history for these subjects included two types of
foraging tasks (Blanchard and Hayden, 2015; Blanchard et al., 2015),
intertemporal choice tasks (Hayden, 2016), two types of gambling tasks
(Strait et al., 2014; Azab and Hayden, 2017), attentional tasks (similar to
those in Hayden and Gallant, 2013), and two types of reward-based
decision tasks (Sleezer et al., 2016; Wang and Hayden, 2017).

To begin each trial, the animal fixated on a central dot (50 ms), after
which either four or seven white diamond shapes appeared in randomly
selected nonoverlapping positions on the screen. The number of offers
per trial, either 4 or 7, was determined randomly on each trial (50% of
trials for each of the two numbers). Each diamond was 200 pixels tall and
100 pixels wide. Continuous fixation on one diamond for 400 ms caused
it to disappear and reveal a reward offer. Offers were orange bars, par-
tially filled in to indicate the value of the riskless offered reward. The
percentage of the offer bar that was filled in corresponded to the offer
value in terms of percentage of the maximum value possible per offer
(e.g., an offer bar that was 10% orange and 90% black would indicate an
offer worth 10% of the maximum value; 20 ul for Subject T and 23 ul for
Subject J). Reward values for each offer were generated randomly for
each offer using a uniform continuous distribution ranging from 0% to
100% of the maximum possible reward value for the individual subject
(i.e., continuously varying rewards were generated, but in practice con-
tinuity was limited by pixel size). The 200 pixel height of the bars allows
200 steps between 0 and the maximum reward.
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The subject could freely search through the diamonds in any order and
could accept any offer. Acceptance led to the end of the trial; rejection led
to a return to the initial state (viewing an array of diamonds). To accept
the offered reward, the animal had to maintain fixation on the offer for
300 ms, after which the screen would go black and the offered amount of
liquid reward would be immediately delivered. Thus, selecting a given
offer required 700 ms: 400 ms to unmask it and an additional 300 ms to
obtain it. If the subject broke fixation on the reward stimulus at any point
between 0 and 300 ms from the initial reveal, the reward stimulus would
disappear and the diamond would return in its place (a “rejection” of the
offer). The subject could then resume freely inspecting other offers.
There was no limit to how many offers a subject could inspect, nor to how
many times a subject could inspect a particular offer. The trial only ended
(and a liquid reward was only delivered) after the subject accepted an
offer. Reward delivery was followed by a 4 s intertrial interval.

Because the experiment was conducted partially using one computer
and partially another, the plot of diamond locations (see Fig. 1B) was
generated by translating the pixel coordinates of diamonds on each
screen into proportions of the total pixel length and width of the screen.

We computed behavioral threshold by plotting all encountered offer
values (x axis) against the percentage of times that that particular offer
size was selected when encountered ( y axis), and fitting a sigmoidal curve
to the data. The behavioral threshold is the x value (offer size) corre-
sponding to the inflection point of the sigmoidal curve. To compute
thresholds for subsets of the data (e.g., for trials for which the previous
offer was between 0.1 and 0.2), we only included those trials when fitting
the sigmoidal.

Reward rate. We calculated reward rate at a particular offer by finding
the average reward obtained over the past # trials. For example, to calcu-
late reward rate over the past 10 trials at trial 42 (Offer 1), we first
summed all rewards obtained (i.e., only the offer chosen each trial, not all
offers viewed) over trials 31-40, and divided this value by 10 to get a
“reward-per-trial” value. We excluded the outcome of the immediately
preceding trial because we found evidence that vmPFC encodes this
value, and we wanted to be certain that reward rate effects are not simply
due to previous outcome encoding. We also excluded all trials with less
than n preceding trials; in the example above, we would only begin cal-
culating reward rate at trial 12 (calculating reward rate over trials 1-10).

To assess encoding of a recency-weighted reward rate, we first used the
subjects’ behavioral data to perform a logistic regression of the current
offer and each of the most recent 10 previous outcomes against choice.
This produced 11 regression weights: one for the current offer, and one
for each of the previous outcomes stretching back 10 trials. We then fitan
exponential decay curve to the regression coefficients for each of the 10
previous outcomes, and used the values predicted by this curve to gen-
erate weights for each previous outcome. To compute a weighted-
average reward rate for the past 10 trials, we multiplied the outcome of
each previous trial by its weight, then took the sum of these 10 values.

Statistical analysis for physiology. Peristimulus time histograms
(PSTHs) were constructed by aligning spike rasters to the offer reveal and
averaging firing rates across multiple trials. Firing rates were calculated in
10 ms bins but were mostly analyzed in longer (500 ms) epochs. Firing
rates were normalized (where indicated) by subtracting the mean and
dividing by the SD of the entire neuron’s PSTH. We chose analysis ep-
ochs before data collection began, to reduce the likelihood of p-hacking.
The “current offer” epoch was defined as the 500 ms epoch beginning 100
ms after the offer reveal, to account for sensory processing time. This
epoch was used in previous studies of choice behavior (Strait et al., 2014,
2015; Azab and Hayden, 2017). All comparisons of firing rates over par-
ticular epochs were conducted using two-sample ¢ tests. All fractions of
modulated neurons were tested for significance using a two-sided bino-
mial test.

Types of value tuning. Positive and negatively tuned neurons were
classified by performing a regression of firing rate against value (split into
100 equally sized bins). Cells with a positive or negative regression slope
(regardless of significance) were classified as positively and negatively
tuned, respectively. To estimate monotonicity, we determined the re-
gression slope of firing rate against offer value for low values (0%—-50% of
the maximum value) and compared that with the slope for high values
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(50%-100% of the maximum value). If the sign changed (i.e., went from
positive to negative or negative to positive), we considered the cell’s
tuning to be “nonmonotonic.” According to our classification system,
the direction and monotonicity of value tuning are not mutually exclu-
sive; so of the nonmonotonic neurons, 8 were also classified as positively
tuned, and 5 of these neurons were also classified as negatively tuned.

Population analyses. We used 3 correlation analyses to assess whether
neurons encoded particular offer values (Blanchard et al., 2015; Azab and
Hayden, 2017). When regressing firing rate against the value of the cur-
rent offer over the analysis epoch, offer selection is a confound. Subjects
are more likely to choose high offers and less likely to choose low offers.
Thus, we regressed out offer selection in all regressions of the value of the
current offer against firing rate. Furthermore, fixation time is a confound
because it correlates with value. Subjects are more likely to accept high
offers, and thus more likely to fixate longer on them, due to the nature of
the task that requires subjects to fixate for 300 ms to accept an offer.
Rejected offers, which are more often of lower value, come with smaller
fixation times, as the subject must break fixation before 300 ms to reject
the offer. Thus, we regressed out fixation time as well in all regressions of
the value of the current offer against firing rate.

To assess the relationships between population encoding of current
offer value and other variables, we regressed each neuron’s firing rate
against each variable of interest to obtain a list of 2 coefficients for each
variable: one coefficient per neuron per variable. To compare neurons’
encoding of one variable versus the other, for example, current offer
value and previous offer value (see Fig. 5), we performed a Pearson
correlation between the coefficient set for current offer value and that for
previous offer value. The resulting correlation coefficient provides infor-
mation about how similarly or differently each variable is encoded by the
population.

We used a similar 3 correlation analysis to assess whether neurons
represented offer acceptance and rejection using similar coding formats
(compare Azab and Hayden, 2017). We found the regression coefficients
(i.e., the B weight) of each neuron’s normalized firing rates and the values
of accepted offers, and their normalized firing rates and the values of
rejected offers. We combined these B weights into two vectors of the
same length as the total number of neurons. Each vector indicates the
strength and direction of modulation for each neuron in response to
the offer reveal in cases where the monkey is about to accept or about to
reject the offer. We call this the population “format.” We compared
different formats by finding the Pearson correlation coefficient between
them. We then compared these distributions of correlation coefficients
to distributions that would be obtained under a chance model. For the
first set of analyses, we assume a chance model in which neurons are
purely predecisional; they do not differentiate between values according
to whether they will later be accepted or rejected. To achieve this, we
shuffle trials across these two categories at random. This chance models
achieve a permutation of the existing data, which we then use for the
same f3 correlation analysis explained above. For the second analysis, we
assume a model in which neurons are purely postdecisional; there is no
correlation between the coefficients of accepted and rejected offers. We
achieve this by comparing the true regression coefficient to 0.

Exclusion of data. When performing regressions of neural and behav-
ioral factors against the values of previous outcomes and offers, we ex-
cluded outlier data points, specifically, those that were =3 SDs away from
the mean. This number was determined before performing the analyses.
In Figure 6A, 2 points were excluded. In Figure 6D, 2 points were ex-
cluded. In Figure 6E, 4 points were excluded. In Figure 6F, 4 points were
excluded. In Figure 7B, 2 data points were excluded. The vast majority of
data points were not outliers, and were within 1 SD of the mean.

In Figure 6F (the effect of previous offer value on the strength of neural
encoding of the current offer), the error bars of 37 points have been
removed due to the fact that they are larger than the height of the plot.
This is likely due to the low number of samples used to generate these
points. These points all represent situations in which the previous offer
value was =49%. In the task, high previous offer values are rare because,
for an offer to be a “previous offer” within a trial, the subject must have
rejected it, and subjects rarely reject offers that are below their value
threshold.
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To ensure that the positive relationship we found in Figure 6F is not
only due to this large proportion of points (37%) that have large errors,
we also performed the regression without including the high-error points
(points whose error was >10) We found that the positive relationship
holds even with these values eliminated (8 = 0.6464, p < 0.001).

Quadrant location of offers. To assess neural encoding of quadrant
location of offers, we divided the screen into four equivalently sized
quadrants (top-left, top-right, bottom-left, and bottom-right). We then
performed a one-way ANOVA of the firing rate during the analysis epoch
after each offer against the quadrant that offer was in. To assess neural
encoding of whether offers were located on one-half of the screen, we
assigned each offer a value indicating either up (1) or down (0), or right
(1) or left (0). We then performed a linear regression of the firing rates
during the analysis epoch after each reveal against these 1/0 values to
produce a f3 coefficient value.

Tuning curve fitting for angular position tuning. We fit a von Mises
function to the spike count in the 400 ms diamond viewing period and
polar angle (6) relationship, with parameters g, k, 0, and c. The equation
is as follows:

spikes =g* e(k*cos(x—eﬂ)—l)/ez*k—l + ¢
Assuming Poisson firing of the neurons, the log likelihood of the von
Mises fit was calculated, and compared with that of the mean firing rate
uniform tuning curve, and the Bayesian Information Criteria (BIC) dif-
ference was calculated. Cells were considered tuned to polar angle of the
diamond viewed if BIC_vonmises > BIC_uniform.

In addition, we also directly measured the mutual information be-
tween spatial firing rate and polar angle for each neuron using the
method from Skaggs et al. (1993), following an adaptive smoothing
method from Skaggs et al. (1996). Briefly, the data were first binned into
100 X 1 vector of angle bins covering the whole 360 degrees of the field,
and then the firing rate at each point in this vector was calculated by
expandinga circle around the point until the following criterion was met:

Nopires < a/ (N*occ™r?)

where N, is the number of occupancy samples, N, ;. is the number of
spikes emitted within the circle, 7 is the radius of the circle in bins, and «
is a scaling parameter set to be 10,000. Cells are said to be significantly
tuned to position when the mutual information exceeds the 95th percen-
tile of the shuffled data.

Data and code availability statement. All data and code used during
data collection and analysis can be made available upon reasonable re-

quest to the corresponding author.

Results

Macaques are efficient foragers in a computerized search task

We examined behavior of 2 macaque subjects performing our
foraging search task (Subject J: 23,826 trials; Subject T: 20,509
trials). On each trial, the subject was presented with an array of
visually identical offers randomly positioned on the screen (Fig.
1; see Materials and Methods). Subjects could inspect offers in
any order to reveal their values and, following inspection of an
offer, could select or reject it. Rejected offers always remained
available for return and reinspection. Offers were riskless and
varied in size continuously from 0 to 230 ul (Subject J) or 0 to 200
ul (Subject T) fluid reward. Values noted below are in units of
percentage and refer to proportions of the largest amount for that
animal. Results here are combined across the 2 subjects; all major
results were replicated for each animal individually (Table 1) with
a few minor exceptions.

Each trial had either 4 or 7 offers; the two trial types were
randomly interleaved and occurred equally often. On average,
subjects inspected 1.872 offers on trials with 4 offer arrays and
2.074 offers on trials with 7 offer arrays (for the frequency with
which subjects viewed different numbers of offers per trial, see
Table 2). A strategy of strictly choosing the first offer revealed
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would have obtained 49.62% per trial. Obtained rewards were
significantly better those obtained following this basic strategy
(p <0.001, independent-samples ¢ test). Specifically, the average
reward obtained on 4 offer trials was 68.72% and on 7 offer trials
was 73.46%.

Subjects’ behavior approximated a threshold strategy (Fig.
2A). Subjects’ measured thresholds were 50.30% in the 4 option
case and 54.33% in the 7 option case. To determine optimal
thresholds, we simulated performance using a set of response
times for each task component drawn from observed behavior
(Fig. 2B). That is, we assumed that subjects’ reaction times were
unavoidable and not strategic, an approach we developed previ-
ously (Hayden et al., 2011; Blanchard and Hayden, 2014). Be-
cause evaluation of subjects’ strategies depends on each subject’s
idiosyncratic behavior, we provide individual subject data here.
For the 4 option case, the optimal threshold was 60.96% (i.e., 140
ul) for Subject J and 60.60% (121 ul) for Subject T. For the 7
option case, the optimal threshold was 63.78% (147 ul) for Sub-
jectJand 60.65% (121 ul) for Subject T. The observed thresholds
were significantly lower than the optimal ones in all 4 cases (p <
0.04 for the 4 option case for Subject T; p < 0.01 for the other
cases). Thus, in both the 4 and 7 option cases, subjects stopped
(i.e., selected an option) at a lower threshold than optimal. None-
theless, based on these numbers, subjects harvested ~95% of the
intake of the optimal chooser with the same reaction time con-
straints. Together, these results indicate that subjects adopted
nearly rate-maximizing thresholds.

vmPFC neurons signal immediate offer value

We recorded responses of 122 neurons in area 14 (n = 70 in
SubjectJ and n = 52 in Subject T). We collected an average of 523
trials per neuron. We primarily focused on an analysis epoch of
100—600 ms after the time at which the offer was revealed (“re-
veal”). We chose this epoch before data collection began because
we used it in our previous studies of this and similar regions.
Using an a priori defined epoch reduces the chance of p-hacking
(Strait et al., 2014, 2016; Azab and Hayden, 2017, 2018).

Figure 3A shows the responses of an example neuron in this
task aligned to the reveal, separated by high and low value offers.
Responses of this neuron depended on the value of the presented
offer (16.52 spikes/s for high values vs 11.78 spikes/s for low
values, p < 0.001, independent-samples ¢ test). To examine pop-
ulation encoding of offer value, we performed a regression of
firing rate against current offer value; we regressed out time spent
fixating on each offer and whether or not that offer was chosen
(see Materials and Methods). Figure 3B shows the proportion of
neurons in the population significantly encoding offer values.
Responses of 33.61% of neurons depended linearly on the offer
value over the focal analysis epoch. This proportion is signifi-
cantly higher than the proportion found in our previous study
(Strait et al., 2014) where we reported 16.03% of cells encoded
current value (x> = 11.68, p < 0.001). This difference indicates
that value in this task was more effective at driving responses than
in our previous task.

Individual cells’ responses to value took a variety of forms:
some linear and some nonlinear. We classified the relationship
between firing rate and value for each cell into one of four cate-
gories: “positive,” “negative,” “nonmonotonic,” and “none” (see
Fig. 4; some nonmonotonic cells can also have an overall positive
or negative trend; see Materials and Methods). We found that
11.48% of cells (n = 14 of 122) demonstrated a significantly
positive relationship between firing rate and current offer value,
11.48% (n = 14 of 122) a significantly negative relationship, and
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Our novel diet-search task. A, Schematic of task. Subjects freely search through a display of diamonds on a computer monitor. They can pay a 400 ms time cost to inspect (reveal) the

offer values hidden behind any diamond. Maintaining fixation on a revealed offer for 300 ms more results in reward delivery; breaking fixation before 300 msis up returns the subject to free search.
Bottom, Example offer sizes. Percentage indicates percentage of subject’s maximum value per offer. B, Plot of all diamond positions for all trials superimposed on image of screen (for details, see
Materials and Methods). , lllustration of recording position. An example coronal slice of a structural MRI of Subject T with area 14 (vmPFC) superimposed in purple. Recording sites were distributed
evenly throughout this region. D, Trial durations for 4 option and 7 option trials. Scalloped patterns reflect choices of each sequentially fixated option.

40.16% (n = 49 of 122) cells a nonmonotonic relationship (these
purely nonmonotonic neurons are not part of the 33.61% of
neurons that linearly encode value). Additionally, we found that
6.56% of cells (n = 8 of 122) demonstrated a nonmonotonic
relationship with an overall significantly positive trend, and
4.10% of cells (n = 5 of 122) demonstrated a nonmonotonic
relationship with an overall significantly negative trend. Finally,
26.23% of cells (n = 32 of 122) had no discernable relationship
between firing rate and offer value.

Encoding of categorical choice
It is possible that encoding of pure value of an offer is confounded
by encoding of categorical choice: that is, a cell might fire more in

response to a high offer because the offer is high, or because the
subject is likely to choose that offer. If the neuron signals choose
versus reject, but is otherwise indifferent to value, this will lead to
a spurious correlation. For this reason, in the analyses above, we
regressed out choice in all our regressions where offer value is a
regressor.

To gain more insight into this process, we performed an ad-
ditional analysis. If vmPFC were simply encoding categorically
whether an offer is accepted or rejected (e.g., if its signal is “post-
decisional,” after the subject makes the behavioral decision to
accept or reject), there would be no reason to expect any similar-
ity in how the values of accepted and rejected offers are encoded.
That is, the regression coefficients from a regression of accepted
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Table 1. Results of various analyses broken down by individual subject
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Subject J Subject T Combined
Macaques are efficient foragers in a computerized search task
No. of trials 23,826 20,509 44,335
Offers viewed per 4 offer trial 1.803 1.953 1.8722
Offers viewed per 7 offer trial 1.9996 2.1605 2.0742
Average reward obtained on 4 offer trials 69.46% 67.87% 68.72%
Average reward obtained on 7 offer trials 73.20% 73.75% 73.46%
Behavioral threshold across all trials 49.26% 56.77% 52.56%
Behavioral threshold for 4 offer trials 46.77% 55.06% 50.30%
Behavioral threshold for 7 offer trials 50.99% 58.29% 54.33%
vmPFC neurons signal values of offers
Percent of neurons significantly encoding current offer value 40.00% 25.00% 33.61%
vmPFC neurons encode environmental variables previous outcome
Beta correlation coefficient of behavioral threshold against previous outcome value (p value) 0.0372 (0.2030) 0.1292 (<€0.001) 0.0602 (<<0.001)
Percent of neurons significantly encoding previous outcome value (p value) 27.14% (<<0.001) 17.31% (0.0010) 22.95% (<<0.001)
Beta correlation coefficient of firing rate against previous outcome value (p value) —0.1415 (0.6039) 0.7718 (0.0042) —0.4974 (0.0377)
Previous offer
Beta correlation coefficient of behavioral threshold against previous offer value (p value) 0.1243 (0.1202) 0.1515 (<0.001) 0.1073 (0.0019)
Percent of neurons significantly encoding previous offer value ( p value) 24.29 (<0.001) 5.77 (1.000) 16.39 (<<0.001)
Beta correlation coefficient of firing rate against previous offer value (p value) 7.334(<0.001) 0.2565 (0.0736) 4.391(<0.001)
View number
Beta correlation coefficient of behavioral threshold against view number (p value) —0.04849 (0.0063) —0.0267 (<0.001) —0.0346 (<0.001)
Percent of neurons significantly encoding view number (p value) 42.86% (<0.001) 19.23 (<€0.001) 32.79 (<0.001)
Beta correlation coefficient of firing rate against view number (p value) 0.02553 (0.00895) 0.03073 (0.03272) 0.02775 (0.017549)
Reward rate
Beta correlation coefficient of behavioral threshold against reward rate of past 10 trials (p value) 0.4708 (<0.001) 0.3133 (<0.001) 0.2361 (<<0.001)
Percent of neurons significantly encoding reward rate of past 10 trials (p value) 34.29 (<0.001) 30.77 (<0.001) 0.3279 (<0.001)
Spatial positions of offers
Percentage of neurons encoding current offer quadrant position 30.00% 11.54% 22.13%
Percentage of neurons encoding current offer left-right position 18.57% 19.23% 18.85%
Percentage of neurons encoding current offer up-down 22.86% 1.92% 13.93%

Table 2. Percentage of trials in which subjects viewed a total of different numbers
(n) of offers”

n %

47.03
25.42
13.73
7.209
3.263
1.46
0.7394
0.4
0.2281
10+ 0.5082

“If n offers have been viewed, a revisit to a previously viewed offer counts as a new “view” (e.g.,n + 1).

0 N~ W N =

o

offer values against firing rate could in principle be totally uncor-
related with the regression coefficients from a regression of re-
jected offer values against firing rate (see Materials and Methods)
(Azab and Hayden, 2017). On the other hand, if the code in
vmPFC is predecisional, then neurons would necessarily have to
use the same code for soon-to-be-accepted and soon-to-be-rejected
offers (if the code were different, the neurons would have access to
the outcome of the choice). Thus, qualitative changes in ensemble
tuning functions for accepted and rejected offers can provide insight
into the status of vmPFC relative to choice processes.

We find that the correlation between regression coefficients of
accepted and rejected offers is 0.2806 (Fig. 5). This value is sig-
nificantly different from 0 (p = 0.002). Therefore, there is some
degree of similarity in how accepted and rejected offers are en-
coded, consistent with a predecisional role for vmPFC. We can
also use a cross-validation procedure to estimate the correlation

that would be observed with perfectly correlated variables, given
the noise properties of our dataset (Azab and Hayden, 2017). This
analysis shows that 0.2806 is lower than the ceiling estimate of
perfect correlation (i.e., randomly reshuffled value), which was
0.8460 (see Materials and Methods, p < 0.001). These results
suggest that vmPFC encoding of value is neither purely postdeci-
sional nor purely predecisional; it has properties of both.

vmPFC neurons encode other environmental variables

We next investigated encoding of environmental variables, pa-
rameters that are distinct from the immediate offer value, but that
influence the choice made. All results presented below exclude
outliers (see Materials and Methods).

Previous outcome

In search, as in many other contexts, the value of the background
is determined by the environmental richness. We estimated our
subjects’ accept-reject thresholds based on their aggregate behav-
ior (see Materials and Methods). For both subjects, threshold on
the current trial increased with the size of the previous trial’s
outcome (3 = 0.0602, p < 0.001; Fig. 6A; significantly in 1 sub-
ject, positive trend in the other). This suboptimal behavior is
consistent with subjects having an erroneous belief that recent
good outcomes reflect changing environmental richness (as with
a hot hand fallacy) (Blanchard et al., 2014).

Neurons in vimPFC encoded the value of the previous trial’s
outcome. Figure 6B shows the proportion of neurons in the pop-
ulation encoding previous outcome values. Responses of 22.95%
of neurons (n = 28 of 122) changed during the choice epoch
depending on previous outcome value (linear regression, a =
0.05). This proportion is significantly greater than expected by
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chance (i.e., 5%, p < 0.001, two-sided binomial test). This anal-  encoding of the current offer (8 = —0.4974, p = 0.0377; Fig. 6D;

ysis was performed across all trials (no exclusions). significant in 1 subject, with a negative trend in the other; see Table 1).
There is some evidence that previous outcome changes the

strength of value coding as well. Specifically, we regressed the firing ~ Previous offer

rate against offer value for different previous outcome sizes and  In heterogeneous environments, the value of the previous offers

found that the previous trial’s outcome negatively affected the value  so far encountered within a trial provides information about the
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richness of the current environment. In
our task, where offers are generated inde-
pendently, the optimal strategy is to ig-
nore previous offers. However, we found
evidence that subjects incorporate the
value of the previous offer into their strat-
egy when considering the current offer.
Specifically, we found a positive relation-
ship between the size of previous offers
and threshold for the current offer (8 =
0.1073, p = 0.0019; Fig. 6E; significantin 1
subject and positive trend in the other).

The brain also encodes the value of the
previous offer when evaluating the cur-
rent offer. To examine population encod-
ing of offer value, we regressed firing rate
against previous offer value. Previous of-
fer affected responses of 16.39% (n = 20
of 122) of neurons (Fig. 6F; Table 1). This
proportion is significantly greater than
chance (p < 0.001, two-sided binomial
test). Larger previous offer increased the
neural encoding strength of the current
offer (B = 4.391, p < 0.001).

View number

Another environmental variable in the
task is the position of the offer in the se-
quence of available offers (regardless of
whether the subject has seen the offer al-
ready, as the subject is allowed to freely
view each offer multiple times). We per-
formed analyses on view numbers only up
to the sixth view because each value be-
yond 6 constitutes <1% of the data (Table
2). View number changed subjects’ be-
havioral thresholds: for both subjects,
threshold for a given offer decreased with
the number of views (8 = —0.0346, p =
0.001; Fig. 7A). Because rejection occurred
with low-quality offers, view number is, in
essence, a proxy for poor within-trial envi-
ronmental richness. Neurons in vimPFC en-
coded view number: 32.79% of cells (n = 40
of 122) significantly encoded the within-
trial view number of an offer (this estimate is
conservative; we regressed out the value of
the current offer as this tends to decrease as
view number increases). This proportion is
significantly greater than chance (p < 0.001,
two-sided binomial test). Higher offer view
numbers were also associated with in-
creased value coding strength (8 = 0.0278,
p = 0.0175; Fig. 7B).

Reward rate

The brain may keep track of recent reward
rate: the values of the last several out-
comes over time (see Materials and Meth-
ods). Reward rate fluctuates over the
course of a behavioral session (Fig. 8A).
Foragers may see this measure as a proxy
for environmental richness. It should not,
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normatively, affect subjects’ behavior thresholds, but it does.
Threshold increased with the reward rate over the past 10 out-
comes (after ignoring the most recent outcome and regressing
out trial number, 8 = 0.2313, p < 0.001; Fig. 8B). We found that
32.79% (n = 40 of 122) of vimPFC neurons significantly encoded
the reward rate of the past 10 values encountered. This propor-
tion is significantly greater than chance (p < 0.001, two-sided
binomial test).

There are other ways of computing reward rate, such as using
a recency-weighted average (Constantino and Daw, 2015). In-
stead of computing reward rate as the average of the last several
values, one can compute it as a weighted average where more
recent outcomes loom larger than more distant outcomes (see
Materials and Methods). Using this method, we found that
29.51% of cells significantly encode recency-weighted reward
rate. While this result is not precisely the same as the number
computed using the other method (i.e., 32.79%), they are very
similar.

Spatial positions of current offers

Foragers make their decisions in the real world. Dealing with
spatial information is essential to foraging decisions but is con-
ceptually quite distinct from value. By using positions arrayed
randomly across the screen, we were able to measure selectivity
for saccadic position in a relatively unbiased manner. This pro-
vides information hitherto unavailable in vmPFC. Figure 9 shows
heat maps indicating the average firing associated with the gaze
position for six example neurons in our dataset. All six show
spatial selectivity. A visual inspection of our entire dataset re-
vealed that, to the extent that spatial selectivity exists, it is broad
(i.e., associated with hemifields or quadrants, similar to posterior
cingulate cortex) (Dean et al., 2004). We therefore assessed spa-
tial selectivity by splitting the task display into four quadrants
(top-right, top-left, bottom-left, bottom-right).

In our sample, 22.13% of vmpFC neurons (n = 27 of 122)
showed quadrant spatial selectivity for current gaze position (p <
0.05, one-way ANOVA; see Materials and Methods). This pro-
portion is greater than would be expected by chance (i.e., 5%; p <
0.01, two-sided binomial test). Comparing firing rate for fixation
on the left- and right-hand side of the screen, we found a similar
result: 18.85% of neurons carried left-right gaze position infor-
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mation. This proportion is also greater than chance (p < 0.01,
two-sided binomial test). Likewise, 13.93% of neurons had selec-
tivity for up-versus-down halves of the screen (also greater than
chance, p < 0.01, two-sided binomial test).

It does not appear that this spatial information came from a
separate set of neurons from the neurons that encoded value.
Instead, both variables appear to be multiplexed by a single set of
neurons. Specifically, strength of encoding of spatial information
correlated positively with strength of value encoding. Absolute
(unsigned) regression coefficients of neurons encoding whether
the current offer was on the right or left half of the screen corre-
lated significantly with absolute regression coefficients of cur-
rently viewed value (r = 0.2444, CI 0.06975-0.4046, p < 0.01).
Absolute regression coefficients of neurons encoding whether the
current offer was on the top or bottom half of the screen also
correlated significantly with absolute regression coefficients of
currently viewed value (r = 0.1938, CI 0.0167-0.3592, p =
0.0323).

Valuation of space

It is conceivable that our subjects intrinsically assign more value
to specific spatial positions and that our observed spatial tuning is
not spatial at all, but an artifact of the link between value and
space. Fortunately, due to the design of our task, any intrinsic
value that subjects assign to space is directly measurable in terms
of behavioral threshold at each spatial position. Over all behav-
ioral sessions, we find small effects of space on threshold. For
example, Subject J’s threshold for offers in the lower visual field
(48.74%) is lower than threshold for offers in the upper visual
field (51.02%). This difference is significant (p < 0.001), which is
not surprising given our very large dataset. Subject T’s threshold
for offers in the lower visual field (57.35%) is significantly greater
than threshold for offers in the upper visual field (54.35%, also
significant, p < 0.001). Despite the large dataset sizes, we do not
find corresponding effects for left/right choices: Subject J’s
thresholds for offers in the left visual field (49.82%) and right
visual field (49.18%) do not significantly differ (p = 0.1314), and
Subject T’s thresholds for offers in the left visual field (56.70%)
and right visual field (56.02%) do not significantly differ (p =
0.0797). However, we do still find spatial selectivity for left/right
choices. These findings, the lack of value difference on the vertical
dimension and the weak in magnitude (albeit significant) value
difference on the horizontal dimension, suggest that the spatial
selectivity we see is not a byproduct of differential value assign-
ment to spatial positions.

While this result is suggestive, a more sensitive test is a cell-
by-cell analysis. To assess whether valuation of offers was corre-
lated with spatial location, we next examined whether value
encoding and firing rate show a correlation associated with their
corresponding spatial locations. That is, we looked to see whether
cells adjusted the strength of their value encoding (changed the
regression coefficient of firing rate vs offer value) when those
offers were located in cells’ preferred spatial locations. We di-
vided the screen into 84 rectangular segments (a 7 X 12 grid, as in
Fig. 9). For each segment, we computed a regression coefficient
for offer value for offers located within it, as well as an average
firing rate. For each cell, we correlated these two factors. We
found that only 12.30% (n = 15 of 122) of cells had a significant
correlation (p < 0.05) between value encoding and firing rate.
That is, for most cells, the strength of value encoding was unre-
lated to spatial tuning.
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Radial measure of tuning for gaze position

To study spatial selectivity for gaze position in vmPFC with
greater precision, we next examined radial tuning functions. We
measured each neuron’s selectivity for position of current fixa-
tion relative to the center of the computer monitor (i.e., straight

ahead). We fit von Mises (circular Gaussian) distributions and
compared them with the uniform model (i.e., lack of tuning)
(Yoo etal., 2018). We also used a cosine function, which is quan-
titatively similar to a von Mises, and obtained nearly identical
results (data not shown).
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Six example neurons that demonstrate spatial selectivity. Grayscale in heatmaps represents mean firing rate (spikes/s) for each cell when offers were present within each rectangular

bin (as determined by the coordinates of the center of the offer stimulus) during the analysis epoch (100 — 600 ms after offer reveal). Bins were determined before analysis as having a width of
one-twelfth of the width of the task screen and a height of one-seventh of the height of the task screen. For display purposes, the first and last bin rows have been eliminated because no offers were
centered in those bins (or the tops or bottoms of the images would appear cutoff). Bins in which the subject did not view any offers during that cell’s session are assigned a firing rate equivalent to

mean of all the other bins.

Figure 10A shows the responses of an example neuron. During
the fixation epoch (the 400 ms before the values were revealed),
this neuron fired more strongly (5.6 spikes/s) when the subject
fixated on targets to the lower field than when subjects fixated on
targets to the rest of the field (2.9 spikes/s, t = 3.3304, p < 0.001).
This neuron’s firing rate was better fit with a von Mises function
than a uniform one, indicating that it is selective for gaze angle
(parameters = 0.6789, 64.6084, 1.4878, and 0.2327; see Materials
and Methods; BIC decrease = 23). In the population of neurons,
a large proportion (34.5%, n = 42 of 122) showed sensitivity to
gaze position. This proportion is greater than that expected by
chance (two-sided binomial test, p < 0.0001). The average effect
size (measured with BIC decrease) was 30.0 £ 50.5. A similar
proportion of neurons (36%, n = 44 of 122) was tuned to gaze

angle of the fixated diamonds using a direct measure of mutual
information between the spikes and the angle following adaptive
smoothing (method developed by Skaggs et al., 1993, 1996) (see
Materials and Methods).

We then repeated this analysis over time relative to target
onset. To gain more insight into temporal dynamics of spatial
selectivity, we used a shorter time window (sliding window of size
300 ms): sliding width of 100 ms (Fig. 10B). We found that the
incidence of gaze angle encoding rises upon fixation and then
tapers following the decision to reject an offer. We then expanded
this analysis using both past (Fig. 10C) and future (Fig. 10D) gaze
position, excluding the last and first viewed diamond in each trial
accordingly These data demonstrate that selectivity for past po-
sition is maintained weakly during fixation of the present one,



Mehta et al. @ vmPFC Tracks Multiple Environmental Variables

J. Neurosci., July 3, 2019 - 39(27):5336 -5350 + 5347

A
90
ek 120 6 60 firing rate (spikes/second)
. 6 | n=515
2 4
o 150 30
8 5
2 2
8 4
a8
= 180 0 0
® 3
2
©
= 210 330
£
E 1
240 300
0
0 180 360 270
gaze direction (°)
B current diamond position C last diamond position D next diamond position
2 fixation reveal fixation reveal 0.18 fixati
) " 04 ixation reveal
5 0.25 ) & SN CESTEN 0.16 A
¥ o \ \
2 LB\ 0.1 N\ A 0.14} v’
£ 02l AN B w2\ /s wie f
@ \ v\ 0.12}
8 J 0.08 \/ \
€ 0.15 A ¥ \ ALA /P o1 — — 1 — — |- — — =
a2 0.06 Ny TV 0.08 =
% N ¥ \ v .08t =
SO0 L — — \ o o ote
s} \/ .06} . P
c 0.04 ¥ 2 gj N A
.04} —
£ 0.05
8. 0.02 0.02}
[e]
5 0 0 0
-0.4 0 04 0 -0.4 0

time (seconds)
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offer value are not significantly correlated with those of previous outcome values but are slightly

and that selectivity for the future position begins immediately
after the present fixation ends.

Encoding for environmental variables is weakly correlated
with value encoding

We next examined how these codes related to each other. In our
sample, 71.3% of cells (n = 87 of 122) significantly encoded at
least one variable of the five variables we examine (offer value,
previous trial outcome, previous offer, view number, and reward
rate; this analysis uses only one analysis epoch to reduce the
chance of false positives). From this larger population, 28.69% of
cells (n = 35 of 122) encode exactly two variables, 17.21% of cells
(n =21 0f122) encode exactly three variables, 6.56% of cells (n =

ents for:

r previous outcome value, previous offer value, and reward rate. Regression coefficients for current
positively correlated with those of previous offer value and reward rates.

8 of 122) encode exactly four variables, and 1.64% of cells (n = 2
of 122) encode all five.

It is possible that cells whose firing rates have a positive rela-
tionship with current offer value have a negative relationship
with previous offer value. We assessed the relationship between
encoding of variables by correlating regression coefficients of fir-
ing rate versus different variables (see Materials and Methods).
First, encoding of offer value and encoding of previous outcome
are weakly and insignificantly correlated, providing no evidence
for a relationship between how cells encode current offer value
and previous trial outcome (Fig. 11). However, current offer
value encoding and previous offer value encoding are correlated
at r = 0.2568 (p = 0.004; Fig. 11), indicating that cells encode
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current offer value and the previous offer value in a slightly sim-
ilar way. Similarly, regression coefficients of offer value encoding
and reward rate encoding are positively correlated at r = 0.2086
(Fig. 11). This value is significant at p = 0.0211, indicating that
cells may also encode offer value and reward rate in a similar way.

Discussion

We examined neural responses in a putative primate homolog of
human vmPFC as macaques performed a novel 4 or 7 option
search task. A key element of the task was that subjects could stop
searching whenever they chose to, meaning that they had to trade
off the potential gain of searching against the time costs of doing
so. Unlike some other foraging tasks, the optimal strategy does
not involve a variable foreground/background comparison; in-
stead, the best strategy is to learn a single threshold and use it
consistently. Subjects’ behavior was well described by just such a
thresholding procedure: average thresholds were approximately
reward-maximizing (with a bias toward overaccepting) (com-
pare Blanchard and Hayden, 2014). Neurons strongly encoded
values of offers, thus confirming its value-related role (Rush-
worth et al., 2011; Levy and Glimcher, 2012; Bartra et al., 2013;
Clithero and Rangel, 2014). However, they also encoded two
other categories of broader environmental variables: (1) param-
eters that affected accept-reject decisions that were conceptually
distinct from immediate offer value; and (2) information about
the spatial positions of offers on the screen.

Our results have important implications about the function of
this region. The role of the vmPFC is not limited to encoding the
immediately available value of options. It clearly encodes other
factors, which we call environmental variables. We found that
several of these encoded variables (the size of the previous trial’s
outcome, the size of the previous offer within a trial, the view
number within a trial, and the reward rate over the past 10 trials)
correlate with changes in the subjects’ primary strategy during
the task. That is, subjects alter their behavioral choice thresholds
as environmental variables change. These correlations are indic-
ative of the importance of environmental variables in foraging-
based decision-making; and because we did not perform causal
manipulations, it would be interesting to investigate these rela-
tionships in greater detail. Whether these different environmen-
tal variables are considered to be different kinds of value, rather
than considering them as nonvalue factors, is a separate question
also worthy of future investigation.

Furthermore, our results relate to important fundamental de-
bates about the function of vmPFC (Delgado et al., 2016). A
major hope in neuroeconomics is to identify a single scalar value
signal (Rangel et al., 2008; Padoa-Schioppa, 2011; Levy and Glim-
cher, 2012). This signal should be one that transcends multiple
dimensions along which options can vary, and that can encode
values of categorically different types of options. Finding the neu-
ral location of this hypothesized signal has been a major goal of
neuroeconomics; a large amount of recent work (but by no
means all of it) has narrowed in on the vmPFC (Rushworth et al.,
2011; Bartra et al., 2013). However, other research casts doubt on
the existence of a pure value signal (e.g., Cisek and Kalaska, 2010;
Smith et al., 2010; Wallis and Kennerley, 2010; Vlaev et al., 2011;
Rushworth etal.,2012; Yoo and Hayden, 2018). Work in this vein
highlights the diversity of factors contributing to value-based
choices and, in some cases, the evidence that there are multiple
competing signals. Our study is consistent with recent work
indicating that vmPFC carries cognitive variables other than im-
mediate offer value (Delgado et al., 2016). For example, hemody-
namic responses in vmPFC track decisional confidence
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(Lebreton et al., 2015). They also appear to track decisional con-
flict (Shenhav et al., 2017) and memory integration (Schlichting
and Preston, 2015). Even value variables in vmPFC may not be
integrated into a coherent integrated set (Sescousse et al., 2010
Smith et al., 2010; Watson and Platt, 2012).

However, the level of integration between environmental
variables and value within vmPFC is less clear. We found small
correlations between neural encoding of current offer value and
previous offer value, as well as current offer value and reward rate.
These results provide evidence for weak integration of environ-
mental signals with value within vmPFC. On the other hand, we
found no correlation between current offer value previous out-
come value. Thus, it remains to be seen whether environmental
variables remain as disparate signals within vmPFC or are inte-
grated with pure offer value into a single scalar quantity: what we
call the “unitary value signal” theory of vmPFC function. In this
view, the major, perhaps even sole, role of vmPFC is to carry a
domain general value signal that fully incorporates all factors that
influence value (Plassmann et al., 2007; Chib et al., 2009; Kable
and Glimcher, 2009; Levy and Glimcher, 2012; Delgado et al,,
2016). This signal incorporates all information that is relevant to
choice but expressed as a single scalar quantity; vmPFC outputs
are, by this view, postevaluative. While we cannot speak to
whether this “unitary value signal” exists within vmPFC, we can
speak to the postevaluative nature of the signals within vmPFC.
Our data suggest that vimPFC carries a “mid-decisional” value
signal: current offer values that are ultimately accepted versus
those that are ultimately rejected are encoded neither perfectly
similarly nor completely differently. This places vmPFC some-
where in the middle of the decision process: it is neither com-
pletely blind to whether an offer will ultimately be accepted, nor
does it fully distinguish between accepted and rejected offers.
Thus, we do not view vinPFC as purely postevaluative. Whether
this is the case because vmPFC lacks an integrated unitary value
signal or not is an interesting question, but not the focus of our
current investigation.

The vimPFC is often classified as one of the core value regions,
or even as a site of common currency value representation. Such
representations are presumed to be amodal and thus not biased
by spatial information (Padoa-Schioppa and Assad, 2006; Rangel
and Hare, 2010; Padoa-Schioppa, 2011). The presence of clear
spatial information here, then, may be somewhat surprising. One
previous study, from our laboratory, reported spatial selectivity
in vmPFC, although the task was much simpler, tuning was
weaker there, and encoding was associated with actions and not
gaze position (Strait et al., 2016). A limitation of that study was
that spatial location may be confounded with object selectivity
(Padoa-Schioppa and Cai, 2011; Yoo et al., 2018). Our present
work gets around this problem by using new positions on each
trial so that subjects cannot readily link locations to stimuli across
trials. We thus confirm our previous finding and extend it to
more strongly quantify the effect and to demonstrate coding for
gaze position. One speculative interpretation of this result is that
vmPFC may serve as an abstract economic salience map (i.e.,asa
map of potential values in the peripersonal field).

We view foraging as a special type of economic choice that is
one for which the brain has evolved and is thus adapted (Passing-
ham and Wise, 2012; Pearson et al., 2014; Hayden, 2016, 2018).
Our task is a foraging task in the sense that it is inspired by natural
foraging problems; the choices our subjects face are explicitly
accept-reject, and the choice to accept or reject an option affects
the suite of options available on future decisions. We take the
perspective that the animal is seeking to maximize reward per
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unit time while also keeping mental effort low. One nearly opti-
mal strategy in such tasks is to choose a threshold and stick to it
regardless of recent outcomes if the decision-maker believes the
environment is potentially variable, they may adjust their strategy
in a lawful manner in response to recent outcomes. This is pre-
cisely the pattern we observe: behavior depends on both the value
on the trial and the other factors that also alter choice. We have
previously argued that laboratory tasks should be structured
around the types of decisions animals have evolved to perform
rather than types that are mathematically convenient (Pearson et
al., 2010; Hayden, 2018). The present results highlight several
benefits of doing so. First, we were able to observe stronger and
more frequent value-related coding than previous studies of this
region; we presume that the naturalness of the task make it more
efficient at driving neural responses. Second, by focusing on sin-
gle accept-reject decisions, we were able to get around ambigui-
ties associated with binary choices, and the difficult-to-measure
shifts in attention they bring (Rich and Wallis, 2016; Hayden,
2018). Third, the structure of our task brings with it a natural case
of within-trial changes in threshold, which allows us to measure
their neural correlates.

References

Azab H, Hayden BY (2017) Correlates of decisional dynamics in the dorsal
anterior cingulate cortex. PLoS Biol 15:¢2003091.

Azab H, Hayden BY (2018) Correlates of economic decisions in the dorsal
and subgenual anterior cingulate cortices. Eur ] Neurosci 47:979-993.

Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-
based meta-analysis of BOLD fMRI experiments examining neural corre-
lates of subjective value. Neuroimage 76:412—427.

Blanchard TC, Hayden BY (2014) Neurons in dorsal anterior cingulate cor-
tex signal postdecisional variables in a foraging task. ] Neurosci 34:
646—655.

Blanchard TC, Hayden BY (2015) Monkeys are more patient in a foraging
task than in a standard intertemporal choice task. PLoS One 10:e0117057.

Blanchard TC, Wilke A, Hayden BY (2014) Hot-hand bias in rhesus mon-
keys. ] Exp Psychol Anim Learn Cogn 40:280-286.

Blanchard TG, Strait CE, Hayden BY (2015) Ramping ensemble activity in
dorsal anterior cingulate neurons during persistent commitment to a
decision. ] Neurophysiol 114:2439-2449.

Boorman ED, Behrens TE, Woolrich MW, Rushworth MF (2009) How
green is the grass on the other side? Frontopolar cortex and the evidence in
favor of alternative courses of action. Neuron 62:733-743.

Boorman ED, Rushworth MF, Behrens TE (2013) Ventromedial prefrontal
and anterior cingulate cortex adopt choice and default reference frames
during sequential multi-alternative choice. ] Neurosci 33:2242-2253.

Bouret S, Richmond BJ (2010) Ventromedial and orbital prefrontal neu-
rons differentially encode internally and externally driven motivational
values in monkeys. ] Neurosci 30:8591-8601.

Calhoun AJ, Hayden BY (2015) The foraging brain. Curr Opin Behav Sci
5:24-31.

Chen X, Stuphorn V (2015) Sequential selection of economic good and ac-
tion in medial frontal cortex of macaques during value-based decisions.
Elife 4:209418.

Chib VS, Rangel A, Shimojo S, O’Doherty JP (2009) Evidence foracommon
representation of decision values for dissimilar goods in human ventro-
medial prefrontal cortex. ] Neurosci 29:12315-12320.

Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world
full of action choices. Annu Rev Neurosci 33:269-298.

Clithero JA, Rangel A (2014) Informatic parcellation of the network in-
volved in the computation of subjective value. Soc Cogn Affect Neurosci
9:1289-1302.

Constantino SM, Daw ND (2015) Learning the opportunity cost of time in
a patch-foraging task. Cogn Affect Behav Neurosci 15:837—853.

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical
substrates for exploratory decisions in humans. Nature 441:876—879.
Dean HL, Crowley JC, Platt ML (2004) Visual and saccade-related activity
in macaque posterior cingulate cortex. ] Neurophysiol 92:3056—-3068.
Delgado MR, Beer JS, Fellows LK, Huettel SA, Platt ML, Quirk GJ, Schiller D

J. Neurosci., July 3, 2019 - 39(27):5336 -5350 * 5349

(2016) Viewpoints: dialogues on the functional role of the ventromedial
prefrontal cortex. Nat Neurosci 19:1545-1552.

Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imag-
ing and the resting human brain. Nat Rev Neurosci 2:685—694.

Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making
involves modulation of the vmPFC valuation system. Science
324:646—648.

Hayden BY (2016) Time discounting and time preference in animals: a crit-
ical review. Psychonom Bull Rev 23:39-53.

Hayden BY (2018) Economic choice: the foraging perspective. Curr Opin
Behav Sci 24:1-6.

Hayden BY, Gallant JL (2013) Working memory and decision processes in
visual area V4. Front Neurosci 7:18.

Hayden BY, Moreno-Bote R (2018) A neuronal theory of sequential eco-
nomic choice. Brain Neurosci Adv 2:2398212818766675.

Hayden BY, Pearson JM, Platt ML (2011) Neuronal basis of sequential for-
aging decisions in a patchy environment. Nat Neurosci 14:933-939.

Hills TT, Todd PM, Lazer D, Redish AD, Couzin ID (2015) Exploration
versus exploitation in space, mind, and society. Trends Cogn Sci 19:
46-54.

Kable JW, Glimcher PW (2007) The neural correlates of subjective value
during intertemporal choice. Nat Neurosci 10:1625-1633.

Kable JW, Glimcher PW (2009) The neurobiology of decision: consensus
and controversy. Neuron 63:733-745.

Kolling N, Behrens TE, Mars RB, Rushworth MF (2012) Neural mecha-
nisms of foraging. Science 336:95-98.

Kolling N, Wittmann M, Rushworth MF (2014) Multiple neural mecha-
nisms of decision making and their competition under changing risk
pressure. Neuron 81:1190-1202.

Lebreton M, Abitbol R, Daunizeau J, Pessiglione M (2015) Automatic inte-
gration of confidence in the brain valuation signal. Nat Neurosci 18:
1159-1167.

Levy DJ, Glimcher PW (2012) The root of all value: a neural common cur-
rency for choice. Curr Opin Neurobiol 22:1027-1038.

Lim SL, O’Doherty JP, Rangel A (2011) The decision value computations in
the vmPFC and striatum use a relative value code that is guided by visual
attention. ] Neurosci 31:13214-13223.

Mars RB, Verhagen L, Gladwin TE, Neubert FX, Sallet ], Rushworth MF
(2016) Comparing brains by matching connectivity profiles. Neurosci
Biobehav Rev 60:90-97.

Mobbs D, Trimmer PC, Blumstein DT, Dayan P (2018) Foraging for foun-
dations in decision neuroscience: insights from ethology. Nat Rev Neu-
rosci 19:419-427.

Monosov IE, Hikosaka O (2012) Regionally distinct processing of rewards
and punishments by the primate ventromedial prefrontal cortex. J] Neu-
rosci 32:10318-10330.

Padoa-Schioppa C (2011) Neurobiology of economic choice: a good-based
model. Annu Rev Neurosci 34:333-359.

Padoa-Schioppa C, Assad JA (2006) Neurons in the orbitofrontal cortex
encode economic value. Nature 441:223-226.

Padoa-Schioppa C, Cai X (2011) The orbitofrontal cortex and the compu-
tation of subjective value: consolidated concepts and new perspectives.
Ann N'Y Acad Sci 1239:130-137.

Passingham RE, Wise SP (2012) The neurobiology of the prefrontal cortex:
anatomy, evolution, and the origin of insight, Vol 50. Oxford: Oxford UP.

Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereo-
taxic coordinates. San Diego: Academic.

Pearson JM, Hayden BY, Raghavachari S, Platt ML (2009) Neurons in pos-
terior cingulate cortex signal exploratory decisions in a dynamic multiop-
tion choice task. Curr Biol 19:1532-1537.

Pearson JM, Watson KK, Platt ML (2014) Decision making: the neuroetho-
logical turn. Neuron 82:950-965.

Pearson JM, Hayden BY, Platt ML (2010) Explicit information reduces dis-
counting behavior in monkeys. Front Psychol 1:237.

Pezzulo G, Cisek P (2016) Navigating the affordance landscape: feedback
control as a process model of behavior and cognition. Trends Cogn Sci
20:414—-424.

Plassmann H, O’Doherty J, Rangel A (2007) Orbitofrontal cortex encodes
willingness to pay in everyday economic transactions. ] Neurosci 27:
9984 -9988.

Rangel A,Hare T (2010) Neural computations associated with goal-directed
choice. Curr Opin Neurobiol 20:262-270.



5350 - J. Neurosci., July 3,2019 - 39(27):5336 -5350

Rangel A, Camerer C, Montague PR (2008) A framework for studying the
neurobiology of value-based decision making. Nat Rev Neurosci 9:545—
556.

Rich EL, Wallis JD (2016) Decoding subjective decisions from orbitofrontal
cortex. Nat Neurosci 19:973-980.

Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011)
Frontal cortex and reward-guided learning and decision-making. Neuron
70:1054-1069.

Rushworth MF, Kolling N, Sallet ], Mars RB (2012) Valuation and decision-
making in frontal cortex: one or many serial or parallel systems? Curr
Opin Neurobiol 22:946-955.

Schlichting ML, Preston AR (2015) Memory integration: neural mecha-
nisms and implications for behavior. Curr Opin Behav Sci 1:1-8.

Sescousse G, Redouté ], Dreher JC (2010) The architecture of reward value
coding in the human orbitofrontal cortex. ] Neurosci 30:13095-13104.

Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, Botvinick
MM (2017) Toward a rational and mechanistic account of mental effort.
Annu Rev Neurosci 40:99-124.

Skaggs WE, McNaughton BL, Gothard KM (1993) An information-
theoretic approach to deciphering the hippocampal code. In: Advances in
neural information processing systems, pp 1030—1037. Neural Informa-
tion Processing Systems Conference, San Francisco.

Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase
precession in hippocampal neuronal populations and the compression of
temporal sequences. Hippocampus 6:149-172.

Sleezer BJ, Castagno MD, Hayden BY (2016) Rule encoding in orbitofrontal
cortex and striatum guides selection. ] Neurosci 36:11223-11237.

Smith DV, Hayden BY, Truong TK, Song AW, Platt ML, Huettel SA (2010)
Distinct value signals in anterior and posterior ventromedial prefrontal
cortex. ] Neurosci 30:2490-2495.

Mehta et al. @ vmPFC Tracks Multiple Environmental Variables

Stephens DW, Krebs JR (1986) Foraging theory. Princeton, NJ: Princeton
UP.

Strait CE, Blanchard TC, Hayden BY (2014) Reward value comparison via
mutual inhibition in ventromedial prefrontal cortex. Neuron 82:1357—
1366.

Strait CE, Sleezer BJ, Blanchard TC, Azab H, Castagno MD, Hayden BY
(2016) Neuronal selectivity for spatial positions of offers and choices in
five reward regions. ] Neurophysiol 115:1098—1111.

Strait CE, Sleezer BJ, Hayden BY (2015) Signatures of value comparison in
ventral striatum neurons. PLoS Biol 13:€1002173.

Vlaev I, Chater N, Stewart N, Brown GD (2011) Does the brain calculate
value? Trends Cogn Sci 15:546-554.

Wallis JD, Kennerley SW (2010) Heterogeneous reward signals in prefrontal
cortex. Curr Opin Neurobiol 20:191-198.

Wang MZ, Hayden BY (2017) Reactivation of associative structure specific
outcome responses during prospective evaluation in reward-based
choices. Nat Commun 8:15821.

Watson KK, Platt ML (2012) Social signals in primate orbitofrontal cortex.
Curr Biol 22:2268 -2273.

Wise SP, Murray EA, Gerfen CR (1996) The frontal cortex-basal ganglia
system in primates. Crit Rev Neurobiol 10:3.

Wunderlich K, Rangel A, O’Doherty JP (2009) Neural computations under-
lying action-based decision making in the human brain. Proc Natl Acad
SciU S A 106:17199-17204.

Yoo SB, Hayden BY (2018) Economic choice as an untangling of options
into actions. Neuron 99:434—447.

Yoo SB, Sleezer BJ, Hayden BY (2018) Robust encoding of spatial infor-
mation in orbitofrontal cortex and striatum. ] Cogn Neurosci 30:898 —
913.



	Ventromedial Prefrontal Cortex Tracks Multiple Environmental Variables during Search
	Introduction
	Materials and Methods
	Results
	Discussion
	References


