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Down syndrome (DS) is a relatively common genetic condition caused by the triplication of human chromosome 21. No therapies
currently exist for the rescue of neurocognitive impairment in DS. This review presents exciting findings showing that it is possible to
restore brain development and cognitive performance in mouse models of DS with therapies that can also apply to humans. This
knowledge provides a potential breakthrough for the prevention of intellectual disability in DS.
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Introduction

One of the most important consequences of trisomy 21 (Down
syndrome, DS) is the delay in neurological development, which
manifests progressively as microcephaly, hypotonia, and intellec-
tual disability (Lydic and Steele, 1979; Schmidt-Sidor et al., 1990;
Silva et al., 1996; Chapman and Hesketh, 2000; Rigoldi et al.,
2011). Complex neurological function is the result of many mo-
lecular, cellular, and environmental events that must occur and
be coordinated at precisely the right time. In mammals, many of
these processes are either initiated or completed before birth.
Because of this, the overall impact of the neurological deficits in
DS may be lessened if the initial pathologic changes in the brain
are prevented from occurring. Studies in human fetuses with DS
demonstrate that the brain is significantly altered by the beginning of
the second trimester. Therefore, the first window of opportunity for
cognitive improvement occurs well before birth (Haydar et al., 1996,
2000; Guihard-Costa et al., 2006; Chakrabarti et al., 2007; Contest-
abile et al., 2007; Ishihara et al., 2010).

Most of the brain neurons are produced in the prenatal period,
with the notable exception of those involved in the formation of
the hippocampus, where neurogenesis continues postnatally and
throughout life. Unlike neurogenesis, neuron maturation and estab-
lishment of brain wiring largely takes place in the perinatal period.
Therefore, during this time, there is a unique opportunity to rescue a
population of cells in the brains of fetuses with DS that would oth-
erwise be permanently missing, thus allowing proper connectivity.
In this review, we describe the changes known to occur in the brains
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of trisomic humans and mice and present several approaches cur-
rently under way to positively affect cognition by preventing prena-
tal brain alterations.

Cellular and molecular processes affecting development and
function of the CNS in DS

The first major event in specifying brain size and complexity is
development of the proper variety of the neural stem and progen-
itor cells that form the neurons and glia throughout the brain. In
human forebrain development, this process is initiated at 6 weeks
of gestation and lasts well into the second trimester (Bystron et
al., 2008; Stiles, 2008). In several mouse models of DS during the
equivalent developmental period, the radial glia stem cells of the
cerebral cortex and hippocampus are found in reduced numbers
and their cell division rate is slower than normal (Haydar et al.,
2000; Chakrabarti et al., 2007; Contestabile et al., 2007; Ishihara
et al., 2010). In addition, another type of neural precursor cell
called the apical intermediate precursor cell is specifically under-
produced in the prenatal neocortex (Tyler and Haydar, 2013).
These two defects likely underlie the reductions in gray matter
volume and the numbers of excitatory neurons in the maturing
brain. These proliferation defects in mouse models have been
recently supported by reports of similar reductions in stem cell
proliferation in the hippocampi of human fetuses with DS (Guidi
et al., 2008). However, although slower proliferation is found
in many dividing cells in DS, increased cell production has also
been found in specific brain regions. For example, in the
Ts65Dn mouse model, whereas the number of excitatory neu-
rons in the neocortex is reduced, the number of inhibitory
neurons is increased compared with controls (Chakrabarti et
al., 2010) and this alteration in the excitatory:inhibitory ratio
has been attributed to triplication of the transcription factors
OLIG1 and OLIG2. These supernumerary GABA-releasing in-
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hibitory neurons are generated from neural precursors in the
ganglionic eminences within the ventral telencephalon (An-
derson et al., 2001).

After these changes in the fetal period, several postnatal ab-
normalities appear in multiple brain regions at both the systemic
and cellular levels. One of the most robust changes is the slower
growth in the cerebellum (Guihard-Costa et al., 2006), which
begins to develop before birth in humans but after birth in mice.
In both species, this delayed growth is due to slower proliferation
of granule and Purkinje neuron precursors. This results in a sim-
plified cerebellar morphology with reduced numbers of granule
and Purkinje neurons (Baxter et al., 2000; Olson et al., 2004;
Guidi et al., 2011; Starbuck et al., 2014). In addition, a paucity of
excitatory synapses and an abundance of inhibitory synapses are
evident in the mouse model forebrain, perhaps as a consequence
of the alterations in prenatal neurogenesis of these two neuronal
classes (Chakrabarti et al., 2007; Belichenko et al., 2009a; Perez-
Cremades et al., 2010). In the neocortex, synapse-related
structural changes, including alterations in dendritic spine mor-
phology and density, have been found in humans (Marin-Padilla,
1976; Suetsugu and Mehraein, 1980; Takashima et al., 1981;
Weitzdoerfer et al., 2001) and mouse models (Belichenko et al.,
2004, 2009a; Villar et al., 2005; Haas et al., 2013) and potential
molecular targets for these structural abnormalities have been
suggested (Wang et al., 2012a). Reductions in white matter have
also been described in the brains of children and adults with DS
and may be due to alterations in numbers or in the function of
oligodendroglia (White et al., 2003; Carducci et al., 2013; Powell
et al., 2014). It is important to note that oligodendrocytes are
generated in three waves, initially by prenatal neural precursor
cells in the ventral telencephalon, followed postnatally by oligo-
dendrocyte progenitors in the cortical parenchyma (Richardson
et al., 2006).

Therefore, many cell classes in different parts of the brain are
affected throughout the lifespan of people with DS, but changes first
begin before birth during neural stem cell proliferation. These alter-
ations in cell production lead to subsequent abnormalities in neuro-
nal and glial cell allocation and to functional changes in the neural
circuitry. Apart from the roles of DYRK1A (discussed below) and the
OLIG genes on specific aspects of brain development, whether the
prenatal and postnatal central nervous system defects are due to
the overexpression of individual genes or to aneuploidy (i.e., the
burden of segregating an additional chromosome during cell divi-
sion) has not been conclusively determined for all of the abnormal-
ities noted above. Nevertheless, it is clear that these prenatal changes
may play a fundamental role in intellectual disability. By preventing
them from occurring, we hypothesize that we will improve cognition
and quality of life for people with DS.

Preventive therapies for cognitive disability in DS: the sooner
the better

There is a consensus that the major causes underlying aberrant
brain development and thus intellectual disability in DS are im-
paired ontogenetic neurogenesis, dendritic hypotrophy, spine
density reduction, altered synaptic organization and function,
and widespread alterations of various transmitter and receptor
systems (for review, see Bartesaghi et al., 2011; Dierssen, 2012;
Guedj and Bianchi, 2013; Gardiner, 2015). Although neonatal
therapies may mainly shape the cerebellum and hippocampus,
prenatal therapies may have a much larger impact on the trisomic
brain. Below is a summary of the treatments to date that have
been aimed at neonatal and prenatal intervention.
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Neonatal treatments

In the 2-d-old Ts65Dn mouse model of DS, a single treatment
with SAG, an activator of the mitogenic Sonic Hedgehog path-
way, restored cerebellar granule cell production and improved
learning and memory (Roper et al., 2006; Das et al., 2013). Based
on evidence that the serotonergic system is altered in DS (Bar-
Peled etal., 1991; Risser et al., 1997; Whitaker-Azmitia, 2001) and
that serotonin is crucial for neurogenesis, a series of studies ex-
amined the effects of neonatal treatment with fluoxetine, a selec-
tive serotonin reuptake inhibitor (Wong et al., 1974), on
hippocampal development. Previous studies showed that treat-
ment with fluoxetine from postnatal day 3 (P3) to P15 resulted in
long-term restoration of hippocampal neurogenesis, dendritic
pathology, functional connectivity, and learning and memory in
45-d-old (Bianchi et al., 2010; Guidi et al., 2013; Stagni et al.,
2013) and 90-d-old (Stagni et al., 2015) Ts65Dn mice, indicating
that fluoxetine rescues many trisomy-linked developmental def-
icits. Fluoxetine, in addition to increasing serotonin availability,
stimulates the production of the neurosteroid allopregnanolone
(Pinna et al., 2009), a GABA-A receptor-positive allosteric mod-
ulator that has been shown to increase neurogenesis (Wang et al.,
2010) and density of excitatory synapses (Shimizu et al., 2015).
Fluoxetine binds to the o-1 receptor that regulates Ca*" signal-
ing, ion channel activity, trophic factor signaling, cell survival,
myelination, and synaptogenesis (Hayashi and Stahl, 2009). Flu-
oxetine also interacts with the mitochondrial voltage-dependent
anion channel and protects against apoptotic cell death (Nahon
et al., 2005). Therefore, these additional mechanisms may con-
tribute to the positive effects of neonatal and embryonic (see
below) treatment with fluoxetine on the trisomic brain.

Embryonic treatments

Administration of active fragments of neurotrophic factors dur-
ing E§—E12 was found to prevent delay in the achievement of
sensorimotor milestones in Ts65Dn pups (Toso et al., 2008) and
to improve learning and memory in adults (Incerti et al., 2012).
In a series of studies, choline (the acetylcholine precursor) was
administered to Ts65Dn dams from conception until weaning.
Choline supplementation was found to improve hippocampal
neurogenesis and learning and memory in adult and aged tri-
somic offspring (Moon et al., 2010; Velazquez et al., 2013; Ash et
al,, 2014).

Oxidative stress appears to be involved in the pathogenesis
of DS. Alpha-tocopherol, an antioxidant, when administered
during gestation and postnatally (12 weeks), reduces lipid peroxi-
dation and improves learning and memory in Ts65Dn mice
(Shichiri et al., 2011). Particularly impressive results showing
restoration of numerous DS brain phenotypes have been ob-
tained with prenatal treatment with fluoxetine (Guidi et al.,
2014). Pregnant Ts65Dn females were treated with fluoxetine
from E10 to delivery. Although untreated Ts65Dn pups exhibited
severe reduction in neurogenesis and hypocellularity throughout
the forebrain, midbrain, and hindbrain, in embryonically treated
Ts65Dn pups, neural precursor proliferation and cellularity were
fully restored. The trisomic offspring of treated and untreated
mothers were examined at postnatal day 45. Neurogenesis was
still restored in the major postnatal brain neurogenic niches. In
addition, total granule cell number and dendritic development of
postnatally born granule neurons were normalized, with a full
correction of the severe dendritic hypotrophy that characterizes
the trisomic condition. The counterpart of this effect was resto-
ration of presynaptic and postsynaptic terminals. Importantly,
embryonically treated Ts65Dn mice at age 45 d exhibited resto-
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Figure1.

Summary of the effects of embryonic treatment with fluoxetine on brain development in Ts65Dn mice. Ts65Dn mice (DS) show impairment of proliferation, reduced cellularity, reduced

generation of neurons, increased astrogliogenesis, dendritic hypotrophy, reduced connectivity, reduced brain size, and behavioral impairment. All of these defects are rescued by treatment with

fluoxetine during the embryonic period.

ration of cognitive performance, indicating that the positive
impact of embryonic treatment on brain development was func-
tionally effective in adulthood (Fig. 1).

Genomic approach to the identification of novel therapies for

prenatal treatment of DS

The recent rapid rise in noninvasive prenatal testing for trisomy
21 (Bianchi, 2015), coupled with the known abnormalities in fetal
brain development (Contestabile et al., 2007; Larsen et al., 2008;
Guidi et al., 2011), creates a window of opportunity in humans
for maternal treatment to improve fetal neurocognition as soon
as DS has been diagnosed (Guedj and Bianchi, 2013; Guedj et al.,
2013). Prenatal treatment of human fetuses with DS is associated

with several unique challenges, including the fact that the (pre-
sumably healthy) mother will be treated simultaneously with the
fetus. The first concern, therefore, is safety. Any proposed ther-
apy cannot cause harm to the mother nor cause teratogenic ef-
fects to the growing and developing fetus. An additional
challenge is achieving therapeutic drug levels across both the pla-
cental and blood—brain barriers.

With safety as the highest priority, investigators opted to iden-
tify novel therapies for DS using the Connectivity Map (CMap;
Lamb, 2007). The goal of the CMap is to make “connections”
among a disease, differentially regulated genes, and drugs. The
CMap is a publicly available database of the gene expression pat-
terns of a number of different cultured cell types before and after
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exposure to a large number (>1300) of US Food and Drug Ad-
ministration (FDA)-approved drugs. The elegance of the CMap
is that it uses expressed genes (or mRNA) as its common lan-
guage. Therefore, any list of differentially regulated genes can be
uploaded into the database to generate a list of drugs from which
hypotheses regarding treatment can be tested.

With the exception of studies that have used cultured human
fetal cells, few molecular research projects have analyzed bioma-
terial from living fetuses with DS. In 2009, investigators per-
formed functional genomic analyses in fetuses with trisomy 21
versus gestational age- and sex-matched euploid controls (Slo-
nim et al., 2009). Because cell culture can induce gene expression
changes, they chose to use cell-free fetal mMRNA obtained directly
from uncultured amniotic fluid supernatant samples. Amniotic
fluid is the only biofluid that can be safely analyzed in fetuses with
a known karyotype. This mRNA is stable and derives from apo-
ptotic cells. These investigators have shown previously that some
of the transcripts in amniotic fluid map specifically to the fetal
brain (Huietal., 2012a, 2012b). In addition, fetuses with different
chromosome abnormalities have completely different gene ex-
pression signatures that are consistent with the known patho-
physiological abnormalities in these conditions (Zwemer and
Bianchi, 2015).

Using Affymetrix gene expression microarrays, trisomy 21
and euploid mRNA samples were compared and 311 statistically
significant differentially regulated genes were found. Only 5 of
the genes (CLIC6, ITGB2, RUNXI, C2lorf67, C2101f86) were
physically located on human chromosome 21, suggesting that the
majority of the phenotypic effects of DS were secondary due to
genome-wide dysregulation (Slonim et al., 2009). A heat-map
analysis showed distinct clustering by fetal genotype. In other
words, there was clear evidence of a characteristic set of differen-
tially expressed genes in all second-trimester human fetuses with
trisomy 21. Further, an unbiased pathway analysis of the differ-
entially regulated genes using the Database for Annotation, Visu-
alization, and Integrated Discovery (DAVID) (Dennis et al.,
2003) demonstrated that the following functions were disrupted
in fetuses with DS: oxidative stress, ion transport, G-protein
signaling, immune and stress response, circulatory system
functions, cell structure, sensory perception, and several devel-
opmental processes (Slonim et al., 2009). Similar pathway abnor-
malities have been found in E15.5 brains from a mouse model of
DS, Ts1Cje (Guedj et al., 2015).

Applying a systems biology approach to fetuses with trisomy
21, investigators focused on oxidative stress as their first func-
tional target for prenatal therapy. The CMap identified apigenin,
a natural antioxidant and anti-inflammatory compound found
in citrus fruit and green leafy vegetables, as a high-priority can-
didate molecule to reverse the gene expression pattern observed
in second-trimester fetuses with DS. Preliminary data obtained
by incubating cultured amniocytes from fetuses with trisomy 21
with different concentrations of apigenin have shown that con-
centrations of up to 2 uM are not toxic (i.e., they do not affect cell
proliferation). This concentration statistically significantly re-
duced oxidative stress as measured by the single-cell gel electro-
phoresis assay (Guedj et al., 2013) In preliminary experiments,
Ts1Cje dams were fed 200 mg/kg/d of apigenin with powdered
laboratory chow from the time of conception throughout their
pregnancies. Apigenin treatment normalized brain gene expres-
sion in some differentially regulated genes, shortened the time it
took to achieve neonatal developmental milestones, and im-
proved performance on the open field test. These preliminary
data provide proof of principle that functional genomic analysis
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of the human fetal transcriptome can provide a rational basis for
drug discovery in DS.

Targeting the excitation inhibition balance in DS

An imbalance of excitation and inhibition (E/I) is thought to
underlie several neurological diseases, including autism (Ruben-
stein and Merzenich, 2003), Tourette syndrome (Singer and
Minzer, 2003), and schizophrenia (Wassef et al., 2003). Cognitive
deficits in DS have been proposed to result from an excess of
inhibition. However, chromosome 21 genes responsible for such
defects have not been clearly identified. Excessive inhibition in
temporal lobe and hippocampal circuitry has also been observed
in the Ts65Dn mouse (Kurt et al., 2000, 2004; Belichenko et al.,
2007, 2009b; Perez-Cremades et al., 2010), which recapitulates
the hallmarks of the DS phenotype, including serious cognitive
impairment (Escorihuela et al., 1995; Reeves et al., 1995). In-
creased efficiency of GABA-A and GABA-B receptor-mediated
neurotransmission has been reported for Ts65Dn mice (Kle-
schevnikov et al., 2012a, 2012b) and the GABA-B/GABA-A ratios
evoked by stimulation within the stratum lacunosum moleculare
of Ts65Dn hippocampus were found to be significantly altered
(Best et al., 2012). This E/I imbalance may explain the alterations
of LTP and LTD found in Ts5Dn mice (Siarey et al., 1997, 1999;
Belichenko et al., 2009b). In view of the trisomy-dependent ex-
cessive inhibition, GABA receptor antagonists are considered a
good therapeutic strategy for restoring memory in the Ts65Dn
mouse. Growing evidence shows that GABA receptor antagonists
restore LTP and memory in the Ts65Dn mouse (Kleschevnikov et
al., 2004, 2012a; Fernandez et al., 2007; Rueda et al., 2008; Colas et
al., 2013; Martinez-Cué et al., 2013), suggesting their potential
usefulness for cognitive improvement in DS.

In humans, altered copy number for segments of chromo-
some 21 that results in either deletion or duplication of DYRKI1A
can induce morphological defects and cognitive impairments
(Delabar et al., 1993; Rahmani et al., 1998; Ronan et al., 2007;
Oegema et al., 2010; van Bon et al., 2011). Phenotypic rescue
experiments combining Ts65Dn mice, which have three copies of
Dyrkla, with mice monosomic for a chromosomal segment
containing 33 genes including Dyrkla (MsI1Rhr) or with mice
heterozygous for invalidation of Dyrkla produced progeny with a
normal learning phenotype, indicating that duplication of this
gene is necessary to produce a cognitive deficit (Morris water
maze and contextual conditioning) (Belichenko et al., 2009a,
2009b; Garcia-Cerro et al., 2014). Among the genes from this
33-gene region, Dyrkla is an attractive candidate for inducing
cognitive impairment phenotypes. It encodes a proline/arginine-
directed serine/threonine kinase (Tejedor et al., 1995). Consis-
tent with its etiological role in DS, DYRKI1A targets proteins
involved in neurodevelopment (Barallobre et al., 2014; Najas et
al., 2015) and neuritogenesis (Murakami et al., 2009; Xie et al.,
2012). Both in trisomic mice and in individuals with DS, brain
levels of DYRKIA are increased ~1.5-fold, indicating that this
protein is overexpressed in a gene-dosage-dependent manner
(Dowjat et al., 2007).

Molecular consequences of alterations in Dyrkla dosage were
assessed in mouse models with varying copy numbers of Dyrkla:
mBACtgDyrkla, Ts65Dn and Dp(16)1Yey (with 3 gene copies)
and Dyrkla*’~ (one functional copy). Increased expression of
Dyrkla in mBACtgDyrkla-induced molecular alterations in
synaptic plasticity pathways, particularly expression changes
in GABAergic and DYRKIA glutaminergic-related proteins
(Souchet et al., 2014). Similar alterations were observed in mod-
els with partial trisomy of MMU16, Ts65Dn and Dp(16)1Yey and
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Figure2. Action of EGCG on E/I balance in a T21 context.

were reversed in the Dyrkla™’~ model (Souchet et al., 2014).
Dyrkla overexpression produced an increased number and signal
intensity of GAD67-positive neurons, indicating enhanced inhi-
bition pathways in three different models: mBACtgDyrkla,
hYACtgDyrkla, and Dp(16)1Yey. Functionally, Dyrkla overex-
pression protected mice from PTZ-induced seizures related to
GABAergic neuron plasticity (Souchet et al., 2014). Dyrkla over-
expression also affects pathways involved in synaptogenesis and
synaptic plasticity and tips the E/I balance toward inhibition
(Souchet et al., 2014).

Green tea contains a natural inhibitor of DYRK1A kinase ac-
tivity: epigallocatechin gallate (EGCG; IC5, = 0.3 uM) (Bain et
al., 2003). Control and transgenic mice overexpressing Dyrkla
were maintained on two different polyphenol-based diets from
gestation to adulthood. The major features of the transgenic
phenotype, including abnormal novel object recognition, were
rescued in these mice (Guedj et al, 2009). Use of EGCG-
containing extracts was also assessed at the adult stage. A
1-month treatment induced efficient rescue effects on the cogni-
tive phenotypes of Ts65Dn, tgDyrkla, and mBACtgDyrkla mice
(de la Torre et al,, 2014). Investigators have discovered the
molecular consequences of different long-term treatments (1
month) in adult mBACtgDyrkla mice (Delabar et al., 2012). A
major rescuing effect of a polyphenol extract (POL60; Sigma-
Aldrich) was observed on GABAergic and glutamatergic path-
ways. A dose-effect experiment using a decaffeinated green tea
extract (MGTE) similar to the extract used in clinical trials
showed that the intermediate dose (60 mg/kg) acts both on com-
ponents of GABAergic and glutamatergic pathways. The same
dose was used to treat pregnant dams until weaning or adulthood
(3 months) (Delabar et al., 2012). GAD67 protein dose and neu-
ron density were rescued by the treatment. This rescue was main-
tained when the treatment was stopped after weaning.
Controlling levels of active DYRKI1A, possibly prenatally, is
therefore a strong consideration for DS therapy (Fig. 2). It must
be observed that EGCG, in addition to inhibit DYRKIA kinase,
modulates numerous cellular pathways (Schroeter et al., 2007;
Spencer, 2009; Kelsey et al., 2010; Wang et al., 2012b; Kim et al.,
2014), suggesting that additional actions may take part in its pos-
itive effects on the brain.

Nonpharmacological approaches in combination with

drug treatments

Trisomy of human chromosome 21 leads to intellectual disability
by affecting CNS development and function, impairing cogni-
tion, and adaptive behavior (Dierssen, 2012). Insights into the
neurobiological mechanisms of DS from mouse models and hu-
man studies have shown that alterations in neural plasticity
mechanisms are related to cognitive impairment (Dierssen and
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Ramakers, 2006). This opens the possibil-
ity for the discovery of drugs for restoring
cognitive function by pharmacologically
targeting neural plasticity cascades that set
the brain in a favorable state for cognitive
function and could thus be disease-
modifying treatments in individuals with
DS (dela Torre and Dierssen, 2012). Overall
scientific evidence supports a direct link be-
tween experience-dependent learning and
changes in synaptic and neural plasticity.
Cognitive training programs are an effective
therapeutic interventional strategy in intel-
lectual disability. Specifically, it was found
that HSA21 candidate genes such as Dyrkla are regulated in DS
mouse models as a result of environmental enrichment (Pons-
Espinal etal., 2013). Therefore, nonpharmacological therapeutic av-
enues can potentially play a key role as safe and effective coadjuvants
for further enhancing the positive effects of experimental com-
pounds. Two such avenues are cognitive training and noninvasive
brain stimulation (NIBS), specifically transcranial direct current
stimulation. These are emerging interventional techniques that have
been shown to be safe and effective for ameliorating a wide range of
cognitive and behavioral deficits in several pathological conditions
[Parkinson’s disease, Alzheimer’s disease (AD)] and in children with
mental disabilities (autism). Computerized cognitive training sys-
tems have been recognized as a powerful tool for cognitive enhance-
ment (Green and Bavelier, 2008) in individuals with intellectual
disability and neurodegenerative disorders (Anguera et al., 2013;
Franceschini et al., 2013). Cognitive training can partially rescue
atypical brain development and improve functioning by promoting
structural reorganization in some brain regions. Effects have been
demonstrated at different levels from gene regulation (Soderqvist et
al., 2014), biochemical activity (McNab et al., 2009), and neuronal
activity (Westerberg and Klingberg, 2007; Brehmer et al., 2011) to its
effect on learning (Brehmer et al., 2011) and daily functioning
(Klingberg et al., 2005). In children with DS, studies using Cogmed
JM software (Pearson Education) suggest that computerized visu-
ospatial memory training in a school setting is both feasible and
effective (Bennett et al., 2013).

With the advent of novel technologies such as NIBS, new
possibilities are also being proposed to treat intellectual dis-
abilities. NIBS has been suggested to modulate cortical excit-
ability (Wach et al., 2013) and reduce cortical inhibition
(Hensch and Bilimoria, 2012), resetting the brain to a sensitive
state. Because one of the main pathological features of DS is
network overinhibition, NIBS may be a disease-modifying
treatment to improve plasticity in DS. One important aspect
to consider when optimizing outcomes using NIBS is that
modulation of plasticity does not rely only on the modulation
of excitability, but also on the state of the brain being stimu-
lated. A key issue for an effective treatment will require an
optimal orchestration of the internal processes of brain plas-
ticity and therapeutic interventions.

Therapeutic approaches to delay the cognitive decline and
degenerative processes in older mouse models of DS

A key phenotypic alteration in DS is the early appearance of AD-
like pathology, including increased production of the 3-amyloid
peptide; presence of 3-amyloid plaques, intracellular neurofibril-
lary tangles, and neuroinflammation; increases in oxidative
stress; and neuron degeneration (Lott, 2012; Wilcock and Griffin,
2013). Ts65Dn mice, the most commonly used murine model of
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DS, also show some of these neuropathological hallmarks of AD
such as increased levels of the APP protein, 3-amyloid peptides,
tau hyperphosphorylation, increased markers of oxidative stress,
microglia activation, neuroinflammation, and cholinergic and
noradrenergic neuron degeneration (Hunter et al., 2004b; Seo
and Isacson, 2005; Shukkur et al., 2006; Lockrow et al., 2009,
2011; Netzer et al., 2010; Corrales et al., 2014). Recently, the
administration of different compounds targeting some of these
altered phenotypes has improved learning and reduced AD-
related phenotypes in Ts65Dn mice. Among these drugs and
hormones are DAPT (N-[N-(3,5-diflurophenacetyl)-L-alanyl]-
S-phenylglycine t-butyl ester) (Netzer et al., 2010), minocycline
(Hunter et al., 2004a), memantine (Costa et al., 2008; Rueda et
al., 2010; Lockrow et al., 2011), vitamin E (Lockrow et al., 2009),
and estrogens (Granholm et al., 2002, 2003).

Although the classic theory of AD proposes that the neuropa-
thology and cognitive decline starts in this condition with the
accumulation of amyloid plaques and neurofibrillary tangles,
there is increasing evidence that other AD phenotypes such as
oxidative stress and neuroinflammation might precede the other
pathological hallmarks and lead to increases in B-amyloid load
and tau phosphorylation (Varnum and Ikezu, 2012). Therefore,
compounds targeting neuroinflammation and oxidative stress
might be a promising strategy to delay the appearance of these
alterations in the DS population.

Recent studies have demonstrated that chronic melatonin ad-
ministration to adult Ts65Dn mice improves spatial learning;
restores LTP, neurogenesis, and hippocampal cellularity; reduces
oxidative stress; and protects against cholinergic neuron degen-
eration without affecting the levels of the APP protein or
B-amyloid peptides, which implies that APP and 3-amyloid load
is not one of the mechanisms under the cognitive improvements
induced by melatonin (Corrales et al., 2013, 2014). Investigators
have made an exhaustive characterization of the different en-
zymes of the oxidative stress cascade. Their results suggest that
melatonin produces its antioxidant effects by reducing lipid per-
oxidation, but does not have a significant effect on the levels of
different antioxidant enzymes. They have also demonstrated that
cellular senescence is enhanced in the subgranular zone of the
dentate gyrus of Ts65Dn mice and this effect is completely res-
cued after melatonin administration. These results suggest that
the positive effects of melatonin on the cognitive abilities of these
mice might be due to their antioxidant effects and/or its ability to
reduce cellular senescence.

However, other mechanisms such as the effects of melatonin
and other drugs on neuroinflammation need to be explored.
Neuroinflammation plays a key role in the development of AD
neuropathology in both humans with DS and in Ts65Dn mice.
Therefore, therapeutic approaches that reduce the activity of pro-
inflammatory cytokines could also be a promising strategy to
reduce AD-related phenotypes in DS. IL-17A is a proinflamma-
tory cytokine that has a fundamental role mediating brain dam-
age during neuroinflammatory processes because it acts as a
modulatory factor in the induction of other cytokines (Zimmer-
mann et al., 2013). Chronic administration of antibodies that
block the IL-17 to animal models of brain damage reduce the
infarcted area, where inflammatory activity is determinant, and
improve the neurological status of the animals (Gelderblom et al.,
2012). Investigators have evaluated the effect of chronic admin-
istration of an antibody against this cytokine in several altered
phenotypes of aged Ts65Dn mice. Chronic administration of
anti-IL17 to aged Ts65Dn mice enhanced spatial learning and
memory, hippocampal proliferation, and mature neuronal den-
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sity and reduced the levels of APP and of -amyloid accumula-
tion in these animals. These results provide further support for
the theory that reducing neuroinflammation might delay or pre-
vent the development of other AD neuropathological changes
and the concomitant cognitive decline.

Conversely, several HSA21 genes are well known to be impli-
cated in the AD-like pathology that appears in DS and in the
Ts65Dn mouse. Among, them, the APP gene has been shown to
have a preeminent role in cholinergic and noradrenergic degen-
eration, NGF retrograde transport, early endosomes, altered syn-
aptic plasticity, and adult hippocampal neurogenesis (Cataldo et
al., 2003; Salehi et al., 2006; Trazzi et al., 2013). Other genes that
seem to play a role in the development of AD pathology in DS are
SOD1 (Busciglio et al.,, 2002), RCAN1/DSCRI1 (Ermak et al.,
2001; Lott et al., 2006), ETS2 (Wolvetang et al., 2003; Helguera et
al., 2005), and ITSNI (Chang and Min, 2009). Morevover, the
DYRKIA gene has been demonstrated to play a role in different
AD phenotypes, including APP and tau phosphorylation and in-
creases in PB-amyloid accumulation (Ryoo et al.,, 2007, 2008;
Wegiel et al., 2011). Recent studies provide evidence that reduc-
ing a copy of this gene in the Ts65Dn mouse leads to a reduction
of APP and B-amyloid levels. Due to the well-known role of these
pathological hallmarks of AD in cognitive deterioration, normal-
izing Dyrkla gene dosage could improve or delay the cognitive
deficits found in aged Ts65Dn mice. A recent report (Garcia-
Cerro et al., 2014) showed that normalizing Dyrkla gene dosage
in Ts65Dn mice partially rescues some phenotypes linked to cog-
nition, such as learning, long-term potentiation, cell prolifera-
tion, and differentiation, while other phenotypes plausibly linked
to cognition (density of mature hippocampal granule cells, the
dentate gyrus volume and the subgranular zone area) were not
modified by this genetic manipulation. Therefore, although the
role of this gene on AD phenotypes needs to be further charac-
terized, drugs such as EGCG that target DYRK1A could also be
beneficial to delay or prevent the cognitive deterioration and the
appearance of AD-related neurodegeneration in DS.

In summary, in view of the complexity and many facets of the
AD-like phenotype, it has been possible to take advantage of
different strategies to delay the cognitive decline and neurode-
generation in mouse models of DS, as demonstrated by the fact
that many of the attempted therapies were effective. It can be
speculated that a combination of therapies may be a strategic
approach for a more effective improvement of AD pathology in
DS individuals.

Conclusions

In this review, we show that there are multiple types of opportu-
nities to rescue abnormalities in neurodevelopment and neurod-
generation in DS and equivalent mouse models. An important,
but previously underappreciated, window of opportunity is dur-
ing the prenatal period, when neuron maturation and brain wir-
ing occurs. Here, we have highlighted three different approaches
to rescue DS phenotypes using: (1) EGCG to target overexpres-
sion of Dyrkla, among other effects; (2) selective serotonin-
reuptake inhibitors such as fluoxetine; and (3) a systems biology
approach to identifying key treatable pathways such as oxidative
stress. Environmental enrichment and novel treatments such as
NIBS have strong potential to amplify the pharmacologic ap-
proaches. Other therapies target prevention or delay of neuro-
cognitive decline and AD pathology. These DS-associated brain
alterations have long been considered to be irreversible. The
demonstration that neurodevelopment can be improved in
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mouse models using multiple strategies provides proof of princi-
ple that intellectual disabilities in DS can be ameliorated.
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