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Mechanisms of cerebellar motor learning are still poorly understood. The standard Marr–Albus–Ito theory posits that learning involves
plasticity at the parallel fiber to Purkinje cell synapses under control of the climbing fiber input, which provides an error signal as in
classical supervised learning paradigms. However, a growing body of evidence challenges this theory, in that additional sites of plasticity
appear to contribute to motor adaptation. Here, we consider phase-reversal training of the vestibulo-ocular reflex (VOR), a simple form
of motor learning for which a large body of experimental data is available in wild-type and mutant mice, in which the excitability of
granule cells or inhibition of Purkinje cells was affected in a cell-specific fashion. We present novel electrophysiological recordings of
Purkinje cell activity measured in naive wild-type mice subjected to this VOR adaptation task. We then introduce a minimal model that
consists of learning at the parallel fibers to Purkinje cells with the help of the climbing fibers. Although the minimal model reproduces the
behavior of the wild-type animals and is analytically tractable, it fails at reproducing the behavior of mutant mice and the electrophysi-
ology data. Therefore, we build a detailed model involving plasticity at the parallel fibers to Purkinje cells’ synapse guided by climbing
fibers, feedforward inhibition of Purkinje cells, and plasticity at the mossy fiber to vestibular nuclei neuron synapse. The detailed model
reproduces both the behavioral and electrophysiological data of both the wild-type and mutant mice and allows for experimentally
testable predictions.

Introduction
The cerebellum is crucial for different types of motor learning.
Established theories of cerebellar learning (Marr, 1969; Albus,
1971; Ito, 1989; Dean et al., 2002) posit that the cerebellum learns
by adjusting weights of granule cells (GCs) to Purkinje cell (PC)
synapses, thanks to teaching signals provided by climbing fibers
(CFs; Soetedjo et al., 2008). While these theories are consistent
with experimental data on synaptic plasticity in GC to PC syn-
apses (Ito, 1989; Jörntell and Hansel, 2006; Jaeger, 2011), they
cannot easily explain a growing body of experimental work that
indicates a significant role for other sites of plasticity (Boyden et

al., 2004; Jörntell and Hansel, 2006; Medina, 2011; Gao et al.,
2012). Recent advances in the development of cell-specific mu-
tant animals as well as behavioral and electrophysiological re-
cording technologies (Wulff et al., 2009; Seja et al., 2012) have
opened up an unprecedented opportunity to study the mecha-
nisms underlying cerebellar learning. Several conditional mouse
models are selectively impaired in variants of the vestibulo-ocular
reflex (VOR) adaptation task, one of the most studied cerebellar-
dependent motor learning tasks (Ito, 1989). In particular, VOR
phase-reversal learning is sensitive to manipulations in the cere-
bellar circuit (Gao et al., 2012). In fact, behavioral impairment in
this form of VOR learning can occur despite the fact that the
classical plasticity mechanism, GC to PC long-term plasticity, is
not disrupted (Wulff et al., 2009; Seja et al., 2012). These data
pose significant new challenges for classical models of cerebellar
learning.

The goal of this paper is to better understand the mechanisms
of cerebellar learning through construction of a model that can
reproduce the data available on VOR adaptation, in both wild-
type and mutant mice. For this purpose, we investigate the results
of VOR adaptation experiments in two cell-specific mutant
mouse models (Wulff et al., 2009; Seja et al., 2012) and we per-
form novel in vivo electrophysiology recordings measuring PC
simple spike (SS) and complex spike (CS) activity before and after
VOR phase-reversal learning. We then propose two models of
cerebellar VOR adaptation learning: a minimal model that in-
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volves only cerebellar cortex as a site of plasticity (specifically the
GC to PC synapse under the control of the CF) and a detailed
model that incorporates some of the additional main cell types
involved in the learning task. This latter model includes the fol-
lowing: the GCs, which in the flocculus receive vestibular infor-
mation from the mossy fibers (MFs), the input of the cerebellar
cortex; the PCs and molecular layer interneurons (INs), which
both receive input from the GCs and the CFs; and an excitatory
and an inhibitory cell population in the medial vestibular nuclei
(MVN), receiving inputs from MFs and PCs, and controlling eye
movements. In addition, the detailed model includes two sites of
plasticity: the classical GC to PC contacts (GC–PC synapses) and
the MF to MVN synapses. We provide a mechanistic understand-
ing as to how the system learns VOR adaptation under normal
conditions, and how the system is impaired in cell-specific mu-
tant mice, in which the inhibition onto PCs is selectively sup-
pressed (Wulff et al., 2009), or the excitability of GCs is increased
(Seja et al., 2012; see Materials and Methods for extended de-
scription of mouse lines used in those studies). Finally, we show
that our model is consistent with our in vivo electrophysiological
recordings from PCs before and after the training.

Materials and Methods
In this section, we first present the methodology for the PCs electrophys-
iological recordings as well as the eye movement measurements of wild-
type and mutant mice undergoing phase-reversal training. We then
present a minimal model that only considers learning at the GC–PC
synapses and neglects INs. This minimal model is faithful at reproducing
the behavior of the wild-type and has the advantage of being simple
enough to treat it analytically. It, however, fails to describe the electro-
physiological data and the behavior of the mutant mice. We therefore
present a detailed model that includes INs and learning at the MF to
MVN synapses. This detailed model qualitatively captures all experimen-
tal data shown in this paper, allowing a mechanistic understanding, and
making experimentally testable predictions.

Mouse lines
All experiments involving transgenic and wild-type mice were approved
in advance by the local animal welfare committee (Erasmus MC, Rotter-
dam, The Netherlands) in accordance with Dutch and European legisla-
tion and guidelines (2010/63/EU).

C57BL/6 mice (wild-type). The C57BL/6 adult, male mice were used for
in vivo electrophysiology and eye movement experiments. Naive mice
(n � 8) were directly used for in vivo electrophysiology experiments
aimed at measuring PC activity during the VOR in untrained animals.
Another group of C57BL/6 male mice (n � 6) were first subjected to eye
movement measurements, in particular the reversal training (described
below), and subsequently used for the in vivo measurements to assess the
learning-induced changes in the patterns of PC activity.

PC-��2 mice. The �2I77lox mice were generated by flanking exon 4 of
the GABAA receptor �2-subunit gene with loxP sites. Homozygous
�2I77lox mice were crossed with mice heterozygous for �2I77lox and
hemizygous for an L7Cre transgene. Littermates of the following geno-
types were used: �2I77lox/�2I77lox/L7Cre (PC-��2; n � 9) and
�I77lox/�I77lox (controls; n � 10). Only adult males were used for the
eye movement recordings (Wulff et al., 2009). The �2-subunit is required
to target the receptors to the postsynaptic membrane (Schweizer et al.,
2003). Thus, the PC-specific ablation of the �2-subunit of the GABAA
receptor results in a loss of synaptic GABAA receptors, effectively remov-
ing the inhibition of molecular layer INs on PCs, which is normally
mediated by that pathway.

GC-�KCC2. The GC-specific deletion of the potassium chloride
cotransporter was achieved by crossing the Kcc2lox/lox mice [created by
using a partial genomic clone of murine Kcc2 gene (Slc12a5), which was
isolated from a 129/Sv mouse genomic library in �FixII (Stratagene) and
an insertion of a loxP site into intron 5, and a neomycin resistance (NEO)
cassette flanked by loxP sites into intron 1; after electroporation into R1

ES cells, the NEO cassette was removed from correctly targeted clones by
transfection with a plasmid-expressing Cre recombinase] with ��6::Cre
mice. Animals were kept on a mixed genetic background and littermates
were used as controls. Only adult males were used for the eye movement
recordings (Seja et al., 2012). The deletion of the KCC2 cotransporter
from the GCs surprisingly did not abolish a slight depolarization of those
cells in response to GABA. Thorough studies showed that the GCs re-
spond to the loss of the KCC2 with an increase in excitability. The con-
stitutive depolarization upon KCC2 disruption makes GCs more
excitable by lowering the spiking threshold, and possibly additionally by
partially releasing the Mg 2� block of their NMDA receptors, which leads
to the potentiation of intrinsic excitability of GCs. Conversely, the
NMDA receptors are implicated in the induction of presynaptic long-
term potentiation at the MF to GC synapse (D’Angelo et al., 1999). Thus,
multiple sites of plasticity at the GC level are probably affected in GC-
�KCC2 mice and, as a consequence, their GCs are more excitable and
produce additional spikes causing motor learning deficits (Seja et al.,
2012).

In vivo electrophysiology
Fourteen Male C57BL/6 (wild-type) mice (8 –24 weeks old) were surgi-
cally prepared under general anesthesia with isoflurane/O2. A pedestal
with two nuts was attached to the frontal and parietal bones using Opti-
bond (Kerr) and Charisma (Heraeus Kulzer). After that procedure the
occipital bones were exposed and a craniotomy was made in the left
occipital bone. An acrylic cement chamber was built around the craniot-
omy and the chamber was sealed with bone wax. The temperature of the
animal and the depth of the anesthesia were constantly monitored, and if
necessary, the mice received analgesic treatment after the surgery (temge-
sic/buprenophine 0.015 mg/kg, s.c.). After 2 d of recovery mice were head
fixed in a restrainer fixed onto a turntable (diameter 60 cm) surrounded
by a random-dotted cylindrical screen (diameter 63 cm). Borosilicate
glass electrodes (2 m tip) filled with 2 M NaCl solution were lowered into
the flocculus of the cerebellum. PC extracellular signals were identified
by their complex-spike responses. Single-unit activity was confirmed by
a pause in simple-spike firing following each CS (CF pause; De Zeeuw et
al., 1995). Cells were isolated according to their optimal responses to
stimulation around the vertical axis (VA). A short optokinetic stimulus
(�60 s) was used to confirm the classification of the selected PCs. Only
cells that responded optimally to stimulation around the VA were used in
this study. Afterward cells were recorded during vestibular stimulation at
0.6 Hz and amplitude of 5 degrees. Signals were filtered, amplified (Cy-
berAmp 380, Molecular Devices), digitized (Power 1401; CED), and
stored for off-line analysis. The signals from the floccular PCs were col-
lected from the naive animals (n � 8; n of PCs � 14) and from mice
subjected to the phase-reversal learning paradigm (n � 6, n of PCs � 12)
described below. Since the mice used in the eye movement study already
had a pedestal used for the head fixation, the surgery was restricted to
placing the craniotomy in the occipital bone. It should be noted that, with
the exception of the exposure to short optokinetic stimulation, the ani-
mals subjected to the eye movement training were kept in the dark during
the experiments to prevent loss of the acquired phase adaptation. More-
over, during the relocation to and from the operating room, where the
craniotomy was made, mice were anesthetized in the dark and their eyes
covered with a thick layer of Duratears (before the transition). The naive
animals received one training session (1 h in the restrainer) before
experiments to habituate to the experimental settings, but since the
trained animals were accustomed to the setup they were used directly
for electrophysiology without additional habituation. After the ex-
periments the animals were killed by cervical dislocation under iso-
flurane anesthesia.

Eye movement recordings
Mice (8 –24 weeks old) were surgically prepared under general isoflurane
anesthesia by mounting a pedestal as described above. All mice used in
the behavioral studies were males. Three different strains of mice were
subjected to the eye movement experiments (see above, Mouse lines).
After 2 d of recovery mice were placed in a restrainer with the pedestal
fixed to a metal bar. The restrainer was fixed onto the turntable, which
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was surrounded by a cylindrical screen (diameter 63 cm) with a random-
dotted pattern surrounding the turntable (diameter 60 cm). Before ex-
periments the animals received one training session (1 h in the restrainer)
to habituate to the experimental settings. Eye movements [opto-kinetic-
reflex (OKR) and visual VOR in the light (V)VOR] were evoked by
rotating the screen and/or turntable at different frequencies (Ac servo-
motors; Harmonic Drive). The positions of table and drum were re-
corded by potentiometers and stored for off-line analysis. Eye
movements were recorded, as previously described (Stahl et al., 2000; van
Alphen et al., 2001), using an infrared CCD camera fixed to the turntable
(240 Hz; ISCAN). Two table-fixed infrared emitters (maximum output
600 mW, dispersion angle 7°, peak wavelength 880 nm) illuminated the
eye during the recording, and a third emitter was aligned horizontally
with the camera’s optical axis so as to produce a corneal reflection. The
eye movement calibrations were computed as previously described (van
Alphen et al., 2001), and subsequently the mice were submitted to base-
line measurements and training sessions for 5 consecutive days. Phase
reversal of the eye movement during the VOR was achieved by applying
an in-phase stimulation on day 1, which was aimed at reducing the gain
of the eye movements by subjecting the mice to 5 � 10 min periods of
sinusoidal in-phase drum and table rotation at 0.6 Hz (both with an
amplitude of 5°), and subsequently reversing the phase on days 2, 3, 4,
and 5 by subjecting the animals to 5 � 10 min periods of sinusoidal
in-phase drum and table rotation at 0.6 Hz, but with drum amplitudes of
7.5° (days 2) and 10° (days 3, 4, and 5), while the amplitude of the
turntable remained 5°. The animals were kept in the dark in between all
recording days. After the experiments the animals were killed by cervical
dislocation under isoflurane anesthesia with the exception of those that
were used for the electrophysiological recordings. Gain and phase values
of the eye movements were measured in the dark and were calculated
off-line using custom-made MATLAB routines (The MathWorks; Goos-
sens et al., 2004; Hoebeek et al., 2005).

Minimal model
Definition of the minimal model. In the minimal model, the MF activ-
ity M(t) encodes the head movement that follows the turntable (Lis-
berger and Fuchs, 1978; Arenz et al., 2008), which moves sinusoidally
in time,

M�t� � cos�t�. (1)

This is a simplification (Gerrits et al., 1989; Cheron et al., 1996). The GCs
are assumed to respond to MF inputs with phase shifts that are uniformly
distributed (Barmack and Yakhnitsa, 2008). The activity of GCs with
phase shift x, G(x, t) are, therefore,

G� x,t� � cos�t � x�, (2)

with x uniformly distributed between 0 and 2�. The PC activity P(t) is
modeled as the weighted sum of the GC activities G(x),

P�t� � � dx

2�
wPG� x�G� x,t�, (3)

where wPG(x) denotes the synaptic weights from a GC with a phase shift
x to PCs. The MVN cells receive synaptic excitation from MFs and inhi-
bition from PCs, and their activity V(t) is simply

V�t� � M�t� � P�t�. (4)

The eye movement is taken to be proportional to (	V ).
In VOR adaptation experiments, the eyes have to follow a visual target

to minimize the retinal slip. We therefore define a target MVN activity Vt,
which has a target gain gt and a target phase shift �t, i.e.,

Vt�t� � gt cos�t 	 �t�. (5)

The standard VOR experiment correspond to gt � 1, �t � 0. In standard
VOR adaptation experiments, gt is set to a value which is 
 1. Typical
values are gt � 2 (gain increase, i.e., target moving in the opposite direc-
tion as the turntable), gt � 0 (gain decrease, i.e., target moving together

with the turntable), or gt � 	1 (or equivalently gt � 1, �t � �, i.e., target
moving in the same direction but faster than the turntable) (Fig. 1B).

In the minimal model, GC to PC synapses are plastic. Their efficacy
wPG(x) follows the simple first-order differential equation,


PGẇPG� x� � �V�t � �� � Vt�t � ���G� x,t�, (6)

where 
PG is the learning time constant, V(t 	 �) 	 Vt(t 	 �) is the “error
signal” and � is the delay in the error. The delay time can be interpreted as
the sum of the feedback time and the potential phase shift of the MVNs
(De Zeeuw et al., 1995). The parameter 
PG controls the speed of learning
and is set to 15 min to reach a gain decrease of about 0.5 in the first
training session. Note that in the absence of delay, this rule would mini-
mize the error via gradient descent. It is in qualitative agreement with
experimental data on plasticity at GC to PC synapses (Ito, 1989; Jörntell
and Hansel, 2006; Gao et al., 2012), where CF and GC costimulation
leads to depression, and GC stimulation alone leads to potentiation.
Indeed, if C is written as a baseline �CF plus the delayed error signal
(Marr, 1969; Albus, 1971; Soetedjo et al., 2008), C(t) � �CF 	 V(t 	 �) �
Vt(t 	 �), then the learning rule can be rewritten as 
PGẇPG(x) � [�CF 	
C(t)] G(x, t).

Dynamics of VOR adaptation in the minimal model. To solve the dy-
namics analytically, we define

wc � � dx

2�
wPG� x� cos�x�,

ws ��dx

2�
wPG�x� sin�x�.

(7)

Assuming that the timescales of the dynamics of the weights are much
longer than the period of the oscillatory drive T, 
PG 

 T, the dynamics
of the GC to PC weights can be expressed in terms of these two variables
as follows:

4
PGẇc � �1 � gt cos ��t� � wc� cos � � �gt sin ��t� � ws� sin �,
4
PGẇs � �1 � gt cos ��t� � wc� sin � 	 �gt sin ��t� � ws� cos �.

(8)

The gain g and phase shift � of the motor output are as follows:

g � ��1 � wc�
2 	 ws

2,

� � atan� ws

wc � 1�.
(9)

Then, on timescales � 
PG, wc and ws converge toward their equilibrium
values, wc � 1 	 gt cos(�t), ws � gt sin(�t). This convergence is described
by the following equations:

wc � �1 � gt cos ��t�� �1 � exp � �
t cos �

4
PG
�cos�t sin �

4
PG
��

� gt sin �t exp � �
t cos �

4
PG
�sin �t sin �

4
PG
�, (10)

ws � gt sin �t�1 � exp � �
t cos �

4
PG
�cos �t sin �

4
PG
��

	 �1 � gt cos ��t� �exp � �
t cos �

4
PG
�sin �t sin �

4
PG
�. (11)

In the case �t � 0, wc goes to 1 	 gt.
Reproducing the Wulff et al., 2009 protocol. Equations 8 and 10 are

solved for 200 min, which reproduces the phase-reversal training proto-
col (Wulff et al., 2009). During the first 50 min, the target gain is set to
gt � 0. During the next 50 min the target gain is gt � 	0.5, and the last
100 min the target gain is set to gt � 	1. The dark times are not simu-
lated. The learning rate 
PG is set to 15 min, to qualitatively match the
learning speed of the animal.
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Detailed model
Dynamics of activity variables. The MFs encode the head velocity (Arenz
et al., 2008) according to the equation

M�t� � M1cos �2�t

T
�

�

2� 	 M0, (12)

where M1 �
1

4
, M0 �

1

4
and T � 1666 ms is the period of the rotation

of the turntable (0.6 Hz; Fig. 1A).
The GC network is composed of N � 100 GCs, whose activity is driven

by the MFs, but with a different phase shift for each cell. We also per-
formed simulations with a larger number of GCs (N � 1666) with no
noticeable difference. The distribution of phase shifts is such that there is
a bias toward the phase of the MF inputs (Barmack and Yakhnitsa, 2008).
The activity of GC i, Gi(t) can be written as follows:

Gi�t� � G1 cos �2�t

T
� �i� 	 G0, (13)

for i � 1,…, N, where G1 � 1 (for the wild-type mice), G0 � 1 and

�i �
2�

N
i 	 � cos �2�

N
i�, (14)

where � � 0.19.
The activity of the molecular interneuronal network is described by a

single variable I(t), which is proportional to the average activity in the GC
network as follows:

I�t� �
wIG

N �
i

Gi�t� � I0, (15)

where I0 � wIGG0 	 0.85 is an inhibitory term and wIG � 2.5 measures
the strength of the synaptic weight from GCs. As a result of this parameter
choice, I(t) is more modulated in phase with ipsiversive head movements
than GC activity. This assumption is critical to reproduce the modulation
profile of SSs of the PCs shown in Figure 2.

The activity of the PC network depends on both, direct excitation from
GCs, and feedforward inhibition from INs, i.e.,

P�t� �
1

N �
i

wPGi �t�Gi�t� � wPII�t� (16)

where wPGi are the weights from GC Gi to PC and wPI � 1 (in the case of
the wild-type) is the weight from IN to PC.

Note that in this model, for the sake of simplicity, PCs receive purely
vestibular information. PCs do not receive any visual information, and
thus the model cannot produce an OKR. Adding fixed visual inputs to
PCs (proportional to a retinal slip) to account for an imperfect OKR leads
to results similar to those shown in this paper (data not shown).

The activity in MVN is described by two variables, VE and VI, repre-
senting the excitatory and inhibitory populations in that structure (Shin
et al., 2011). Both variables depends on the excitatory input from MF and
VE depends also on the inhibitory input from PC, i.e.,

VE�t� � 2 wVM �t� �M�t� � M0� � P�t� 	 VE0, (17)

VI�t� � M�t�, (18)

where wVM(t), are the excitatory weights from MF to excitatory/inhibi-
tory MVN populations, and VE0 � 2.25. The motor command is as-
sumed to be proportional to the difference between VE(t) and VI(t),

V�t� � VE�t� � VI�t�, (19)

since both excitatory and inhibitory neurons project to oculomotor mo-
tor neurons (Shin et al., 2011).

The target motor command, Vt, i.e., command that would lead to an
output with the target gain gt, is defined as follows:

gt 
 0 : Vt�t� � gtM1cos �2�t

T
�

�

2� 	 Vt0, (20)

gt � 0 : Vt�t� � 	gt	M1cos �2�t

T
	

�

2� 	 Vt0, (21)

where Vt0 � 1.
The CF activity C(t) is assumed to be weakly modulated by head move-

ment in the dark (De Zeeuw et al., 1995) and, when light is present, by
contraversive retinal slip (the error signal), V(t 	 �) 	 Vt(t 	 �), where
� is the delay in this error signal. C(t) can be written as follows:

C�t� � �CF � L�V�t � �� � Vt�t � ��� � H�M�t� � M0�,

(22)

where L � 1, 0 in light/dark conditions, �CF is the baseline firing rate of C,
and H � 0.03 is the modulation by head movement. The assumption that
C is modulated in-phase with the head movement is important to repro-
duce the temporal modulation of CSs of the PCs shown in Figure 2.
Experimentally, it is extremely hard to directly assess whether the mod-
ulation of the CF comes from the eyes or from the head (one would have
to find a way to acutely block the signals coming to the inferior olive from
either the eye or the head exclusively during the dark periods to be certain
of the origin of the CF signals, which to this date has not been achieved).
However, CF is more likely to be attributed to the head modulation, since
CSs change very little after learning (Fig. 2), but the change of the eye
movements is substantial.

Dynamics of synaptic weights. There are two learning sites, one at the
GC to PC synapses and one at the MF to VE synapses. The plasticity at the
GC to PC synapse is described by the following expression,

ẇPGi�t� � ��PG��CF � C�t�� 	 ��PG���t��G�t� 	 �d

�wPG
ini � wPGi�t��, (23)

where � is white noise with zero mean and unit variance density, � � 0.02
is the amplitude of the noise, and �PG � 3.5 � 10 	5 ms 	1 is the learning
rate. All synaptic weights have an upper bound at 2.85 and a lower bound
at 0.85, consistent with experimental data on LTP/LTD, showing a lim-
ited range of synaptic efficacies (Le Guen and De Zeeuw, 2010; van Beu-
gen et al., 2013). Finally, the weights slowly decay to their initial value
wPG

ini � 1.85 with a slow decay rate �d � 4.5 � 10 	6 ms 	1. As already
mentioned for the minimal model, the weight update is in good agree-
ment with the plasticity seen experimentally at the GC to PC synapses,
i.e., potentiation under GC stimulation and depression under CF and
GC costimulation (Ito, 1989; Jörntell and Hansel, 2006; Gao et al.,
2012).

Note that the model can be set up such that the lower bound of GC
to PC synaptic weights is at zero, so that a significant fraction of
weights are zero, consistent with Isope and Barbour (2002) and
Brunel et al. (2004). With this parameter choice, other parameters of
the model have to be modified in order for the model to reproduce the
data (see below).

The synaptic weight from MF to VE, wVM, is decreased when MF and
PC are coactive or co-inactive and increased if one of the two is active.
This plasticity was observed experimentally in Menzies et al. (2010). It
can be written as follows:

ẇVM�t� � �VM�M0 � M�t���P�t� � Pini�t��, (24)

where �VM � 5.6 � 10 	6 ms 	1 is the learning rate and Pini(t) is P(t) before
training. There is a hard lower bound at 0. The weight is initialized to wVM

ini

� 0.88 so that V produces a gain of 1. Indeed, since PC is initially mod-
ulated with the head movement already, wVM

ini needs to be smaller than 1,
to obtain a gain of 1. In the model, plasticity (Eqs. 23–24) is present all the
time, irrespectively of whether it is dark or light.

Detailed model adapted for the mutant mice. In the case of the inhibi-
tory knock-out model (PC-��2; Wulff et al., 2009), we remove the inhi-
bition onto PC and therefore set wPI � 0 (Fig. 1A). To have the same Pini

as the wild-type, we set wPG
ini � 1, and for V to have an initial gain of 1, we

set wVM
ini � 1.19.

In the case of the GC mutant (GC-�KCC2; Seja et al., 2012), we in-
crease the excitability of GC and therefore set G0 � 1.8 (Fig. 1A). To have
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the same Pini as the wild-type, we set wPG
ini � 1.85, and for V to have an

initial gain of 1, we set wVM
ini � 0.7.

Simulation protocol of the detailed model and parameter setting. The
detailed model was used to reproduce the phase-reversal learning task
(Wulff et al., 2009) (Fig. 1B). The table rotates at 0.6 Hz. Before the
learning protocol, an initialization phase is performed: the model is sim-
ulated for 50 cycles with a target gain of 1, gt � 1, followed by two nights
in the dark, i.e., 2880 cycles. Then the phase-reversal learning task starts.
For the first 50 cycles, the target gain is set to gt � 0 (day 1 training), then
1440 cycles with no retinal slip (corresponding to the first night), then 50
cycles at gt � 	0.5 (day 2), then 1440 cycles without retinal slip (night 2),
then 50 cycles at gt � 	1 (day 3), then 1440 without retinal slip (night 3),
then 50 cycles at gt � 	1 (day 4), and then three times 1440 cycles
without retinal slip (corresponding to 3 d where the animals are kept in
the dark). In the numerical simulations, Equations 23–24 are integrated
with a time step of dt � 1 ms. Weight changes are updated in a batch
manner at the end of every cycle.

The parameters are chosen according to the following procedure.
First, since �PG controls the speed of learning, it is set so that the gain is
decreased to about 0.5 during the first day of training. Second, the decay
rate �d is chosen so that at the end of each night, wPG, are back to baseline.
Third, the learning rate �VM is chosen so that almost all the memory is
transferred after every night, but not all, as seen experimentally in the
wild-type. Finally, the noise � � 0.02 is set to reproduce the qualitative
amount of forgetting of PC-��2 during the first night. All the other
parameters were kept fixed.

When the lower bound of GC3PC weights is set at zero, other param-
eters of the model have to be changed for the model to reproduce the
experimental data. Basically, the mean GC to PC weights need to be
sufficiently close to the lower bound, once the inhibition onto PCs is
removed (for PC-��2) or once the GC excitability is increased (for GC-
�Kcc2). Thus, in this case we increased inhibition (IN) in the wild-type
case, and increased GC excitability in the GC-�Kcc2 case. Both effects
lower the mean GC to PC weights in the case of the mutant mice, so that
the weights hit the bound at zero during learning. The simulations with
these parameters give similar results as shown in this paper, but develop
silent (zero weight) synapses (data not shown).

The detailed model will be posted on Mod-
elDB (https://senselab.med.yale.edu/modeldb).

Results
VOR learning is one of the most com-
monly used tasks to study cerebellar
learning. It is a reflexive eye movement
that stabilizes images on the retina during
head movement by producing an eye
movement in the opposite direction.
With a stable visual surrounding in the
light, the eye movement compensates the
head movement (visually enhanced VOR
gain � 1). If the visual image is not still,
for example, due to eye muscle weakness,
the VOR is adapted. To study this effect in
a controlled setting, mice are fixed to a
turntable that rotates. Their visual field
can also be rotated, leading to VOR adap-
tation (Fig. 1B). If the visual field rotates
together with the turntable, the target
VOR gain is 0. If the visual field rotates at
double the speed of the turntable, the tar-
get VOR gain is 	1 (phase reversal, or eye
movement in the opposite direction as in
the normal situation).

In this paper, we first review already
published experimental results of the
VOR adaptation for three types of mice:
wild-types and two cell-specific mutant

mice (Wulff et al., 2009; Seja et al., 2012). Additionally, for the
wild-type mice, we present novel electrophysiological recordings
of PCs, before and after learning. Based on both experimental and
theoretical data we introduce a minimal model that accurately
reflects the learning behavior. The minimal model is appealing in
its analytical tractability, but it fails to reproduce electrophysio-
logical data in wild-type mice, and behavioral data in the mutant
mice. Therefore we extended the minimal model to a more
detailed one that reproduces both behavioral and electrophysio-
logical results. The detailed model makes a number of experi-
mentally testable predictions that will be discussed below.

Experimental results: behavior and electrophysiology
On day 1, mice undergo a 50 min gain-decrease training, with
target VOR gain of 0. In between the training sessions, the ani-
mals are kept in the dark. On day 2, the animals undergo another
50 min training with a target gain of gt � 	0.5. On days 3 and 4,
there is a 50 min training with target gain gt � 	1 (phase rever-
sal). We show here behavioral data that have already been pub-
lished (Wulff et al., 2009; Seja et al., 2012). We use wild-type mice
and two mutant mouse lines. The inhibitory knock-out mouse
(PC-��2) is missing inhibition onto PC (Wulff et al., 2009, their
Materials and Methods and Results). The GC mutant (GC-
�KCC2) has an increased GC excitability (Seja et al., 2012, their
Materials and Methods and Results). The gain and the phase of
the eye movement is measured in the dark, and is shown on
Figure 2A and B. For the wild-type, the gain decreases during the
first day, and during the three following days the phase slowly
reverses to 180 degrees. The gain increases again toward the end
of training (Wulff et al., 2009). In the light ((V)VOR), the animal
has a gain of above 0.9, as seen in Galliano et al. (2013), their
Figure 4G; in Wulff et al. (2009), their Fig. S5C; and in Seja et al.
(2012), their Fig. 8C. The two mutant mice have similar qualita-

Figure 1. A, VOR circuit. The MFs encode the head velocity. They project onto the GCs and to the MVN. The GCs project onto the
PCs and onto the molecular INs, which in turn inhibit PCs. PCs receive excitatory inputs from CFs, which encode the error coming
with a delay. Finally MVNs are inhibited by PCs and are responsible for the eye movement. In the model, we consider two plasticity
sites: (1) the synaptic weights wPG from GCs to PCs at which depression is induced by costimulation of GCs and CFs, whereas
stimulation of GCs alone produces potentiation and (2) synaptic weights wVM from MFs onto MVN where under MF and PC
coactivation or co-inactivation depression is induced, whereas potentiation is due to sole activation of MF or PC. When the
animal is placed on a turntable, MF is a cosine waveform since it encodes the head velocity. GCs, INS, and CFs are modulated
in-phase with the head movement, whereas the PC is modulated in anti-phase. Since MVN is also modulated in-phase, and
is mainly inhibitory, the eye movement is the inverse of the head movement, producing the VOR. In the case of the
inhibitory knock-out mice, PC-��2, PCs do not receive inhibition, and in the case of the GC mutant, GC-�KCC2, GC
excitability is increased. B, VOR learning task. The mice are placed on a turntable. If the visual field is fixed, the target gain
gt corresponds to 1. If the visual field turns with the table, gt � 0, and if the visual field turns twice the distance as the turn
table, gt � 	1, which corresponds to a phase-reversal learning.
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tive behaviors during baseline motor per-
formance and gain decrease learning, but
they differ from wild-type mice in that (1)
they forget their training during the first
night and (2) they can never learn the
phase-reversal training.

To understand better the role of PCs in
VOR adaptation training, we performed
electrophysiological recordings in the
wild-type mice before and after the phase-
reversal training. We recorded SSs and
CSs during the VOR in the dark (Fig.
2C,D). SSs are modulated in anti-phase
compared with the head movement in na-
ive animals (n � 8, n of PC � 14), and this
anti-phase modulation persists after
phase-reversal (n � 6; n of PC � 12) train-
ing. There is a slight, but significant, in-
crease in the SS peak-to-peak modulation
amplitude as well as in mean firing rate
pointing toward the relevance of LTP
(Gao et al., 2012). CSs are modulated in-
phase with the head movement, and are
also qualitatively similar before and after
training. There is a slight decrease of the
CS peak-to-peak modulation amplitude.

To better understand these experi-
mental findings, we turned to a detailed
investigation of models of the cerebellar
circuits underlying VOR adaptation (Fig.
1A). We started with a minimal model
that implements the standard Marr–
Albus–Ito hypothesis (Marr, 1969; Albus,
1971; Fujita, 1982; Ito, 1989; Raymond
and Lisberger, 1998). We showed that this
model allows us to reproduce the behavioral results in wild-type
mice, but falls short in reproducing the electrophysiological data
in wild-type mice, and the behavioral data in mutant animals. We
therefore turned to a more detailed model that includes plasticity
in the MVN, feedforward inhibition to PCs, and bounded synap-
tic weights. We find that this detailed model reproduces qualita-
tively all available behavioral and electrophysiological data.

Minimal model
The minimal model consists of a simplified cerebellar circuit. The
MF firing rates encode head velocity. They project both to the
GCs and MVNs. GCs are modeled as cosine waveforms with
the same period as the turntable, but different phases between
0 and 2�. The PC activity is modeled as the weighted sum of
GCs. The CFs, projecting onto the PC, encode the retinal slip,
defined as the movement of the visual image. More precisely, the
CF’s activation encodes an error signal, namely the difference
between the actual eye movement and the target eye movement.
This error comes with a delay �. Finally, PC activity inhibits the
MVN neurons.

The GC to PC synapses wPG are plastic. They are potentiated
when the presynaptic GC is active and CF is inactive, and de-
pressed under CF and GC coactivation (Coesmans et al., 2004;
Belmeguenai et al., 2010). This plasticity rule is designed to re-
duce the error signal in the absence of delay. It is in qualitative
agreement with plasticity found experimentally at the GC to PC
synapses (Jörntell and Hansel, 2006; Gao et al., 2012). A protocol

pairing CF and GC induces depression, whereas stimulating GC
alone produces potentiation.

The model reproduces the wild-type mice behavior under
VOR adaptation. As a simplifying assumption, we do not model
the dark period in-between the training sessions. Figure 3A shows
the gain as a function of training time. As observed experimen-
tally (Fig. 2A), the gain decreases to about 0.5 on day 1, and
increases again toward the end of the training. Figure 3B shows
the phase evolution of the eye movement compared with the head
movement. As shown analytically (see Materials and Methods,
Minimal model), delay in the error transmitted by the CF, causes
a smooth phase reversal from 0 to 180 deg. Without delay, the
phase reversal is abrupt (Fig. 3B, blue line). The steepness of
phase reversal directly reflects the delay in the error signal. A 100
ms delay matches the steepness seen experimentally, and happens
to coincide with the expected time delay of the error feedback
(Waespe and Henn, 1987; Wetmore et al., 2014). Figure 3, C and
D, shows a simulation of the same training protocol, but with
different frequencies of the turntable. At the end of day 1, the
gain increases with increasing frequency, as shown previously
(Wulff et al., 2009, their Fig. 4C, top). The steepness increase
depends on the delay, and again, a delay of 100 ms best repro-
duces the experimental results (0, 50, 100, and 200 ms were
tried). Fig. 3D shows that the phase before day 2 increases with
increasing frequency, whereas the phase after day 2 decreases
with increasing frequency. Again, these behaviors reproduce
qualitatively experimental data (Wulff et al., 2009, their Fig.
4C, bottom).

Figure 2. Experimental results of the phase-reversal training. A, Gain as a function of training time (green, wild-type; blue,
inhibitory knock-out PC-��2, data redrawn from Wulff et al., 2009; red, GC mutant GC-�KCC2, data redrawn from Seja et al.,
2012) of VORD (VOR in the dark; i.e., training is done in the light and eye measurement is done in the dark). The gain is relative to
the initial gain. B, Phase as a function of training time of VORD. C, SS measurement during the VOR in the dark before training
(black) and 3 d after training (gray). Outside the training periods the animals are kept in the dark. Left, SS peak-to-peak amplitude
of the firing rate modulation. Middle, SS mean firing rate. Right, phase of the SS compared with the head movement velocity phase
(*p � 0.05 t test). D, Same as C, except for the CSs.
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We conclude that the minimal model accurately accounts for
the learning behavior of the wild-type mice. It only takes into
account one learning site, the GC to PC synapses, and thus PC
changes must account fully for the learning. However, the elec-
trophysiological data shows very little change in PC firing mod-
ulation (Fig. 2), at odds with the prediction of this model. This
suggests the necessity to include at least one additional plasticity
site. Moreover, these results are inconsistent with the mutant
behavioral data, since the model does not include inhibition onto
PCs, and increasing the excitability of GCs does not modify the
dynamics of the model. For these reasons, the next section intro-
duces a detailed model of cerebellar learning, which takes into
account synaptic plasticity at the MF to MVN site (Miles and
Lisberger, 1981; McElvain et al., 2010; Menzies et al., 2010). In
addition, we also include molecular layer INs and bounds on
synaptic weights to be able to capture learning impairments of the
mutant mice.

Detailed model
Similarly to the minimal model, MFs encode the head velocity
and GCs are modeled as cosine waveforms (Fig. 1A). However,
the GC phases are distributed nonuniformly and phases close to
the head movement phase are over-represented, consistent with
experimental data (Barmack and Yakhnitsa, 2008). We model the
molecular INs as the weighted sum of GCs. The GC to IN weights
are chosen such that the IN is also modulated with the head
movement, and more so than the GC. PC is the weighted sum of
GC and IN. Since IN is more modulated with ipsiversive head

movement than GC, PC in turn is modu-
lated in anti-phase with the head move-
ment, as seen experimentally (Fig. 2C;
Barmack and Yakhnitsa, 2008). The CF
input encodes the retinal slip coming with
100 ms delay. Its activity also depends on
the head movement (modulated in-
phase), matching our experimental find-
ings (Fig. 2D) and consistent with
previous studies (Barmack and Yakhnitsa,
2008; Badura et al., 2013). Because of
learning at the GC to PC synapses, the
modulation of CF (Fig. 2D, bottom) is in
anti-phase with the modulation of PC
(Fig. 2D, top). Finally, MVN receives in-
hibition from PCs and excitation from
MFs.

In the detailed model, we consider two
plasticity sites. This first one, as in the
minimal model, is at the GC to PC syn-
apses. The plasticity rule is described by
Equation 23 (see Materials and Methods).
It has three additional features compared
with the minimal model: (1) it includes a
noise term, (2) weights decay back to their
initial value wPG

ini with a decay rate �d; (3)
synaptic weights have hard lower and up-
per bounds.

The second plasticity site is at the wVM

synapses, and is described by Equation 24
(see Materials and Methods), with a hard
bound at zero. The rule produces depres-
sion if MFs and PCs are coactive or co-
inactive, and potentiation if MF or PC is
active alone. The learning rate �DM is set

such that learning takes place first at the GC to PC synapse, and
then memory is transferred to the MF to MVN synapse. This
memory transfer can be interpreted as memory consolidation
(Miles and Lisberger, 1981; Porrill and Dean, 2007).

Learning dynamics in the “wild-type” model
The detailed model reproduces VOR learning performed by the
wild-type mice. It takes into account the dark time in between
training sessions. Figure 4, A and B, shows the gain and phase
evolution during learning. As already captured by the minimal
model, the behavior is in good agreement with the experimental
data (Fig. 2). Fig. 4E, top, shows that learning occurs first at the
GC to PC synapses wPG: the wPG synapses from those GCs whose
phases are similar to the head movement phase are potentiated,
whereas the synapses from those GCs whose phases are opposite
are depressed. At the end of training, after a couple of days in the
dark (Fig. 4E, bottom), most of the memory is transferred to the
wVM synapses (Fig. 4D, top). We observe a slight gain forgetting
during the night (Fig. 4A), as seen experimentally. Figure 4F
shows the gain evolution of P as a signature of wPG plasticity
(top), and wVM evolution (bottom). This illustrates the slow
transfer from wPG to wVM. Forgetting is due to the incomplete
memory transfer from wPG to wVM, since the wPG are decaying
slightly faster than the wVM are learning. Again, smooth phase-
reversal learning is due to the 100 ms delay in the error. Figure 4C
shows that the final V is close to its target Vt. Without adaptation
protocol, the model has a stable gain of 1. The model cannot learn
if only wVM is plastic, but wPG plasticity is necessary, because the
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Figure 3. Minimal model learning a phase-reversal scenario. A, Gain as a function of training time for the minimal model with
four different delays in the CF, from 0 to 200 ms (different colors). The behavioral experimental data of Figure 2 is superimposed in
dashed green. B, Phase as a function of training time. C, Gain before (dashed line) and after (solid line) the first day of training as
a function of frequency for different delays in the CF (different colors). D, Phase before (dashed line) and after (solid) the second day
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error signal is present only at those syn-
apses. For example, if we remove wPG

plasticity, a gain decrease protocol cannot
be learnt.

Contrary to the minimal model, the re-
sults of the detailed model are in agree-
ment with the SS and CS activity before
and after reversal training, measured
during the VOR in the dark. As seen in
Fig. 4D, the PCs are modulated in anti-
phase with the head movement, before
and after training. This is due to the over-
representation of phases similar to the
head movement phase, in GC and even
more so in IN and to the fact that CF is in
phase with the head movement. More-
over, the increase in peak-to-peak ampli-
tude of the SS modulation after training is
consistent with the electrophysiological
recordings (Fig. 2C). This increase is due
to the fact, that CF is modulated in the
dark (Figs. 2D, 4D, bottom), therefore
producing a very slow learning that mod-
ulates wPG, seen after a long period in the
dark (3 d). CF is modulated by the head
movement, which leads to an in-phase CF
modulation, seen in Fig. 4D, bottom, and
experimentally in the CS (Fig. 2D).

The comparison of the model and the
experimental data shown in Figure 4, A
and B, shows an overall good agreement.
However, we emphasize that the match is
not perfect. (1) The phase shift of the
model starts at zero, whereas in experi-
ments it starts at about 40 degrees. This
might be due to the poor vision of the an-
imal (see Discussion). (2) While the final
values for gain and phase in the model are
very close to the data, and the initial dy-
namics during days 1 and 2 is also very
well reproduced by the model, the dy-
namics on days 3 and 4 are noticeably dif-
ferent. These differences might stem
either from the fact that the model is too
simplified or from a large variability in be-
havior across animals (compare the con-
trol in (Wulff et al., 2009, their Fig. 6g and
Seja et al., 2012, their Figure 8f).

In the detailed model described above,
PCs receive purely vestibular inputs, and
therefore cannot produce an OKR. However, for the sake of com-
pleteness, we extended this model so that the PCs also receive
fixed visual inputs (proportional to a retinal slip). The extended
model accounts for an imperfect OKR (which accurately depicts
poor visual acuity of mice) and leads to qualitative similar results
as the ones with the detailed model (data not shown).

Learning dynamics in the inhibitory knock-out (PC-��2)
To accommodate data obtained from the PC-specific inhibitory
mutant mice (PC-��2, i.e., no inhibition onto PCs (Wulff et al.,
2009), we have adapted our model by removing inhibition onto
PC (Fig. 1A). In the absence of a compensatory mechanism, PCs
of the mutant mice would have a much larger firing rate than

those of a wild-type. Experimental data show that this is not the
case (Wulff et al., 2009). Hence, a compensatory mechanism
must exist. In our model, we choose a smaller average GC3PC
synaptic weights wPG for the PC-��2 than for the wild-type,
which is consistent with data (Wulff et al., 2009). We show now
that this compensation, together with bounds on synaptic
weights, is sufficient to account for all the behavioral impair-
ments of the PC-��2 mice.

Figure 5, A and B, shows the gain and phase evolution of eye
movement of the PC-��2 mice during reversal training. The gain
decrease learning during day 1 is not impaired. During the night,
however, PC-��2 mice forget what they have learned. As shown
in Figure 5E, top, the GC–PC synaptic weights wPG after day 1 are
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modulated. Because of their lower average, the weights are close
to or at the lower bound. During the dark, the CFs do not encode
the retinal slip anymore. The noise makes the weights wPG un-
dergo random potentiation and depression. The weights that are
far from the bounds undergo about the same amount of potentia-
tion and depression, so that the net change is approximately zero.
However, the weights closer to the bound (corresponding to the
weights from the GCs whose phases are opposite to phase of the head
movement) cannot undergo depression, because they cannot cross
the lower bound. Those weights will in average undergo a net poten-
tiation. This potentiation bias causes wPG to forget faster than wVM

can learn, and therefore no memory consolidation can take place.

In the dark, PC-��2 mice forget, thus
at the beginning of each training, the gain
decrease has to be relearned. This, to-
gether with the hard lower bound restrict-
ing the synaptic weights wPG, implies that
the phase cannot be reversed, as seen in
Figure 5, B and C, where the final V is
shown compared with Vt. Figure 5D, top,
shows that PC activity of PC-��2 mice is
modulated anti-phase with the head
movement. This is due to the fact that CF
is modulated with the movement (Figure
5D, bottom). Therefore, during the night,
the synaptic weights wPG are getting mod-
ulated in anti-phase with CF (since CF
paring leads to depression, and no CF
leads to potentiation), leading to a con-
served antimodulation between CF and
PC. Without compensation due to the CF,
PC would have been modulated in-phase
with the head movement, because GCs are
modulated in-phase and there is no inhi-
bition to reverse the phase (it would be the
case of the weight decay term wd is bigger
than the CF amplitude H). Figure 5D,
bottom, shows that CF is modulated with
the movement. Finally, Figure 5F shows
the gain evolution of PCs as a signature of
wPG plasticity (top), and the evolution of
wVM. We can see that wPG learns during
the training sessions, but it is only par-
tially getting transferred to wVM. Al-
though the qualitative behavior is well
captured by the model, the phase in day 3
and 4 is quantitatively different, as in the
wild-type case.

Learning dynamics in the GC
mutant (GC-�KCC2)
In the model variant for the GC mutant
mice (GC-�KCC2), GC firing rate in-
creases due to an increase in excitability
(Seja et al., 2012; Fig. 1A). As in the case of
PC-��2 mice, PC firing rates remain un-
changed compared with the wild-type. In
the model, this is again implemented by
lower average weights wPG (Fig. 6E). For
the same reasons as in the case of PC-��2
mice, the model learns the gain decrease
properly, forgets during the dark, and
cannot learn the phase-reversal training.
Figure 6A shows that the gain is learned

properly the first day, and keeps decreasing with training, as seen
experimentally. Figure 6B shows that the phase is never reversed, as
seen on the final V of Figure 6C. Figure 6D shows that the PC is
modulated in anti-phase with the movement, as seen for the wild-
type, and CF is modulated. Finally, Figure 6F shows the poor learn-
ing of wPG and the transfer to wVM.

Discussion
In this paper, we have first presented electrophysiological record-
ings of SS and CS activity of PCs of wild-type mice, before and
after VOR adaptation in the phase-reversal version of this task.
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These results show relatively minor
changes in the modulation and phase of
PC activity. These results are at odds with
models that rely purely on plasticity at GC
to PC synapses (Marr, 1969; Albus, 1971;
Ito, 1989; Dean et al., 2002), which would
produce a complete phase reversal of PC
activity, to reproduce the behavioral re-
sults. However, our results are consistent
with several previous studies (Broussard
and Kassardjian, 2004; Kassardjian et al.,
2005; Shutoh et al., 2006; Anzai et al.,
2010), which indicate an almost complete
transfer of plasticity in VOR adaptation
from cerebellar cortex to downstream ar-
eas (Medina, 2011).

We then proceeded to study a model
whose aim was to reproduce both electro-
physiological and behavioral data, first in
wild-type mice, and then in mutant mice
that show impaired phase-reversal learn-
ing. Following the Marr—Albus–Ito
model of cerebellar learning that points to
the cerebellar cortex as a site of learning,
we have drawn a first version of the model,
the minimal model, which is similar to
previously published models (Fujita,
1982). The minimal model that imple-
ments plasticity only at GC3PC synapses
is able to reproduce the behavioral data,
including the gradual dynamics of phase
reversal, due to a delay in the error signal.
However, the PC modulation in the
model is at odds with the electrophysio-
logical data.

We therefore moved to a more elabo-
rate detailed model that also includes a
plasticity site at the MF to MVN synapses
(Miles and Lisberger, 1981; Pugh and Ra-
man, 2006; McElvain et al., 2010; Medina,
2010; Menzies et al., 2010; Person and Ra-
man, 2010; Zheng and Raman, 2010),
with a slower timescale than the GC to PC
synapses. In this model, GC to PC syn-
apses learn first, but then memory is
slowly transferred to the MF to MVN syn-
apses, while the GC to PC synapses slowly
decay back to their initial values. Learning
at the MF to MVN synapses explains the
lack of drastic changes in SS after learning.
Learning at the MF to MVN happens all
the time, in the light and in the dark, and in the dark by sponta-
neous head movements. Learning would stop when PCs and
MVN are no longer covarying. This learning can be seen as a form
of a consolidation mechanism. Over-representation of preferred
phases similar to the head movement phase (Barmack and Yakh-
nitsa, 2008), both in GC and even more so in IN, as well as the CS
modulation, explains the modulation of SS in anti-phase with the
head movement. Modulation in CS during table stimulation in
the dark is due to a small vestibular component in CF activity. The
model suggests that the gradual phase shift is a signature of the
delay in error signaled by CFs. The data suggest a delay of 100 ms,
which coincides with the time expected for the feedback loop

(Waespe and Henn, 1987), and also coincides with previous es-
timates based on correlating CS and SS signals in PCs (Raymond
and Lisberger, 1998; Wetmore et al., 2014). The new detailed
model was found to be in good agreement with both behavioral
and electrophysiological data.

Finally, we tested the model by implementing two mutant
mice that show severely impaired phase-reversal learning. We
implemented changes in the circuit of the PC-��2 mice by re-
moving feedforward inhibition onto PCs. To keep the PC firing
rates at a fixed level, we decrease the average GC to PC synapses,
consistent with the previous data (Wulff et al., 2009). This change
of average weights has a major influence on learning because the
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Figure 6. GC mutant model (model of GC-�KCC2 mice; Seja et al., 2012), learning the phase-reversal scenario. A, Gain as a
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average weights are now close to the lower bound of synaptic
efficacy. Therefore, PCs have less room to adjust their weights
compared with PCs in wild-type animals. This causes a bias to-
ward potentiation, which causes forgetting during the dark time.
Therefore, the phase cannot be reversed due to both the dark-
time forgetting, and the lower bounds on the GC to PC weights.
The model describing the GC-�KCC2 mice was implemented by
a higher GC excitability, and again GC to PC synapses were de-
creased as a compensation mechanism. As a consequence, the
GC-�KCC2 model produced the same dynamics as the PC-��2
model, and therefore an inability to learn phase reversal, just like
GC-specific mouse mutants, which suffer from basic neurotrans-
mission at part of their GC to PC synapses and a reduced basic
modulation amplitude of their SS activity (Galliano et al., 2013).
Therefore, our model reproduces qualitatively the behavior of
mutant mice as well as wild-type mice.

Note that in both cases, the compensation mechanism
(smaller average GC to PC weights) should produce automati-
cally by itself a decrease in the coefficient of variation (CV2) of
adjacent interspike intervals, because the amount of fluctuations
in synaptic inputs scale with the average squared synaptic
weights, consistent again with data (Wulff et al., 2009). However,
our model predicts that this decrease in CV2 is not the source of
behavioral impairments.

One feature that is not reproduced by the model is the phase
shift of about 30 – 60 degrees before training. We note, however,
that this large phase shift is not present in humans and nonhu-
man primates, where the phase shift is much smaller (Tomko et
al., 1992). This phase shift might therefore be due to poor visual
acuity of mice. Our model also does not include the efference
copy to PCs (Raymond et al., 1996; Boyden et al., 2004), nor
visual inputs to PCs (and therefore produces no OKR). These
inputs could allow, under some conditions, the PCs to act as a
teaching signal for learning directly at the MF to MVN, without
learning at the GC to PCs. Under those conditions, the CFs would
not be necessary for learning (Ke et al., 2009). For example, mon-
keys, which possess a much higher visual acuity than mice, due to
the presence of a fovea and perform far better OKR tracking,
could adapt their VOR without cortical plasticity, using basically
the OKR to teach directly the vestibular nuclei. For the mice,
however, there are a couple of reasons to think that cortical plas-
ticity is necessary. (1) There is some good evidence that LTP at the
GC to PC synapses is necessary for VOR adaptation (Schonewille
et al., 2010), so learning at the level of PCs seems to be important.
(2) The OKR performance in mice is quite poor due to their lack
of fovea, resulting in poor visual perception.

Our model includes two sites of plasticity. Many other sites of
plasticity have been described in the literature (Gao et al., 2012).
This seems to indicate that in the VOR adaptation task, these
other types of plasticity might be redundant with respect to the
two sites described by our model. It will be interesting to consider
in the future other mutant mice, like the PC-specific LTP and
LTD knock-outs (Schonewille et al., 2010, 2011), for which addi-
tional sites of plasticity are likely to be required.

The model makes a number of additional experimentally test-
able predictions: It predicts that in VOR adaptation protocols in
which the phase shift would be intermediate between 0 and 180
degrees (e.g., 90 degrees), transfer from PC to MVN could not be
complete (because such a phase shift could not be generated by
MVN alone: MVN can only control the positive or negative gain).
Thus, the model predicts that PC modulation at the end of train-
ing would be significantly different from pretraining levels. This
is consistent with experimental evidence, suggesting that timing

is controlled by PCs, whereas amplitude is controlled by vestibu-
lar neurons (Perrett et al., 1993; De Zeeuw et al., 1995; Medina et
al., 2000, 2001).

It predicts that the weight of the GC to PC synapses is smaller
for GC-�KCC2 mice than for the wild-types, as already shown in
the case of PC-��2 mice (Wulff et al., 2009).

It predicts that PC average firing rate should increase during
VOR adaptation protocol in PC-��2 and GC-�KCC2 mice, be-
cause of the bias toward potentiation in those animals. These
predictions are similar for the two types of mutant mice, because
in both cases, we assume smaller GC to PC weights in average,
which are therefore close to their lower bound.

Our model shows how, in the simple context of VOR adapta-
tion, learning can be either fully transferred from PCs to MVN,
while in others, it cannot. This is consistent with the general idea
that in some motor adaptation tasks, transfer can be complete,
while in others, transfer can at best be partial (Medina, 2011). Full
transfer would occur in relatively simple situations where MVN is
able to adjust, while it would not occur in more complex situa-
tions, where the full power of PC plasticity would be needed both
in transient and steady-state conditions.

Some of the features of our model have already been intro-
duced before. Delays in the error signals were introduced by Por-
rill and Dean (2007) who showed how such delays prevent
learning of calibration of VOR at high frequencies. The minimal
model is similar to previously introduced models, such as the
adaptive filter model (Fujita, 1982), the LMS spectrum analyzer
(Gluck et al., 1990), and the model of Raymond and Lisberger
(1998), which also uses sinusoidal firing patterns for the GCs.
Learning in the MF to MVN synapses has also been introduced in
previous studies as a consolidation mechanism (Porrill and
Dean, 2007; Menzies et al., 2010), and in the case of classical
conditioning (Medina and Mauk, 1999), where a reduction in PC
firing combined with increased input to the DCN neurons pro-
duces LTP. We also note that the current understanding of MF to
MVN plasticity is incomplete, with different papers showing con-
tradictory results (McElvain et al., 2010; Menzies et al., 2010;
Person and Raman, 2010). In Porrill and Dean (2007), this addi-
tional plasticity site was shown to allow VOR calibration at much
higher frequencies. Here, we argue that plasticity at this site also
has the potential to free the PC plasticity site of carrying the
burden of adjusting for simple gain modulation tasks, leaving this
site more room to adjust for solving potentially more complex
tasks.
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