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Brief Communications

The Developmental Switch in GABA Polarity Is Delayed in

Fragile X Mice
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Delays in synaptic and neuronal development in the cortex are key hallmarks of fragile X syndrome, a prevalent neurodevelopmental
disorder that causes intellectual disability and sensory deficits and is the most common known cause of autism. Previous studies have
demonstrated that the normal progression of plasticity and synaptic refinement during the critical period is altered in the cortex of fragile
X mice. Although the disruptions in excitatory synapses are well documented in fragile X, there is less known about inhibitory neu-
rotransmission during the critical period. GABAergic transmission plays a crucial trophic role in cortical development through its early
depolarizing action. At the end of cortical critical period, response properties of GABA transform into their mature hyperpolarizing type
due to developmental changes in intracellular chloride homeostasis. We found that the timing of the switch from depolarizing to
hyperpolarizing GABA is delayed in the cortex of fragile X mice and there is a concurrent alteration in the expression of the neuronal
chloride cotransporter NKCCI that promotes the accumulation of intracellular chloride. Disruption of the trophic effects of GABA during
cortical development could contribute to the altered trajectory of synaptic maturation in fragile X syndrome.

Introduction

Fragile X syndrome results from the loss of the fragile X mental
retardation protein (FMRP; Verkerk et al., 1991), a polyribosome-
associated RNA-binding protein that regulates the translation of
a large number of messenger RNAs, particularly those that en-
code synaptic proteins (Darnell et al., 2011). Altered trajectories
for the development and stability of synaptic connections (Bu-
reau et al., 2008; Cruz-Martin et al., 2010; Testa-Silva et al., 2012)
and shifts in the time window for synaptic plasticity have been
observed in the cortex of the mouse model of fragile X syndrome
(Fmrl ko; Harlow et al., 2010). However, in many cases, the
underlying mechanisms of these alterations remain unknown.
One possibility is that disrupted signaling by the neurotransmitter
GABA has a strong influence on cortical neuronal development.
Although there are multiple lines of evidence demonstrating that
GABAergic synaptic transmission and the expression of GABA
receptors (GABA 4Rs) are perturbed in fragile X (Paluszkiewicz et
al., 2011a) and other neurodevelopmental disorders (Coghlan et
al., 2012), this has not been linked to synaptic or neuronal devel-
opment. During early development, GABA plays a powerful
trophic role in the cortex (Represa and Ben-Ari, 2005). GABA ,R-
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mediated responses depolarize neurons, increasing their excit-
ability and triggering spikingand Ca”* entry into neurons, which
can activate a number of signaling cascades that affect cell migra-
tion, proliferation, dendritic development, and synaptogenesis
(Cellot and Cherubini, 2013). This early excitatory depolarizing
effect of GABA results from the coordinated expression of neu-
ronal chloride transporters that regulate chloride homeostasis.
The Na *-K*-Cl~ cotransporter (NKCC1) is expressed at high
levels early after birth and transports Cl ~ into neurons; during
later development, the expression of the K*-Cl ~ cotransporter
(KCC2) is elevated, which extrudes Cl~ from neurons. There-
fore, the relative ratio of the expression of these two neuronal
transporters determines the intracellular Cl~ concentration
[Cl™ ];nt and the polarity of GABA,R responses: depolarizing
when [Cl ™ ];r is high at birth and hyperpolarizing in the more
mature CNS when [Cl ™ ] is lower. Alterations in the timing of
the polarity switch may disrupt the normal trophic function of
GABA and contribute to the delayed maturation of glutamatergic
synapses in the cortex of Fnrl ko mice. Here, we found that the
normal progression of the chloride reversal potential (E,.) to
more hyperpolarized potentials during the first and second post-
natal week was delayed in cortical neurons of FmrI ko mice. The
maintenance of a relatively depolarized E,. was correlated with
increased expression of NKCC1 at the end of the critical period.
These results represent a novel finding of a disruption that will
affect the change in GABA transmission polarity during early
development, which in turn could affect neuronal development
in the cortex of Fmrl ko mice.

Materials and Methods

Electrophysiology. Paracoronal sections containing the somatosensory
cortex (400 wm) were prepared as described previously from male post-
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Figure 1. E,. remains depolarized in Fmr1 ko mice during cortical development. 4, Representative example of a perforated ~ -B-tubulin IIT antibody (1:12000; Sigma-

patch-clamp recording from a layer IV neuron in the somatosensory cortex of a P10 Fmr7 wt mouse. Recordings were made at
several hold potentials and the E,_ calculated from the linear fit of the current—voltage relationship. GABA responses shown at
—80,0,and +40 mV were evoked by extracellular stimulation in the presence of glutamate blockers p-APV (50 rum) and CNQX (10
). Calibration for current traces: 50 ms, 200 pA. B, Representative recording from Fmr1 ko at P10 and current—voltage relation-
ship of GABA-mediated currents. E_is significantly more depolarized at this age in recordings from Fmr1 ko mice. Calibration for
current traces: 50 ms, 50 pA. C, Grouped data from all recordings. The average E. calculated from each individual recording is
plotted against the age of the mouse (postnatal day). The RMP measured at P10 is denoted by the dashed line and shaded area
represents points at which GABA would have a mature hyperpolarizing response. *p << 0.05 (P5:wt,n = 13;kon = 4.P6:wt,n =
6;ko,n = 11.P7:wt,n = 6; ko, n = 4.P8:wt,n = 10: ko, n = 8.P9:wt,n = 8; ko,n = 11.P10: wt,n = 8; ko, n = 5.P11: wt,
n=16;ko,n = 14.P12:wt,n = 17;ko,n = 6.P13:wt,n = 12:ko,n = 5.P14: wt,n = 11: ko, n = 10. P15: wt, n = 12; ko,

n=7).

natal day 5 (P5) to P15 FmrI-knock-out (ko) mice (Fmrl ~'¥) and their
male wild-type (Fmrl */¥) littermates (Harlow et al., 2010). Mice were on
a congenic C57BL/6 inbred background strain. Experiments were per-
formed with the experimenter blind to the genotype of the animal, fol-
lowed by post hoc genotyping using DNA from tail biopsies. Mice were
anesthetized with isoflurane, decapitated, and the brain rapidly removed
under ice-cold, oxygenated, sucrose-slicing ACSF containing the follow-
ing (in mm): 85 NaCl, 2.5KCl, 1.2 NaH,PO,, 25 NaHCO3, 25 glucose, 75
sucrose, 0.5 CaCl,, and 4 MgCl, equilibrated with 95% O,/5% CO, and
supplemented with the glutamate antagonists 100 um kynurenate and 10
M APV. Slices were incubated at 28°C for 30 min while slowly exchang-
ing the sucrose ACSF in the incubation chamber for oxygenated sodium
ACSF solution containing the following (in mm): 125 NaCl, 2.4 KCl, 1.2
NaH,PO,, 25 NaHCO;, 25 glucose, 1 CaCl2, and 2 MgCI2. After a recov-
ery period at least 1 h, slices were transferred to a recording chamber,
where they were continuously perfused with oxygenated sodium ACSF
containing 2 mm CaCl, and 1 mm MgCl, and visualized under differential
interference contrast. Perforated patch-clamp recordings were made
from layer IV neurons in the somatosensory cortex at elevated tempera-
ture (32°C) using a Multiclamp 700B patch-clamp amplifier (Molecular
Devices). Spiny stellate cells are the most abundant neurons in layer IV
(Feldmeyer etal., 1999) and were identified by their dense distribution in
the walls of the barrel, their regular soma size (~10 um), and their
morphology lacking a prominent apical dendrite (Daw et al., 2007).
Glass recording electrodes had resistances of 5-7 M{) when filled with
KCl solution containing 150 mm KCl and 10 mm HEPES pH adjusted to
7.2 with Tris-OH. The pipette tip was filled with gramicidin-free KCl
solution and then backfilled with solution containing gramicidin (100
ug/ml; Ebihara et al., 1995). GABAergic currents were evoked in the
presence of 50 um D-APV and 10 um CNQX using a glass monopolar
extracellular stimulating electrode filled with ACSF positioned at the

Aldrich). A standard enhanced chemilumines-
cence substrate (EMD Millipore) was used for
detection of protein bands, and quantification
ofband density was performed using ImageLab
software. The amounts of NKCC1 and KCC2
proteins were quantified by normalizing the
optical density of the correct molecular
weight band to that of B-tubulin on the same
membrane.

RNA purification and real-time gPCR. Tissue
from cortex was isolated as described above
from Fmrl ko and Fmrl wt mice at P5, P10,
and P15. Total RNA was extracted using TRI-
zol reagent (Ambion) and used (20 ng per sample) for the synthesis of
c¢DNA using SuperScript III RT Reverse Transcriptase from Super-
script VILO Mastermix (Invitrogen). Real-time RT-PCR was per-
formed using the 7900HT Fast Real-Time PCR system. Primers and
probes for expression analysis of the different transcripts were de-
signed and produced using TagMan assays (Life Technologies).

Probes for NKCC1, KCC2, and the reference gene GAPDH were ob-
tained from Life Technologies and were as follows: NKCC1: Slc12a2-
MmO01265951_m1; KCC2: Slc12a5-Mm00803929_m1; GAPDH:
Mm99999915_g1. All measurements were made in triplicate and relative
quantification was performed using the comparative threshold (CT) af-
ter determining the values of CT for the reference gene GAPDH and the
target gene KCC2 or NKCCI in each sample. The R, ratio of target/
reference gene was used to make comparisons between Fmrl wt and
Fmrl ko samples. R, was calculated using the following formula: R =
2 7ACT, where AC, = C, target gene — C, reference gene.

Statistical analyses were conducted with GraphPad Prism software.
Post hoc Bonferroni pairwise comparisons were performed when signif-
icant effects were found by two-way ANOVA. Differences between two
means were assessed with 7 tests. Data are presented as mean * SEM.
Differences were considered significant when p < 0.05.

Results

Based on the known trophic effects of depolarizing GABA and the
altered development of synapses in the cortex of fragile X mice
during critical period development (Cruz-Martin et al., 2010;
Harlow et al., 2010), we wanted to determine whether the timing
of the GABA polarity switch in cortical neurons was disrupted in
the mouse model of fragile X syndrome. To do this, we measured
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Figure2. Expression of the juvenile chloride cotransporter NKCC1. 4, The expression of

NKCCT is elevated in the cortex of Fmr1 ko mice at the close of the critical period. Repre-
sentative gel run with cortical homogenates from fmr7 wt and Fmr1 ko mice and probed
with anti-NKCCT and anti- B3-tubulin (3-tub). Western blots were used to measure NKCC1
protein levels at three developmental time points: P5, P10, and P15. B, Grouped data from
all experiments. The average intensity of NKCC1 was normalized to B-tubulin in Fmr7 wt
and Fmr7koin each sample ateachage (P5:wt,n = 8;ko,n = 8.P10:wt,n = 11;ko,n =
11. P15: wt, n = 8; ko, n = 7). A significant elevation of NKCC1 protein levels was
observed at P10 in samples from the Fmr7 ko mice. *p << 0.05. C, Representative Western
blots for cortical homogenates probed with anti-KCC2 antibodies from Fmr7 wt and Fmr1
ko mice atP5, P10, and P15. D, Grouped data for all KCC2 Western blots (P5: wt, n = 8; ko,
n=8.P10:wt,n = 11; ko, n = 11; P15: wt, n = 8; ko, n = 7). No difference in relative
protein levels was observed at any age between the two genotypes (p > 0.05). All values
are means = SEM.

the potential at which GABA R responses reverse (E¢,.) in layer
IV spiny stellate neurons in the somatosensory cortex. Perforated
patch recording were made from stellate neurons in paracoronal
slices from Fmrl ~" (Fmrl ko) and littermate Fmrl *"Y controls
(Fmrl wt). GABA-mediated responses were elicited by intracor-
tical stimulation and isolated by the application of antagonist
of glutamate receptors (50 uM D-APV and 10 um CNQX).
Responses were recorded while voltage clamping the mem-
brane at various holding potentials between —80 mV and +40
mV (Fig. 1A,B). The measured current—voltage relationship
was used to determine E(,.. Recordings were made at each
postnatal day starting at P5 up to P15. We found that even at
the earliest time points during the first postnatal week, there
was a small difference in the E;, although it was not signifi-
cant at every postnatal day (P6 Fmrl wt, E¢: 42.8 = 5.0 mV,
n = 6; Fmrl ko, Eqj: —31.4 £ 49 mV, n = 11, p > 0.05; Fig.
1C). E¢. became progressively more hyperpolarized at each
successive day during the second postnatal week in both geno-
types. However, in Fmrl ko animals, E¢,_ stayed relatively de-
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Figure 3.  Chloride cotransporter transcript expression is not altered in cortex of Fmr7 ko

mice. A, Relative transcript abundance of NKCC1 in cortex of Fmr7 wt and Fmr1 ko at P5, P10,
and P15. B, Relative RNA expression of KCC2 in Fmr T wtand FmrT ko atP5, P10,and P15. R, was
calculated as the ratio of the target gene to GAPDH as the reference gene (p > 0.05 for all age
groups for both NKCCT and KCC2).

polarized so that at the closure of critical period in layer IV at
P10 (Daw et al., 2007), when GABA has a mature hyperpolar-
izing effect, E. was more depolarized than the resting mem-
brane potential (RMP) and was significantly different from
Eqin Fmrl wt (Fmrl ko, P10: Eq,. = —38.4 = 6.1 mV, n = 5;
Fmrlko,P10,Eq. = —65.4 = 4.4mV,n =8 p <0.05; Fig. 1C).
We also measured the RMP of layer IV neurons, but found no
difference between the genotypes (Fmrl ko, P10, V,,: —60.0 =
1.0 mV, n = 19; Fmrl wt, P10, V_: —58.7 £ 1.5 mV, n = 26,
p > 0.05). Therefore, at this important postnatal milestone at
the close of the critical period, GABA elicits depolarizing re-
sponses in Fmrl ko animals, but elicits a mature hyperpolar-
izing current in Fmrl wt neurons. By the end of the second
postnatal week, E¢. was more hyperpolarized than the RMP in
both genotypes and no difference was observed between re-
cordings from Fmrl ko and Fmrl wt mice (Fmrl ko, P15, E¢.:
—66.8 £5.1mV,n =7; Fmrl wt, P15, Ec.= —72.4 £ 4.7mV,
n =12, p > 0.05; Fig. 1C).

E. is determined by the regulated expression of NKCC1
and KCC2 during development. To address whether altered
protein levels of these two chloride cotransporters might con-
tribute to the disruption in the polarity switch for GABA, we
microdissected tissue from somatosensory cortex and immu-
noblotted for NKCC1 and KCC2 at P5, P10, and P15. At P5
and P15, there was no significant difference in the relative
amount of NKCC1 (Fig. 2A, B). However, at P10, there was a
significant elevation in NKCC1 expression in samples from
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Fmr1 ko animals relative to those from Fmrl wt (252 = 55.2%
n =8, p < 0.05; Fig. 2 A,B). The relative expression levels of
KCC2 were not different between the two genotypes at any of
the postnatal days tested (Fig. 2C,D). An elevation in NKCC1
and no alteration in KCC2 protein levels in P10 Fmrl ko mice
changes the relative ratio of these two important chloride
cotransporters and suggests that this could account for the
altered E;. we observed.

To determine whether the altered protein levels of NKCCl1 are
accompanied by changes in the level of transcripts, we performed
qPCR on samples from Fmrl wt and Fmrl ko mice at the same
time points (P5, P10 and P15). Tissue samples were again micro-
dissected from the somatosensory cortex and the purified RNA
underwent reverse transcription. Using probes for both the
KCC2 and NKCCI1 genes, we found no difference in the relative
expression levels of either of these transcripts in Fmrl ko mice in
samples taken from all three developmental time points (Fig.
3 A, B). Together, our results demonstrate a potentially important
cellular developmental disruption in chloride homeostasis that
could have pleiotropic effects on synaptic development in the
cortex of Fmrl ko mice.

Discussion

Network hyperexcitability in the cortex has been well docu-
mented in Fmrl ko mice (Gibson et al., 2008; Goncalves et al.,
2013) and is proposed to underlie the increased propensity for
seizures, hyperarousal, and hypersensitivity to sensory stimuli
seen in fragile X syndrome. Several studies have demonstrated
both molecular and functional disruption in GABA signaling (EI
Idrissi et al., 2005; D’Hulst et al., 2006; Gantois et al., 2006;
Paluszkiewicz et al., 2011b). However, until now, there has not
been an examination of GABA signaling in FmrI ko mice during
early development, when it has a strong trophic role on neuronal
development (Represa and Ben-Ari, 2005). Multiple lines of evi-
dence have demonstrated that there are functional and structural
changes in synapses during the early postnatal period in FmrI ko
mice. Our finding that there is a delay in the timing of the GABA
polarity switch in principal neurons of the cortex may provide
one explanation for the observed changes in synaptic develop-
ment. We observed an increase in protein expression of the
juvenile chloride cotransporter whereas mRNA was not af-
fected. The chloride cotransporter mRNAs are not known
Fmrp targets and it is possible that upregulation of NKCC1 is
due to a pleiotropic effect in the knock-out. The actual mech-
anisms that control the developmental expression of the chlo-
ride cotransporters are not known. However, GABA,R
signaling itself can affect the polarity switch (Ganguly et al.,
2001). Because there are documented changes in inhibitory
neural circuitry and GABA,R expression in Fmrl ko mice
(Paluszkiewicz et al., 2011a), it is possible that these contrib-
ute to the disrupted chloride homeostasis that we have discov-
ered. Changes in inhibitory transmission have been observed
in several neurodevelopmental disorders, particularly those
that are linked to autism such as fragile X syndrome. A recent
clinical trial with bumetanide, a commonly used diuretic that
inhibits NKCC1 function, demonstrated improvement in
clinical scores for autism patients, suggesting that NKCC1
function may be upregulated in autism and may be a causal
factor in some of the behavioral disruptions associated with
autism (Lemonnier et al., 2012). In addition, a recent study
that analyzed protein concentration in the CSF of Rett syn-
drome patients demonstrated an upregulation in the ratio of
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NKCCI1 to KCC2, further suggesting that alterations in chlo-
ride transporters might be a general finding in neurodevelop-
mental disorders linked with autism (Duarte et al., 2013). Our
results are the first to describe the maintenance of a depolar-
ized E. in the cortex to later developmental time points and a
change in the relative expression of the chloride cotransport-
ers in the cortex of the mouse model of fragile X syndrome. It
is possible that a delay in the polarity switch in GABA re-
sponses will have effects on the development of synaptic con-
nections during the cortical critical period. Inhibiting chloride
transport into neurons may thus correct some of the alteration
in the development of synapses that underlie the cognitive and
sensory problems experienced by individuals with fragile X
syndrome.
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