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In recent years, numerous studies have found that the brain at resting state displays many features characteristic of a critical state. Here
we examine whether stimulus-evoked activity can also be regarded as critical. Additionally, we investigate the relation between resting-
state activity and stimulus-evoked activity from the perspective of criticality. We found that cortical activity measured by magnetoen-
cephalography (MEG) is near critical and organizes as neuronal avalanches at both resting-state and stimulus-evoked activities.
Moreover, a significantly high intrasubject similarity between avalanche size and duration distributions at both cognitive states was
found, suggesting that the distributions capture specific features of the individual brain dynamics. When comparing different subjects, a
higher intersubject consistency was found for stimulus-evoked activity than for resting state. This was expressed by the distance between
avalanche size and duration distributions of different participants and was supported by the spatial spreading of the avalanches involved.
During the course of stimulus-evoked activity, time locked to the stimulus onset, we demonstrate fluctuations in the gain of the neuronal
system and thus short timescale deviations from the critical state. Nonetheless, the overall near-critical state in stimulus-evoked activity
is retained over longer timescales, in close proximity and with a high correlation to spontaneous (not time-locked) resting-state activity.
Spatially, the observed fluctuations in gain manifest through anticorrelative activations of brain sites involved, suggesting a switch
between task-negative (default mode) and task-positive networks and assigning the changes in excitation–inhibition balance to nodes
within these networks. Overall, this study offers a novel outlook on evoked activity through the framework of criticality.
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Introduction
Revealing the nature of normal cortical dynamics in a healthy hu-
man brain is a major target of systems neuroscience. In recent years,

several experimental studies suggested that the cortex operates at
proximity to critical dynamics (Beggs and Timme, 2012; Shew and
Plenz, 2013). These dynamics allow neuronal activity to propagate
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Significance Statement

The organization of stimulus-evoked activity and ongoing cortical activity is a topic of high importance. The article addresses
several general questions. What is the spatiotemporal organization of stimulus-evoked cortical activity in healthy human subjects?
Are there deviations from excitation–inhibition balance during stimulus-evoked activity? What is the relationship between
stimulus-evoked activity and ongoing resting-state activity? Using magnetoencephalography (MEG), we demonstrate that
stimulus-evoked activity in humans follows a critical branching process that produces neuronal avalanches. Additionally, we
investigate the spatiotemporal relationship between resting-state activity and stimulus-evoked activity from the perspective of
critical dynamics. These analyses reveal new aspects of this complex relationship and offer novel insights into the interplay
between excitation and inhibition that were not observed previously using conventional approaches.
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over long distances without premature termination or explosive
growth and reflect a subtle balance of excitatory and inhibitory forces
(Poil et al., 2012). The degree to which this balance is maintained and
the proximity range to the critical state, throughout different func-
tional modes, are yet to be determined.

In the past decade, accumulated evidence showed that syn-
chronized groups of neurons exhibiting events of elevated and
adjacent in time activity trigger the formation of other such
groups, thus giving rise to cascades of activity termed neuronal
avalanches (Beggs and Plenz, 2003). Neuronal avalanches have
been described successfully using the framework of critical
branching processes (Harris, 1989). The probability distribution
of neuronal avalanche sizes obeys a power-law functional form,
P(s)�s �; � � �1.5 (Beggs, 2008; Plenz, 2012). Accordingly, the
statistical organization of cascade sizes is invariant to the choice
of spatial scale, demonstrating a fractal organization that joins
various cortical sites on all spatial scales into avalanches.

To date, criticality in humans as indicated by the neuronal ava-
lanche analysis has been studied mostly in the context of resting
activity (Tagliazucchi et al., 2012; Palva et al., 2013; Priesemann et al.,
2013; Shriki et al., 2013). As opposed to spontaneous resting-state
activity, stimulus-evoked activity comprises time-locked activity in-
duced by the specific sensory stimuli or motor responses. Nonethe-
less, alongside task-specific activated neuronal systems, an ongoing
brain activity (i.e., that is not involved in the processing of the spe-
cific event or its execution) still co-occurs. Ongoing activity differs
significantly from random noise and reflects the organization of a
series of highly correlated functional networks (Deco and Corbetta,
2011; Deco et al., 2011). Nonetheless, in the standard procedure of
studying stimulus-evoked responses, the ongoing activity is consid-
ered mostly an unlocked biological “noise,” hence mainly excluded
by averaging from the outlook of evoked potentials [event-related
potentials (ERPs)] or evoked fields [event-related fields (ERFs)].

In the current study, we suggest a complementary perspective
on stimulus-evoked activity within the framework of the neuro-
nal avalanche analysis. Studying how the dynamics of neuronal
avalanches intertwine in performance of high-level cognitive
functions in humans is of great interest (Plenz and Thiagarajan,
2007). Here we focus on evoked activity associated with face pro-
cessing, a complex high-cognitive function that has been investi-
gated extensively (Calder et al., 2011). We used the processing of
faces as a model system to examine the degree to which stimulus-
evoked activity can be regarded as critical dynamics. This can
potentially serve to illuminate the effect of visual sensory stimu-
lation on the critical balance between excitation and inhibition in
the temporal and spatial scales of magnetoencephalography
(MEG) data. Subsequently, the relation between resting-state and
stimulus-evoked activity was likewise studied from the perspec-
tive of criticality.

Materials and Methods
Procedure and participants. Spontaneous and stimulus-evoked brain ac-
tivities were recorded from healthy human subjects in the MEG facility at
the Electromagnetic Brain Imaging Unit at Bar-Ilan University. Twenty-
one female students (average age, 22.6 � 3.0 years) from Bar-Ilan Uni-
versity participated in the experiment. All were right-handed with
normal or corrected-to-normal vision and no history of neurological
disorders. The participants gave their written consent and were compen-
sated financially for their time.

Brain activity was recorded during 4 min of rest, followed by 10
stimulus-presentation blocks and 4 additional minutes of rest. During
rest, participants were instructed to fixate their eyes on a fixation cross at
the center of a black screen, which was located at a distance of �50 cm.
The task stimuli, also presented at the center of a black screen, were of

human male faces and occupied 11.5° � 16° of visual field. The stimuli
consisted of 45 grayscale pictures, each of a face of one of five male actors
that displayed various vertical head postures and emotional expressions.
Each of the stimulus-presenting blocks consisted of all stimuli but fully
randomized. During these blocks, participants completed an oddball
gender detection task, in which they were instructed to press a button
when a rarely presented female face appeared on the screen (16.67% of
the trials). This procedure ensured that all stimuli of male faces were
equally task irrelevant. A short break (0 –3 min; length determined by
participant) was offered between every three blocks for refreshment.
Each stimulus was presented for 1000 ms, with interstimulus intervals
varying between 1300 and 1700 ms.

Data acquisition. Neuromagnetic brain activities were recorded with a
whole-head, 248-channel magnetometer array (Magnes 3600WH; 4-D
Neuroimaging). Recording took place in a dimly lit, magnetically
shielded room in which participants laid supine with their head posi-
tioned in the MEG helmet. Reference coils located �30 cm above the
head were used to remove environmental noise. Accelerometers (Brüel
and Kjær) attached to the gantry were used to remove vibration noise. To
examine whether the participant remained still throughout the record-
ing, head localization measurements (1 mm precision) were performed
before and after the experiment. This was accomplished by attaching five
localization coils to the head of the participant before data acquisition,
which informed the head position relative to the MEG sensors. Head
shape and the position of coils were digitized using a Polhemus
FASTTRAK digitizer.

The MEG was recorded at a sampling rate of 1017.25 Hz and analog
bandpass filtered online at 0.1– 400 Hz. The 50 Hz signal from the power
outlet was recorded by an additional channel, and the average power-line
response to a power cycle was subtracted from every MEG sensor en-
abling to clean this noise and its harmonics without the need to apply a
notch filter (Tal and Abeles, 2013). All stimuli were backprojected on a
screen placed in front of the subjects by a video projector situated outside
the room. E-prime 2.0 (Psychology Software Tools) was used for exper-
imental control. Participants pressed a button using their right index
finger on a response box (LUMItouch; Photon Control) each time a
female was presented.

Data analysis. Data processing and analysis were performed using
MATLAB 2011b (MathWorks) and FieldTrip open-source toolbox for
Advanced MEG Analysis (Oostenveld et al., 2011).

Cleaning and preprocessing. MEG data were first cleaned for line fre-
quency, building vibration and heartbeats artifacts with an in-house
open-source software (Tal and Abeles, 2013). Rest data were segmented
to 1600 ms epochs (300 ms overlap between epochs). Stimulus-evoked
data were also segmented to 1600 ms epochs (300 ms before stimulus
presentation to 1300 ms after stimulus, with no overlap), whereas the
data of fixation intervals between stimulus trials were segmented to 1900
ms (300 ms before fixation presentation to 1600 ms after fixation, with no
overlap). All epoched data were bandpass filtered offline between 0.8 and
80 Hz. Epochs containing a false-positive response or contaminated by
muscle or jump (in the MEG sensors) artifacts were discarded. Indepen-
dent component analysis (ICA) was performed on the remaining data
(Jung et al., 2000) to ensure the removal of all eye movements, blinks, and
leftover heartbeat artifacts. ICA components reflecting such artifacts, as
determined by visual inspection of the 2D scalp maps and time course of
that ICA component, were rejected, and the remaining components were
used to reconstruct the data. Additionally, one malfunctioning MEG
sensor (A41) was discarded from all analyses. At the end of the cleaning
procedure, the middle 1000 ms for rest (no overlap) and stimulus-
evoked epochs and the middle 1300 ms for fixation-evoked epochs were
set as the epochs of interest for additional analyses.

ERF analyses. For purposes of comparison, conventional ERF analyses
were performed. The averaged MEG waveforms were baseline corrected
using a 300 ms prestimulus epoch. Afterward, the averaged MEG wave-
forms of all sensors across all stimulus-evoked trials were calculated. As
an initial step, the boundaries of the time intervals associated with each
ERF component were determined manually for each subject, based on
the ERF plot and 2D scalp maps (averaged across short time intervals) of
the subject. Subsequently, the mutual and defining boundaries of each
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ERF component were determined to include each subject’s peak
activations.

Signal discretization. The signal from each sensor was z-scored by sub-
tracting its mean and dividing by the SD. The mean for each sensor was
calculated over all preprocessed recordings of the specific subject (i.e.,
both rest periods, stimulus-evoked data, and fixation-evoked data).
Then, positive and negative excursions beyond a chosen threshold of 3
SDs for each sensor were identified. The 3 SDs threshold was shown
previously to amount to �0.1% false-positive detection probability
(Shriki et al., 2013). This was derived using an receiver operating char-
acteristic analysis to compare the measured signal distribution and the
best-fit Gaussian distribution, representing the noise attributable to un-
correlated sources. A single event was identified per excursion at the most
extreme value (maximum for positive excursions and minimum for neg-
ative excursions; Fig. 1A).

Event rasters of all detected events at each sensor for each experiment
part and all subjects were obtained by a simple summation of all relevant
events observed at the same comparative time (that is, the summation of
multiple events observed during the same time bin for each sensor).
Accordingly, peristimulus time histograms (PSTHs) were calculated by
summing over all sensors of the obtained event raster plots.

Cascade size and duration distributions and power-law statistics. The
time series of events obtained from each sensor for each epoch was dis-
cretized individually with time bins of duration �t. The timescale of the
analysis, �t � 3.93 ms, was four times �tmin, which is the inverse of the
data acquisition sampling rate. This timescale was chosen according to
previous findings (Shriki et al., 2013) and at a very close proximity to the
mean of interevent interval (IEI) across subjects (	IEI
 � 3.96 � 0.59 and
3.98 � 0.63 for stimulus-evoked and rest, respectively; Fig. 2A). A cas-
cade was defined as a continuous sequence of time bins in which there
was an event on any sensor, ending with a time bin with no events on any
sensor. The number of events on all sensors in a cascade was defined as
the cascade size. Cascades from all epochs of each part of the experiment
(rest, fixation-evoked, and stimulus-evoked) were collected separately.
In agreement with the theory of critical branching processes, which pre-
dicts power-law behavior (Harris, 1989), the fit of the avalanche size and
duration distributions to a power law was analyzed using methods de-
scribed previously (Clauset et al., 2009; Klaus et al., 2011). The power
laws were modeled as follows:

P�� x� � �C�x� xmin � x � xmax

0 otherwise,

where C� is a normalization factor. The parameters xmin and xmax were
set to include all observed avalanches.

Assuming independence of avalanche sizes (and durations) and a sam-
ple of n avalanches, the likelihood of the power-law model given a pa-
rameter � is

L���x� � �
i�1

n

P�� xi�,

whereas the best-fit parameter � is calculated by maximizing the log-
likelihood as a function of �. As a control, we compared the results with
those obtained from phase-shuffled data. Specifically, we Fourier trans-
formed the original continuous MEG signal data in each channel and
shuffled the phases of different frequencies. This process maintains the
power spectrum of each channel but destroys temporal correlations. We
also studied the effect of sensor array size on the cascade size distributions
by applying the analysis to contiguous subsections of the array.

Estimation of deviation from the critical neuronal avalanche size distri-
bution, calculation of branching parameter, and avalanche shape collapse
analysis. Because for neuronal avalanches the probability density func-
tion (PDF) of cascades x follows a power law with slope � � �1.5 (Beggs
and Plenz, 2003; Shriki et al., 2013), the corresponding cumulative den-
sity function (CDF) for cascade sizes, FNA(�), which specifies the frac-
tion of measured cascade sizes x 
 �, is a �1⁄2 power-law function,
FNA��� � �1 � �l/L��1�1 � �l/�� for l � x � L. The nonpara-
metric measure, �, quantifies the difference between an experimental

cascade size CDF, F(�), and the theoretical reference CDF, FNA(�), as
follows:

� � 1 	
1

m �
k�1

m

�FNA��k� � F��k��,

where �k are m � 10 cascade sizes spaced logarithmically between the
minimum and maximum observed cascade size. The practice of using
CDFs rather than PDFs to calculate � is to avoid sensitivity to binning.
The measure � was found to be more accurate in measuring deviation
from neuronal avalanches than other nonparametric comparisons of
CDFs (e.g., Kolmogorov–Smirnov and Kuiper’s tests; Shew et al., 2009).

The branching parameter 
 was estimated by calculating the ratio of
the number of events in the second time bin of a cascade to that in the first
time bin. This ratio was averaged over all cascades for each subject and for
each experiment part, with no exclusion criteria (Beggs and Plenz, 2003)
as follows:


 �
1

Nav
�
k�1

Nav nevents�2nd bin of k'th avalanche�

nevents�1st bin of k'th avalanche�
,

where Nav is the total number of avalanches in the particular dataset, and
nevents represents the number of events in a particular bin. To obtain an
estimate of 
 across time, all second bin/first bin ratios from each ava-
lanche were accumulated at a �t time bin resolution. The ratio of each
specific avalanche was associated with the time of the first bin, and the
averaging operation was replaced by a normalization factor (i.e., dividing
by the total number of avalanches from all same-cognitive-state epochs
and multiplying by the number of time bins). We also examined other
methods to estimate the branching ratio. In particular, we defined 
all as
the mean ratio of events from all consecutive bins, in which the first bin
had a nonzero number of events. We also defined 
last as the mean ratio
between the two last bins in a reverse order. In other words, for each
avalanche, we divided the number of events in the bin prior to the last one
by the number of events in the last bin.

Near criticality, an avalanche temporal profile is expected to show a
characteristic shape that scales with the avalanche duration. Likewise, the
average avalanche size is expected to scale with the avalanche duration
(Friedman et al., 2012; Priesemann et al., 2013):

S�t, T� � F� t

T� ��T� 	 F� t

T� Tb,

� S � �T� � 

0

T

S�t, T� 	 Tb�1,

where S(t, T ) is the number of events at time t in an avalanche of dura-
tion T, F�t/T� is the expected characteristic shape with a rescaled time axis
(i.e., relative to the avalanche duration), 	S
(T ) is the average avalanche
size for each duration T, and b is the critical exponent (in the physics

literature, b is symbolized by
1


vz
� 1, but note that 
 does not refer to

the branching parameter).
To examine the avalanche shape as a function of duration, we divided

the avalanches into groups containing all avalanches of the same dura-
tion. For each duration, we calculated the mean avalanche size, 	S
(T ),
and plotted it as a function of duration in log–log coordinates. We then
used a linear fit to extract the exponent of the anticipated power law.
Next, we wanted to examine whether the avalanche shapes will collapse
to a single characteristic shape, F�t/T�. Thus, we scaled the time axis by
the duration to obtain a common axis between 0 and 1. Then we applied
a common binning at the highest temporal resolution used and interpo-
lated each avalanche accordingly. By averaging over avalanches of the
same duration, we obtained a set of relatively smoother temporal profiles
(i.e., shapes, one for each duration) of which amplitudes are predicted to
scale by a scaling function of the form �(T ) � Tb. To search for the
optimal �(T ), we looked for a function of T that will minimize the
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Figure 1. Identification of cascades formed by discrete MEG events and the expected cascade size distributions at stimulus-evoked and resting-state activity in a single subject. A, Continuous MEG
signal from a single sensor during stimulus-evoked activity. The most extreme point (red dot) in each excursion beyond a threshold of �3 SDs (dashed horizontal lines) was identified as a discrete
event in the signal. B, Raster of events on all sensors (n � 247) in a 1 s segment of recording (single stimulus-evoked trial from a single subject). Events from the single sensor that are marked by
red dots in A are enclosed by red rectangles. A cascade of events was defined as a series of time bins in which at least one event occurred across the sensor array, (Figure legend continues.)
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squared difference between the scaled shapes and the mean shape relative
to the mean shape:

�
T
�

S�t/T�

�̂�T�
� S� �t/T�

S� �t/T�
�

2

.

The resulting �̂(T ) was plotted as a function of duration in log–log co-
ordinates. We then used a linear fit to extract the exponent of the antic-
ipated power law.

In our datasets, we found that, by accumulating all avalanches collected
from all subjects across all trials, the maximal duration that has significant
numbers of avalanche samples (�100 avalanches at both rest and stimulus-
evoked) is 14 bins. The lower limit for duration was determined by support-
ing a meaningful temporal profile, and it was set to five bins. Thus, the
analysis could only be applied to this relatively narrow range of durations.

Results
Neuronal avalanche analysis offers a natural way to segment neu-
ral data into cascades of activity and thus to examine the spatio-
temporal organization of recorded activity. Aiming to explore the
efficacy of neuronal avalanche analysis in the context of evoked
activity, we applied this analysis to MEG data collected while the
subject was performing a visual task of face perception. We chose
to examine MEG data because it facilitates the recording of neu-
ronal activity with millisecond time resolution (Hansen et al.,
2010). Additionally, the three-dimensional arrangement of the
sensors in the array provides significant, although coarse, spatial
information. Data recorded were also used for a comparison be-
tween resting-state and stimulus-evoked activity within each of
the 21 healthy subjects.

The first stage of analysis involved detection of large positive
and negative signal deflections in the continuous electromagnetic
signal measured by each sensor. Using an amplitude thresholding
operation (threshold of �3 SDs; Fig. 1A), the extreme of each
deflection was marked as a discrete event. Figure 1B shows a
typical event raster for a single stimulus-evoked trial from a single
subject (all 247 sensors, duration of 1 s from stimulus onset until
the end of stimulus presentation). Then each raster was binned
(�t � 3.93 ms) and events were grouped into spatiotemporal
cascades (Fig. 1B, top) by a clustering algorithm that is based on
temporal proximity (see Materials and Methods). The time scale
parameter �t was determined based on previous studies (Beggs
and Plenz, 2003; Shriki et al., 2013) and was also very close to the
mean IEI across subjects (	IEI
 � 3.96 � 0.59 and 3.98 � 0.63 for
stimulus-evoked and rest, respectively; Fig. 2A; Priesemann et al.,
2013). This signal discretization was shown previously to ef-
fectively maintain correlations between different brain sites,
as reflected by recorded signals at associated sensors, with a
small bias that reduces weak correlations attributable to the
influence of thresholding (Shriki et al., 2013). The size of each

cluster or avalanche, s, is defined as the number of events in
the cluster.

Figure 1C depicts cascade size distributions for a single subject at
stimulus-evoked and resting-state activity. As evident, the distribu-
tions obey power-law behavior, P(s) � s� for both resting-state and
stimulus-evoked activity (Fig. 1C, solid green and violet lines). This
behavior was absent in phase-shuffled controls with the same power
spectrum (Fig. 1C, broken green and violet lines). A cutoff of the
power law can be seen at cascade sizes between �100 and 200. This
cutoff is a function of the size of the sensor array (Fig. 1D) and thus
does not relate to any tangible spatial limit on cortical dynamics aside
from the limited dispersion of the sensor array (Beggs and Plenz,
2003; Shriki et al., 2013). To reexamine this effect on our data, we
divided the original sensor array into concentric subarrays (Fig. 1D,
bottom left inset) and recalculated the cascade size distribution for
each subarray (Fig. 1D). The mean estimated power-law cutoff
across all subjects increased linearly with the size of the sensor array
(R2 � 0.93, p 
 0.05).

In agreement with previous findings for critical neural net-
works (i.e., � � �1.5), we found � � �1.47 � 0.07 for stimulus-
evoked and � � �1.48 � 0.09 for resting-state activity (Fig. 2B).
In addition, we calculated for each subject and for both cascade
size distributions �, a measure that indicates the degree of prox-
imity of the size distribution to a perfect power law with exponent
�1.5 and therefore serves to estimate how far the neuronal sys-
tem is from criticality (i.e., for neuronal systems at criticality � �
1, whereas the opposite is not necessarily true). The measure �
was found to be � � 0.99 � 0.02 for stimulus-evoked and � �
0.98 � 0.03 for resting-state activity, suggesting a close proximity
to criticality for both cognitive states. We also calculated for each
cascade size distribution the area under the distribution function
for cascades of size larger than 10, denoted as C10.

Previous studies (Plenz, 2012) have shown that neuronal crit-
ical dynamics are captured successfully by a critical branching
process (Harris, 1989). To test this hypothesis, we next calculated
the branching parameter 
. This additional descriptive property
denotes the ratio between the numbers of elevated activity events
in consecutive time steps. In critical systems, 
 � 1, one local
synchronous group (ancestor) triggers on average one other local
synchronous group (descendent) yet without pinpointing to a
direct or a causal link (see Materials and Methods). Indeed, in
agreement with previous findings, the observed values were 
 �
1.15 � 0.16 for stimulus-evoked and 
 � 1.15 � 0.22 for resting
activity (Fig. 2B). A phase plot of the power-law exponent �
versus the branching parameter 
 for both stimulus-evoked and
rest (Fig. 2B, violet and green points, respectively) demonstrates
proximity to (
 � 1, � � �1.5), which is consistent with a critical
branching process.

The correlations between various measures calculated for the
stimulus-evoked and the resting-state activity are presented in
Figure 2. We found high correlation of �0.75 (p 
 0.0001) for �,
�, 
, and C10 within subjects at stimulus-evoked and resting-state
activity (for corresponding values for each measure, see inline
text in Fig. 2C–F). Noticeably, the linear fits for all correlations
were found to be similar to y � x, namely without an offset.
Subsequently and because of the clear observable resemblance of
within-subject cascade size distributions, we calculated different
distance metrics [squared Euclidean distance (L2), Kullback–
Leibler divergence, and Frechet distance (Hadi and Nyquist,
1999; Lovric, 2011)] between all possible pairs of stimulus-
evoked and resting-state cascade size distributions, which we
then divided into four separate groups: (1) intersubject rest–rest;
(2) intersubject evoked– evoked; (3) intersubject rest-evoked;

4

(Figure legend continued.) ending with a silent time bin. Here, the time bin width was 3.93
ms, four times the sampling time step (0.983 ms; 1017.25 Hz). The size of each cascade is
defined as the number of events involved in the cascade. Above the raster plot, the cascades
defined using this procedure are marked by filled red rectangles with base length corresponding
to the duration of the cascade. C, Cascade size distributions from a single subject for stimulus-
evoked and rest data (solid violet and green line, respectively; dashed violet and green lines
correspond to phase-shuffled data). Dashed black line represents a power law with an exponent
of �3⁄2. Cascade size distributions follow power laws, as expected for neuronal avalanches. D,
Cascade size distributions of stimulus-evoked for subsamples of the sensor array. Line color
indicates the number of sensors in the analysis: pink, 38; orange, 62; lime, 124; cyan, 205; and
violet, 247. Bottom left insets, Diagrams of the sensor array with colored subsamples.
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Figure 2. Correlations of neuronal avalanche parameters and similarity of avalanche size distribution: intersubject and intrasubject comparisons for stimulus-evoked activity versus rest. A,
Correlation of IEIs between stimulus-evoked and resting state. Each point represents a single subject, and solid vertical and horizontal lines denote mean across subjects of the perpendicular axis
(	IEI
�3.96�0.59 ms and 3.98�0.63 ms for stimulus-evoked and rest, respectively). B, Phase plots of the power-law exponent � versus the branching parameter 
. Each violet point represents
a single subject at stimulus-evoked, and each green point represents a single subject at rest. Solid vertical and horizontal lines denote mean across subjects of the (Figure legend continues.)
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and (4) intrasubject rest-evoked; we then tested for differences in
the means of each group. For this aim, checking for homogeneity
of variances by Levene’s test resulted in the rejection of the null
hypothesis of equal variances for all distance metrics (p 
 0.001).
Therefore, we ran a Welch ANOVA with a Games–Howell test.
We found a highly significant difference in mean distances be-
tween the intersubject rest–rest and intersubject evoked– evoked
size distributions and between intersubject rest–rest and intrasu-
bject rest-evoked cascade size distributions (p 
 0.001). More-
over, we found a significant difference in mean distances between
intersubject rest-evoked and intersubject evoked– evoked and
between intersubject rest-evoked and intrasubject rest-evoked
size distributions (p 
 0.001 and p � 0.004, respectively). Addi-
tionally, a significant difference in mean distance was found be-
tween intersubject rest–rest and intersubject rest-evoked size
distributions according to Kullback–Leibler divergence (p �
0.01), but it was only marginally significant according to mean
squared Euclidean distance (L2; p 
 0.1) and not significant ac-
cording to Frechet distance (p � 0.267). The distance means for
intersubject evoked– evoked and intrasubject rest-evoked did not
differ significantly by any of the distance metrics (p � 0.894, p �
0.725, and p � 0.828, respectively). Overall, cascade size distri-
butions of the same subject tend to show high similarity (Fig.
2G–I), yet while subjects are involved in stimulus-evoked activ-
ity, the variability among subjects is reduced. The reduction in
heterogeneity is also supported by the size of the appropriate SDs
(Fig. 2G–I).

The temporal organization of neuronal avalanches has additional
special characteristics that are predicted for a critical branching pro-
cess (Harris, 1989). Accordingly, the avalanche duration T follows a
power-law P(T) � T� with exponent � � �2 (Plenz, 2012). The
cascade duration distributions of each subject obey a power-law be-
havior with a cutoff for both resting-state and stimulus-evoked ac-
tivity (Fig. 3C, bottom left inset, an example from a single subject,
solid green and violet lines, respectively). In agreement with predic-
tions, we found � � �2.01 � 0.10 for stimulus-evoked and � �
�2.03 � 0.12 for resting-state activity (Fig. 3A). A three-
dimensional phase plot of the power-law exponents � and � versus
the branching parameter 
 for both stimulus-evoked and rest (Fig.
3B, violet and green points, respectively) demonstrates proximity to
(
 � 1, � � �1.5, � � �2), which is consistent with a critical
branching process. The within-subjects correlation between � for
stimulus-evoked and resting-state activity is �0.70 (p 
 0.0001; Fig.
3A). Noticeably, not only is the correlation slightly lower than pre-
vious measures, but also the linear fit for this correlation does not
obey y�x, namely there is an offset. Nonetheless, given the relatively
high correlation and the observable resemblance of within-subject
cascade duration distributions, we calculated the different distance
metrics [squared Euclidean distance (L2), Kullback–Leibler diver-
gence, and Frechet distance] between all possible pairs of stimulus-
evoked and resting-state distributions. The rejection of the null
hypothesis for homogeneity of variances by Levene’s test (p
0.001)
was followed by a Welch’s ANOVA with a Games–Howell test. We

found a highly significant difference in the three mean distance met-
rics between the intersubject rest–rest and the intersubject evoked–
evoked duration distributions (p � 0.004, p 
 0.001, and p � 0.04,
respectively), as well as between the intersubject rest–rest and intra-
subject rest-evoked mean distances (p 
 0.001). Moreover, we
found a significant difference in mean distances between intersub-
ject rest-evoked and the intersubject evoked–evoked duration dis-
tributions (p 
 0.05, marginally significant according to Frechet
distance p � 0.1) and between intersubject rest-evoked and intrasu-
bject rest-evoked mean distances (p 
 0.001). Additionally, unlike
calculated distances between size distributions, the mean distances
between duration distributions of intersubject evoked–evoked and
intrasubject rest–evoked differ significantly (p 
 0.01), although we
found no significant difference in mean distance between intersub-
ject rest–rest and intersubject rest-evoked duration distributions
(p � 0.789, p � 0.309, and p � 0.946, respectively). Overall, in
agreement with findings for cascade size distributions, duration dis-
tributions of the same subject tend to show high similarity. Further-
more, stimulus-evoked activity tends to reduce the variability
among subjects.

Hitherto, we demonstrate that, for each subject, both stimulus-
evoked and resting-state activity can be described by critical dynam-
ics. Thus, the “grand” (across all subjects) perspective is an
appropriate outlook of interest. Accumulating all avalanches from
all subjects and all trials of stimulus-evoked activity results in a 5.42%
larger amount of avalanches than that of rest (Fig. 3D; rate of 20.73
and 19.66 avalanches/s, respectively). Intermixing data from differ-
ent subjects into a common pool has the benefit of increasing our
statistical strength, but this also has a downfall of mounting up vari-
ability between subjects and/or experiments. For instance, there are
some differences between subjects in the rate of collected events (Fig.
2A). Interestingly, each subject’s mean IEI across trials is not only
highly correlated between cognitive states (Fig. 2A) but also to other
metrics (correlation of mean IEI at stimulus-evoked activity to � is
r�0.891, to 
 is r�0.900, and to � is r�0.800; and at rest to � is r�
0.878, to 
 is r � 0.893, and to � is r � 0.803; p 
 0.0001 for all).
These differences in rate (mean IEI) may indicate heterogeneity in
measurement parameters, such as effective distance between sensors
and neuronal sources (e.g., size and position of the head). Alterna-
tively, rate differences may be more closely related to variabilities in
anatomical and physiological parameters, which in turn may impel
distinct individual’s spatiotemporal scales and a particular distance
from critical dynamics. These two descriptions are non-excluding,
and the degree to which each influences our datasets is ill deter-
mined. Setting the timescale �t as the mean IEI over subjects does
not enable to overcompensate differences attributable to measure-
ment parameters (first alternative). Nevertheless, choosing to set a
fixed �t, as opposed to taking the individual mean IEI across trials,
does not impose an “equalizing” constraint on event rate and sup-
ports a more direct group analysis.

The grand (across all subject) data poll conserved the theoreti-
cally expected power laws (� � �1.50 and �1.50; � � �2.00 and
�2.03 for stimulus-evoked and rest, respectively; Fig. 3C,D, top for
duration distributions). Noticeably, in the cascade duration distri-
butions (both in the grand and in all individual subjects’ distribu-
tions), there is an underrepresentation of cascades of duration of 1 �
�t. Moreover, although there is a great similarity between stimulus-
evoked and rest distributions (Fig. 3C), there is a slightly higher
tendency to obtain longer (Fig. 3D, bottom) and larger (Fig. 3D,
bottom, inset) avalanches in stimulus-evoked activity versus in rest,
because there are small differences in how the total amount of ava-
lanches in a certain cognitive state is distributed between avalanches
of various durations and sizes.

4

(Figure legend continued.) perpendicular axis (	�
 � �1.47 � 0.07 and �1.48 � 0.09;
	

 � 1.15 � 0.16 and 1.15 � 0.22 for stimulus-evoked and rest, respectively). C–F, Corre-
lation of the power-law exponent � (C), branching parameter 
 (D), � (E), and the tail of the
CDF, C10 (F) between stimulus-evoked and resting state in each subject. High consistency in all
these parameters was found in each subject. G–I, Similarity of avalanche size distributions
using squared Euclidean distance (G), Kullback–Leibler divergence (H), and Frechet distance (I).
Similarity between intersubject stimulus-evoked activities and between intrasubject stimulus-
evoked to resting state was greater than similarity between intersubject resting states.
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An additional way to probe for critical dynamics, which goes
beyond power-law distributions, is the avalanche shape collapse
analysis (Friedman et al., 2012; Priesemann et al., 2013; Roberts et al.,
2014; see Materials and Methods). The term avalanche shape refers

to the temporal profile of the number of events in each time bin
along the avalanche, denoted here as S(t, T), where t is the time bin
and T is the avalanche duration. For a critical system, avalanche
shapes are predicted to have a universal shape, which scales as a

Figure 3. Temporal organization of neuronal avalanches. A, Correlation of the power-law exponent � of the duration distribution between stimulus-evoked and resting state. Each point
represents a single subject. B, A three-dimensional phase plot of the power-law exponents � and � versus the branching parameter 
 for both stimulus-evoked and rest. Stars indicate across
subjects mean and two-dimensional projections of the mean. Each violet and green point corresponds to a single subject at stimulus-evoked and rest, respectively. C, A grand (across subjects)
cascade duration distributions for stimulus-evoked and rest data (solid violet and green line, respectively). Dashed black line represents a power law with an exponent of �2. Inset, From a single
subject. Cascade duration distributions follow power laws, as expected for neuronal avalanches. D, Top, Histogram of number of avalanches from discrete durations for both stimulus-evoked and
rest. Each bar represent a bin of duration �t � 3.932 ms. The histogram was cut at 20 � �t � 78.64 ms for better visualization (longest avalanche collected 56 � �t � 220.19 ms). Bottom, A
difference between stimulus-evoked and rest normalized duration histograms (i.e., after division by the corresponding sum of all avalanches collected at each cognitive state separately; inset, same
for size histograms, histograms were cut at an avalanche size of 100 for better visualization). Although there are more avalanches collected during stimulus-evoked than in rest (�5.42%), the
avalanches collected during stimulus-evoked tend to be lengthier (and larger) than in rest. E, F, Avalanche shape collapse analysis. E, The mean avalanche size for each duration 	S
(T) as a function
of duration, T in log–log scales. The extracted power-law exponent b � 1 is equal to 1.48 and 1.50 for stimulus-evoked and rest, respectively. F, The estimated scaling function �̂(T) [which collapses
the temporal profile for each duration, S(t, T) to the universal shape F�t/T�] as a function of duration T. The extracted power-law exponent b is equal to 0.37 and 0.40 for stimulus-evoked and rest,
respectively. Insets, Mean avalanche shape for each duration, before and after collapse, for both stimulus-evoked (left) and rest (right). G, H, A correlation between 
last, a new estimate based on
calculating the ratio between the last two bins of each avalanche in the reverse direction, and 
, which relies on the first two bins, for both stimulus-evoked and rest. We found that these two
estimates are highly correlated and provide similar estimates (
last � 1.15 � 0.17 and 1.14 � 0.23 for stimulus-evoked and rest, respectively), reflecting a symmetry between avalanche initiation
and termination. Insets, Excluding avalanches of size 1 and 2, for which the definitions of 
 and 
last are identical, still preserves a high correlation between the two estimates.
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function of avalanche duration, S�t, T� � F�t/T� ��T� 	 F�t/T� Tb,
where b is the scaling exponent. Another manifestation of this (ob-
tained by simple integration) is that the mean avalanche size for each
duration, 	S
(T), is predicted to exhibit a power-law dependence on
the avalanche duration with an exponent of b � 1. We note that our
data poll supported these type of analyses only in the grand (across all
subjects) perspective and could span a limited duration range (5 �
�t until 14��t; see Materials and Methods). Nonetheless, we found
a power-law relation between the mean avalanche size and duration
with an exponent of 1.48 for stimulus-evoked activity and 1.50 for
rest (Fig. 3E), at least within the order of magnitude tested. Ava-
lanche shapes before and after collapse are depicted in Figure 3F
(insets). The dependence of the scaling factor on the avalanche du-
ration is shown in Figure 3G, displaying a power law with an expo-
nent of 0.37 for evoked activity and 0.40 for rest. These findings
further strengthen the evidence for critical dynamics. Nonetheless,
the scaling exponents for the size and duration distributions and the
one derived from the shape collapse analysis are predicted to obey
the following relationship (Sethna et al., 2001; Friedman et al., 2012;

in our notations):
� � � 1

� � � 1
� b 	 1. In our data, the left side is

near 2 (2.16 � 0.15 for stimulus-evoked and 2.18 � 0.22 for rest),
whereas the right side is �1.4. We speculate that the deviation we

observe from the theoretical prediction of a scaling relationship can
be attributed to the fact that our data limited the application of the
shape collapse analysis to only a relatively small range of durations (1
order of magnitude), which reduces the accuracy to which the cor-
responding scaling exponent can be estimated. In addition, inter-
mixing data of several subjects that may differ in temporal
organization of neuronal avalanches and distance from critical dy-
namics may further obscure our results.

The mean temporal profile of the recorded avalanches (Fig.
3F, insets) is characterized by relatively sharp initiation and ter-
mination phases and a relatively flat phase between. These dis-
tinct phases may reflect transient state-dependent processes that
take place during an avalanche. To gain more insight into this
issue, we explored additional approaches to calculate the branch-
ing parameter and compared them with the results obtained
using only the first two bins, which we denote by 
 (see Materials
and Methods). We first evaluated the branching ratio using all
bin pairs, 
all, in which the first bin had a nonzero number of
events. This measure is correlated strongly with the one based on
the first two bins (r � 0.981, p 
 0.0001 and r � 0.992, p 
 0.0001
for stimulus-evoked and rest, respectively), but it gives lower
estimates (
all � 0.56 � 0.07 and 0.56 � 0.10 for stimulus-evoked
and rest, respectively). We found that this lower estimate of the

Figure 3. Continued.
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branching parameters are mainly due to the last bins in each
avalanche, as removing them from the analysis resulted in
much closer values. This may reflect inhibitory processes that
are recruited during the avalanche and play a role in terminat-
ing it. We also examined a new estimate, based on calculating
the ratio between the last two bins of each avalanche in the
reverse direction, 
last. We found that this estimate is also
highly correlated (Fig. 3G,H ) with the measure that relies on
the first two bins and provides similar estimates (
last �
1.15 � 0.17 and 1.14 � 0.23 for stimulus-evoked and rest,
respectively), reflecting a symmetry between avalanche initia-
tion and termination.

Generally, it seems that the grand (across subjects) approach
we implemented in this study is informative, despite between-
subjects variability in metrics of criticality. This corresponds well
with conventional ERP/ERF studies, in which typically all sub-
jects are taken together (Rossion, 2014). Evoked response ampli-
tudes tend to be low and variable, so accumulating trials from
multiple subjects and signal averaging is usually required. Here,
we obtained a grand event raster by summing over all event ras-
ters from all stimulus-evoked trials (Fig. 1B shows an event raster
from a single trial) that were recorded from all subjects. The

resulted grand raster is portrayed in Figures 4A and 5A. Accord-
ingly, the PSTH of event rate (Fig. 5A, top) was obtained by
sample-wise summing of all events from all the sensors (rows of the
grand raster) and dividing by time. The boundaries of time interval
demonstrating higher event rate (Figs. 4A, 5A, pinkish hue in grand
raster) were determined by the first and consecutive crossings of 2
SDs from prestimulus baseline and were 72 and 145 ms, respectively.
Subsequently, the grand rasters in Figures 4A and 5, A and B, are
portrayed with the sensors (y-axis) sorted according to the ascending
summed event rate within the 72–145 ms window (i.e., sensors with
the highest rate are at the bottom). Borrowing from the ERF/ERP
terminology, the time interval associated with the high event rate can
be referred to as an “avalanche component.” Spatially, the revealed
sensor arrangement is displayed to the left of the grand raster (Fig.
4A). The topography of event rate at the avalanche component is
displayed in Figure 4B, demonstrating high activity at temporal sites
at both hemispheres. The spatial arrangement into three sensor
groups via sorting by event rate at each sensor corresponds visibly
with this topography (Fig. 4B, bottom row).

Conventionally, when studying stimulus processing or re-
sponses, the standard procedure of averaging is performed. In
Figure 4C, the typical ERF/ERP outlook is demonstrated for this

Figure 4. Grand all-subjects stimulus-evoked response. A, Grand raster of events on all sensors (n � 247) in the first 500 ms after stimulus onset. The grand raster was obtained by summing all
event rasters from all stimulus-evoked trials that were recorded from all subjects. Sensors in the raster were sorted according to ascending event rate (i.e., sensors with highest rate are at the bottom)
associated with the time interval that was determined by the first crossings of summed event rates over sensors � 2 SDs of peristimulus baseline (accordingly, time interval found was 72–145 ms).
On the left of the raster plot are maps of sensor locations (marked by green dots) that are associated with the corresponding rows (grouped in by a curly bracket) of the grand raster plot (n1 � 101;
n2 � 103; n3 � 43, respectively). B, Event rate topography, i.e., within the indicated time interval, is plotted. Sensors corresponding to maps in A (left) are marked by asterisks on top of this
topography. C, Grand stimulus-evoked ERF, obtained by averaging across subjects and trials. Each curve represents a sensor. Absolute value of ERF (main panel), ERF (top right inset), and mean over
sensors absolute ERF (bottom right inset) are portrayed. The M100 and M170 ERF components are clearly visible, whereas no clear separation is visible for later components. D, Topographic plots of
the ERF components in the time intervals corresponding to the M100 and M170. Note the similarity between the topography of the conventional ERF and the one associated with event rates.
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dataset. Looking at the 500 ms from stimulus onset, the ERF
components M100 and M170 are clearly visible, whereas later
components are less distinct. Motivated by comparison with the
suprathreshold events outlook, in which both positive and nega-

tive suprathreshold signal deflections were taken into consider-
ation, we focused here on the absolute ERF. The topographies
associated with these two ERF components (Fig. 4D, right col-
umn) show great similarity to the topographies obtained for the

Figure 5. Temporal and spatial unfolding of grand stimulus-evoked and rest responses. A, B, Main panels, Grand raster for the combined fixation-evoked and stimulus-evoked time interval (�1300 until
1000 ms; A) and for resting state (0 –1000 ms epochs; B), respectively. Stimulus-evoked data were analyzed using two alternatives of time-locking schemes [(1) time was locked to fixation onset (x-axis starts
from 0) and stimulus onset; (2) time was locked to stimulus onset alone (x-axis starts from �1.3)] and resulted in almost identical profiles. Deviation between profiles was only limited to the leftmost range of
the x-axis because of jitter in fixation length and accordingly the timing of anticipated evoked response to fixation cue. Grand raster plots were obtained by summing all event rasters from all relevant epochs from
allsubjects.Sensors inrasterwerearrangedasinFigure3A.A,B,Toppanels,PSTHofeventrateobtainedbysample-wisesummingofalleventsfromallsensorsanddividingbytime.Slidingwindowof10samples
was used for smoothing. The vertical lines at time of 0 s at both the grand raster and PSTH of combined fixation-evoked and stimulus-evoked mark a brake in continuity of datasets as a result of the random jitter
in stimulus onset. Grand raster plots and PSTH of stimulus-evoked activity clearly show an evoked response with a preparatory and post-activation responses, whereas a more plateau-like response is
demonstrated for resting state. A, B, Right panels, Event rates per sensor were calculated by summing all events from all samples and dividing by time. Event rate plots reveal a nearly complementary spatial
distribution across sensors for the 1 s stimulus-evoked (A, red) versus 1 s resting state (B, green), whereas a more uniform spatial distribution is demonstrated for the combined fixation-evoked and stimulus-
evoked time interval. C, Comparing grand raster for the combined fixation-evoked (time marked with *) and stimulus-evoked time interval to the conventional ERF perspective (absolute root mean squared,
subtracted by the mean of all signals and divided by their SD) (�1300 until 1000 ms) demonstrates that preparatory and post-activation responses have no counterpart ERFs.
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identical time intervals by event rates (Fig. 4D, left column).
Thus, the discretization of the recorded MEG signals into su-
prathreshold events successfully captured the spatial topography
of the M100 and M170 ERF components.

Nevertheless, in contrast to the outlook of ERF/ERP, which
mostly results in the canceling out of ongoing activity traces, the
currently presented perspective is such that all of the collected
events are accumulated. Extending the time course investigated
to include the fixation-evoked activity and the duration of the
whole time interval of stimulus presentation revealed, apart from
an expected period of elevated activity during the first 200 ms
from stimulus onset, a ramp-up in event rate starting as early as
800 ms before stimulus onset, as well as a substantial decrease in
the rate right after the peak (Fig. 5A). After this decrease, the
overall rate rises slowly and returns to the average event rate.
These dynamics have no counterpart at conventional ERF anal-
ysis (Fig. 5C). The extended grand event raster plot and its grand
PSTH are portrayed in Figure 5A. For comparison, Figure 5B
depicts resting-state activity, which by definition is not time

locked to any external event and displays relatively small fluctu-
ations around a steady average event rate (Fig. 5B).

Thus far, it seems that, albeit the high similarity of within-
subject avalanche size distributions for stimulus-evoked and rest
activities, the grand (across all subjects) perspective reveals dif-
ferent dynamics of suprathreshold event rate during the two
states. To examine whether differences in dynamics are also re-
flected at the excitability properties of the neuronal system at
these two distinct cognitive states, we examine the temporal un-
folding of the branching parameter 
, which represents the gain
of the system. Indeed, during resting state, because the activity is
not time locked to any particular extrinsic or intrinsic event, 

only fluctuates mildly around a constant level (Fig. 6B, blue line
indicates 
 � 1.16 � 0.52) at proximity to the theoretical critical
value 
 � 1. Nonetheless, during fixation-evoked and stimulus-
evoked activities (Fig. 6A), we find similar dynamics as in the
grand PSTH, with a preparatory ramp-up of higher ratio of exci-
tation/inhibition, followed by a peak and a sharp decrease in the
excitation/inhibition ratio. These dynamics differ significantly

Figure 6. Temporal unfolding of the branching parameter 
 of stimulus-evoked and rest responses. A, The evolution across time of the branching parameter 
 from the combined fixation-
evoked and stimulus-evoked time interval (�1300 until 1000 ms). Data were analyzed according to two alternative time-locking schemes (for details, see legend of Figure 5A) and resting state (B)
(0 –1000 ms epochs). The branching parameter unfolding was obtained by summing all momentary branching parameter (associated with the first time bin of each avalanche) from all relevant
epochs (normalized by dividing by the number of all avalanche and multiplied by the number of time bins) from each subject. The displayed curves (violet in A and green in B) demonstrate the
average across subjects, with the surrounding filled curves display the boundaries of �SEM. Similarly, in both A and B, the constant blue line represents the average branching parameter across rest
(mean � SEM, 1.16 � 0.11). The difference between the combined fixation-evoked and stimulus-evoked (A) as well as resting state (B) to the mean branching parameter across rest was found to
be significant only for the combined fixation-evoked and stimulus-evoked for each consecutive 200 ms interval between �700 and 400 ms (marked by blue vertical lines; area marked by partly
transparent rectangle; p 
0.05, Bonferroni’s corrected for multiple comparisons). No other segments revealed a significance difference compared with the average branching parameter across rest.
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from resting state at �0.7 to 0.4 s (calculated by comparing the
means of 0.2 s time intervals; p 
 0.05, Bonferroni’s corrected for
multiple comparisons). Noticeably, this finding is revealed de-
spite multiple smearing factors that affect this calculation (i.e.,
averaging across subjects, which may demonstrate variations in
processing latencies, and the momentary 
 was only attributed to
the first time bin of each particular avalanche, thus injecting noise
jitter). Interestingly, not all subjects demonstrate the same tem-
poral unfolding profile of the branching parameter 
. We hy-
pothesize that this may relate to functional qualities, such as
attention and performance. However, it is important to note that
we used an oddball paradigm: subjects were asked to press a
button every time a female face appeared (16% of the trials),
terminating each specific trial if pressed. Thus, by definition, tri-
als of interest were maintained task irrelevant and consequently
free from cognitive processes and muscle artifacts associated with
motor execution. Furthermore, no significant correlation was
found between each subject’s overall 
, or other metrics of criti-
cality, and reaction time. Additionally, no significant association
between criticality metrics and the emotional content of images
was found. This may be attributable to the relative low number of
accumulated suprathreshold events (Figs. 4A, 5A), as well as the
small or null effects, and inconsistent differences found across
studies directly comparing different face categories (Rossion,
2014).

Nonetheless, we were able to demonstrate deviations from
excitation–inhibition balance at short timescales, driven by an
external time-locked event, such as, in our case, a visual stimulus.
The implication of this result is better emphasized when examin-
ing the corresponding spatial spreading. Because each avalanche
is a particular spatiotemporal pattern, we examined the spatial
distribution of accumulated avalanches as a function of time (Fig.
7A). Looking at the relative rate at which each sensor participates
in an avalanche during specific time windows of interest reveals
interesting spatiotemporal dynamics. These dynamics couple the
prior-to-stimulus ramp-up with a posterior– central elevated ac-
tivity as opposed to a decay in more anterior regions. Addition-
ally, the substantial poststimulus decrease seems to couple to a
prominent reduction in activation of bilateral posterior regions
(more prominent on the right) and subsequent midline frontal
regions activation. These revealed dynamics resonate well with
the result of high between-subject similarity in avalanche size
distributions during stimulus-evoked activity (Fig. 2G–I). The
demonstrated spatiotemporal unfolding of activation is likew-
ise in agreement with the suprathreshold event rate histogram
across stimulus-evoked activity, with more posterior sensors oc-
cupying the middle of the raster and frontal sensors occupying
the top (Fig. 5A, left, purple). Interestingly, the complementary
histogram (Fig. 5A, left, blue) across fixation and stimulus-
evoked activity shows a plateau-like shape, with a relatively con-
stant average event rate per sensor, in support of the viewpoint of
an overall balance of excitation and inhibition at longer time-
scales. Indeed, the spatiotemporal organization across the dura-
tion of stimulus presentation reflects this arrangement (Fig. 7B,
right), whereas in resting state, a more posterior– central activa-
tion is noticeable, as well as a slight lower activation at the most
non-peripheral frontal and temporal sites (Fig. 7B, left). The
probability of a sensor to participate in an avalanche differs be-
tween stimulus-evoked and resting state. A small difference in
probabilities is portrayed in Figure 7C. The obtained spatial con-
tiguity across subgroups of sensors suggests a consistent differ-
ence between the two cognitive states.

Discussion
Our results show that cortical activity organizes as neuronal ava-
lanches at both resting-state and stimulus-evoked activities. The
scale invariance of neuronal avalanches enables their detectability
even at large-scale activity of the entire human cortex observed
using noninvasive neuroimaging methods. Recently, using MEG,
cortical activity of healthy human subjects was shown to consist
of neuronal avalanches at both the sensor (Shriki et al., 2013) and
the source level (Palva et al., 2013), suggesting that it is in a critical
state. Here, we were able to demonstrate that the human brain
maintains critical dynamics during different cognitive states,
namely, rest and stimulus-evoked. We also explored the relation-
ship between critical dynamics at resting-state with those at
stimulus-evoked activity.

In line with the criticality framework, suprathreshold events and
their grouping into cascades (which propagate across the cortical
surface) follow special statistical properties. We showed that the
power law exponent of the size distribution, �, is close to �1.5 and
that the exponent for the duration distribution is close to �2, as
expected for critical neural networks (Plenz, 2012). We also showed
that the branching parameter 
 and the metric � are near the ex-
pected 1 (Plenz, 2012) for both stimulus-evoked and resting-state
activity. However, it should be noted that there are claims that the
brain may in fact operate at a slightly subcritical state (Priesemann et
al., 2014). Indeed, because of limitations of device and methodology
(Priesemann et al., 2009), our results cannot exclude this possibility,
as well as the possibility that different individuals may operate at
different distances from the critical state. Therefore, we constrain
our claim to near-critical dynamics, which nonetheless demonstrate
a considerable high consistency between cognitive states across sub-
jects. For instance, a significant strong correlation was demonstrated
for all these avalanche metrics between the two states. These findings
are reminiscent of previous results obtained for the correlations
within subjects at resting state for � and 
 between two halves of a
single recording or between two separate visits (Shriki et al., 2013)
and suggest a wide range of within-subject consistency. Additionally,
the significantly low intrasubject distance between avalanche size and
duration distributions at both cognitive states suggests that neuronal
avalanches are able to capture fundamental characteristics of the indi-
vidual brain dynamics that are mutual to both cognitive states.

Validating the relevance of the criticality framework to stimulus-
evoked activity enables us to adopt a whole new perspective to ex-
amine stimulus-driven responses. The ratio between excitation and
inhibition has functional significance in various cortical activities,
enabling fine and rapid response across an extended dynamic range
(Okun and Lampl, 2009). A tight coupling between excitatory and
inhibitory synaptic inputs was demonstrated to co-occur with a high
temporal precision of up to a few milliseconds lag in several modal-
ities (Okun and Lampl, 2009). Using MEG, we were able to examine
the balance between excitation and inhibition at an equivalent su-
preme time resolution yet at a spatial resolution fundamental to
cognitive functions of large synchronized groups of neurons.

Consistent with previous findings, we show that the branching
parameter 
, representing the gain of the system, remains at close
proximity to the critical value of 1 at resting-state activity (Figs. 2D,
6B; Shriki et al., 2013). However, at stimulus-evoked activity, we
demonstrated fluctuations in event rate and 
 namely, a ramp-up
before stimulus onset, and a sharp peak activation, followed by a
post-activation decrease. These findings reflect substantial reorgani-
zations and deviations from excitation–inhibition balance on short
timescales (Figs. 5A, 6A). In agreement, a recent report published
while this study was under review demonstrated in an ex vivo exper-
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iment that responses of turtle visual cortex to brief visual inputs are
also characterized by deviations from criticality followed by rapid
tuning to the critical regimen (Shew et al., 2015). It seems that gain
modulations and the interplay between excitation and inhibition do
not enforce a precise timing on the underlying neuronal activity but
rather offer “windows of opportunity” for the activity to evolve (e.g.,
ignited until quenched). These complex dynamics were not visible
throughout standard evoked-response analysis (Fig. 5C).

In the outlook on stimulus-evoked activity offered in this
study, no signal averaging is being performed, in contrast to the
(linear) averaging of standard ERP/ERF analysis. Nonetheless,
the signal-to-noise ratio benefits from the (nonlinear) threshold-
ing operation. Specifically in MEG, it was shown previously that
this operation preserves strong pairwise instantaneous correla-
tions between brain sites while slightly reducing weak correla-
tions (Shriki et al., 2013). As a result, the raster of the detected

Figure 7. Spatial distribution of avalanches in stimulus-evoked and resting-state activity. A, Topography of relative avalanche rate for time-locked stimulus-evoked response (time interval of
interest, as revealed by PSTH; Fig. 5A). Relative avalanche rate per sensor and time interval was calculated by dividing the rate at which a specific sensor participated in avalanches during the specific
time interval by the mean avalanche rate across all sensors and all time intervals. Thus,relativeavalancherateof1indicatesthattherateoftheparticipationofaparticularsensor inavalanchesastheaverage.
Color bars of top row are set by minimum–maximum values of a specific plot, whereas for the bottom row, the color bar was fixed (0.45, 2.35). B, Topography of relative avalanche rate for the 1 s stimulus-evoked
(right) versus 1 s resting state (left). C, Differences in probability (�SEM) for a sensor to participate in any avalanche that concur during 1 s stimulus-evoked versus 1 s resting state. Thus, a negative probability
(left side of the bimodal histogram located on the bottom right inset, bluish sensors in topography, top left inset) indicate higher probability for the specific sensor to participate in avalanches that occurred during
resting-state versus stimulus-evoked activity. A clear spatial contiguity of topography is visible (top left inset, sensors are organized according to ascending order of the probability differences).
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events shows a notable spatiotemporal structure with cascades of
activity (Figs. 4A,B, 5A, mid-left, red curve). The spatial distri-
bution of sensors involved in avalanches not only reflects the
prominent activations that are performed within the M100 and
M170 time intervals, indicating the conservation of relevant
information in the discrete events, but also captures, at both
prestimulus and poststimulus activations, an outstanding mod-
ulation in ongoing brain dynamics induced by the external stim-
ulus (Fig. 7A).

Later time intervals of known ERF components, such as the
M250, are potentially intermixed in our dataset (Fig. 4C). In
standard ERF analysis for our stimulus category, such post-200
ms components have been related previously to higher-level non-
specific stages of face processing, yet these later components can
also overlap with cognitive responses, such as in our oddball
gender identification task, the performing of decisional and mo-
tor inhibition processes (Rossion, 2014). As an alternative, su-
prathreshold event rate at the time period overlapping with such
later components demonstrates a continuous change in activa-
tion, not resembling at all the deflections of isolated components
activation (Fig. 5D). Indeed, as Figure 5D suggests, choosing a
lower threshold might have captured the dynamics specifically
associated with these later ERF components. However, despite a
robustness in amplitude-threshold choice attributable to a fractal
organization also of neuronal avalanche amplitudes, it was
shown previously that the amplitude distribution recorded with
MEG starts to differ from a Gaussian distribution at approxi-
mately �2.7 SD value (Shriki et al., 2013). Because neuronal
avalanche analysis focuses on events of local synchronized group
activity and therefore is expected to support amplitude distribu-
tion that deviates from a Gaussian, the threshold chosen of �3
SDs enabled the detection of discrete events coupled with the
retention or deviation from critical dynamics. The demonstrated
dynamics, which are in agreement with this procedure, empha-
size activity that is substantial to maintaining excitation–inhibi-
tion balance at these spatial and temporal resolutions.

Consistent with this outlook, the spatial distribution of sen-
sors participating in avalanches within a certain time window
highlights the division of workload between various brain sites
involved (Fig. 7A,B). Although the differences in probabilities
for sensor participation are small (Fig. 7C), their consistency and
spatially contiguous nature advocate for their non-negligibility.
The rate in which a sensor participates in cascades of sequential or
near simultaneous (at temporal resolution �t) activations of syn-
chronized neuronal groups suggests that the established spatio-
temporal organization is the result of correlative and cooperative
dynamics that binds different brain sites. In fact, criticality, com-
pared with either subcritical or supercritical regimens, ensures
correlations over greater temporal and spatial scales (Shew and
Plenz, 2013). This is without compromising the potential modu-
lar structure of networks involved or their engagement in hierar-
chical processing because modules of a hierarchical system may
optimally interact at criticality (Wang and Zhou, 2012; Shew and
Plenz, 2013). Because currently we associated each sensor at a
specific time interval with a single number, that is the rate of
participation, we were able to emphasize the activity that domi-
nates the particular time interval (Fig. 7A,B). For instance, the
underlying ongoing activity is uncovered at particular time inter-
vals of interest. It seems that, before stimulus onset and after
stimulus activation, certain aspects of ongoing activity domi-
nate. Specifically, the anticorrelative nature of brain sites in-
volved in prestimulus versus poststimulus activation are
suggestive of a switch between the activation and deactivation

of task-negative (default mode) and task-positive networks,
respectively and vice versa and the monitoring of participation
of prominent nodes of these networks (e.g., midline posterior
site of the default mode network and bilateral parietal sites of
the dorsal attention network) at the high temporal resolution
offered by MEG (Greicius and Menon, 2004; Fox et al., 2005;
Fox et al., 2006; Harrison et al., 2011). Moreover, and in sup-
port of this view, the spatial distribution before stimulus onset
(Fig. 7A, left) is very similar to the spatial distribution during
rest (Fig. 7B, left). These findings suggest a new approach to
study ongoing brain activity.

Compatibly, the higher intersubject consistency that was
found for stimulus-evoked activity than for resting state (Fig.
2G–I) is explained by the spatiotemporal evolution of the system
involved (Fig. 7A). In contrast, spontaneous resting state com-
prises individual non-time-locked processes. Thus, regardless of
the spatial distribution obtained (Fig. 7B), the intersubject activ-
ity is significantly less similar during resting state (Fig. 2G–I).
Still, the origin of intersubject similarity during stimulus-evoked
surely diverges from the origin of intrasubject similarity (Fig.
2G–I). That is, as we pointed out previously, the individual char-
acteristics mutual to both cognitive states resonate in the mani-
fested neuronal avalanche size distributions. Therefore, overall,
the framework we adopted here is able to expose two separate
dynamical processes: an individual and intersubject common
mutual dynamics.

In conclusion, expanding the context in which metrics of crit-
icality are studied, reconfirms that criticality is a key characteris-
tic of cortical dynamics. The linkages of cortical sites into
avalanches may prove functionally beneficial as dynamic range
and information capacity and transmission are optimized at crit-
icality (Shew and Plenz, 2013), whereas the grouping of such
suprathreshold synchronized events may reflect the transient for-
mation of cell assemblies (Plenz and Thiagarajan, 2007). Further-
more, the rate of suprathreshold events at various brain sites by
itself offers a new perspective on how dimensions of neuronal
activity are connected to the yet unknown dimensions of cogni-
tive functions (Papo, 2013). Future work will explore the rela-
tionship between task performance in a variety of tasks and
metrics of criticality. For instance, prestimulus and poststimulus
activity can potentially be used to examine the correlation to
cognitive attributes, such as attention and behavioral measure-
ments (e.g., reaction time and accuracy). Moreover, this ap-
proach may shed light on the mechanisms involved in
maintaining and utilizing criticality during the various tasks the
brain partakes, in both healthy and pathological populations.
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