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Gamma Deficits as a Neural Signature of Cognitive
Impairment in Children Treated for Brain Tumors
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The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada

Cognitive impairment is consistently reported in children treated for brain tumors, particularly in the categories of processing speed,
memory, and attention. Although tumor site, hydrocephalus, chemotherapy, and cranial radiation therapy (CRT) are all associated with
poorer function, CRT predicts the greatest deficits. There is a particularly high correlation between CRT and slowed information-
processing speed. Cortical gamma-band oscillations have been associated with processing behaviorally relevant information; however,
their role in the maintenance of cognition in individuals with processing deficits is unclear. We examined gamma oscillations using
magnetoencephalography (MEG) in children undergoing CRT to test whether gamma characteristics can be a signature of cognitive
impairment in this population. We collected resting-state data as well as data from baseline and active periods during two visual-motor
reaction time tasks of varying cognitive loads from 18 healthy children and 20 patients. We found that only high-gamma oscillations
(60 –100 Hz), and not low-gamma oscillations (30 –59 Hz), showed significant group differences in absolute power levels. Overall,
compared with healthy children, patients showed the following: (1) lower total high-gamma (60 –100 Hz) power during the resting state,
as well as during task-related baseline and performance measures; (2) no change in gamma reactivity to increases in cognitive load; and
(3) slower processing speeds both inside and outside MEG. Our findings show that high-gamma oscillations are disrupted in children
after treatment for a brain tumor. The temporal dynamic of the high-gamma response during information processing may index cogni-
tive impairment in humans with neurological injury.
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Introduction
Much has been made about the promise of using neuroimaging
markers to measure the nature, extent, and prognosis of cognitive
impairment in the injured brain (Greicius, 2008; Broyd et al.,
2009; Colonnese and Khazipov, 2012). However, the neural
mechanisms of impaired information processing, a core deficit
after many forms of brain injury (Anderson and Arciniegas, 2010;
Dockree and Robertson, 2011; Padovani et al., 2012; Taylor,
2012), are unclear. We propose that gamma oscillations may be an
excellent marker of cognitive health and impairment in children.

The rhythmic firing of groups of neurons produces cortical
oscillations that can be characterized by their latency and power
at specific frequencies. Changes in these characteristics are ob-
served in response to external stimuli or internal processes.

Gamma oscillations (30 –100 Hz) are particularly associated with
cognitive function, as follows: increases in gamma power corre-
late with faster reaction times (Jokeit and Makeig, 1994; Schadow
et al., 2009) and enhanced response accuracy (Kaiser et al., 2009);
gamma latencies correlate with cognitive performance (Jokeit
and Makeig, 1994; Haig et al., 2000; Martinovic et al., 2007;
Schadow et al., 2009); and gamma power increases during atten-
tion (Müller et al., 2000), learning (Miltner et al., 1999), and
memory (Tallon-Baudry et al., 1998; Lutzenberger et al., 2002)
processes, as well as during increased cognitive demand (Mainy
et al., 2007; Gaetz et al., 2013).

Cognitive deficits are consistently reported in children treated
for brain tumors (Mulhern et al., 1999; Reddick et al., 2003; Mer-
chant et al., 2005, 2009; Mabbott et al., 2006; Liu et al., 2007). Of
tumor and treatment variables, cranial radiation therapy (CRT)
is most predictive of the severity of these deficits (Askins and
Moore, 2008; Winick, 2011). Children treated for brain tumors,
including CRT, show slower stimulus response times (Schatz et
al., 2000a); delayed motor responses (Berger et al., 2005; Mahone
et al., 2007); and deficits in attention, learning, and memory
(Mabbott et al., 2008, 2009; Riggs et al., 2014). Furthermore,
these children demonstrate slower neural processing speeds and
irregular cortical activations in EEGs (Uberall et al., 1996) and
functional abnormalities in fMRI (Zou et al., 2005). As such,
these children are an excellent population in which to test the
critical role of gamma power in cognitive impairment following
brain injury.
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We recently reported greater relative gamma reactivity in vi-
sual and motor regions and corresponding slowed reaction times
during simple visual-motor task performance in children under-
going CRT for brain tumors than healthy children (Dockstader et
al., 2013). Relative gamma increases in patients could reflect
compensation for an inherent gamma deficit where relatively
greater gamma was required for task performance. Alternatively,
this population could exhibit abnormally high gamma levels that
interfere with efficient task performance. To better understand
the nature of the gamma dynamic in these patients, we measured
absolute gamma power levels in the resting state and during task
performance in two tasks of varying cognitive load. During task
performance, we calculated absolute power during a baseline pe-
riod before task initiation and the change in absolute power dur-
ing the task-related active period. We argue that if children
undergoing CRT have an overall gamma deficit that relates to
cognitive function, then absolute gamma power should (1) be
lower in patients in the resting state and during task performance,
and (2) correlate with the proficiency of task performance.

Materials and Methods
Participants
Participants were 18 healthy children and 20 children undergoing CRT
for pediatric brain tumors at The Hospital for Sick Children. Datasets
from the lower cognitive load visual-motor task came from 15 patients
and 17 control subjects in our previous study in which we showed group
differences in relative gamma responses (Dockstader et al., 2013). In-
formed consent was obtained by all participants, and the study was ap-
proved by the hospital Research Ethics Board. All patients underwent
CRT for the treatment of malignant tumors of the posterior fossa (PF)
and were seen for �12 months following treatment. Late effects related to
radiation typically begin to emerge during this time (Spiegler et al.,
2004). Eligible patients were identified through database review, which
included those patients in whom PF medulloblastoma or ependymoma
had been diagnosed between 2001 and 2009. Patients were not recruited
if they had a diffuse brainstem glioma, were receiving palliative care, or
had a premorbid history of neurological/learning disability. Of the pa-
tients, 15 were treated for medulloblastoma, and 5 for ependymoma. All
medulloblastoma patients were treated with surgery, chemotherapy, and
cranial-spinal radiation with a boost to the PF. Ten patients with medul-
loblastoma were treated with reduced dose cranial-spinal radiation (i.e.,
2340 cGy), and the remaining 5 patients received standard dose cranial-
spinal radiation (i.e., 3600 cGy). All five patients with ependymomas
received focal radiation to the PF (5940 cGy), and one patient received
adjuvant chemotherapy. Two patients with ependymomas showed re-
current disease, and subsequently received chemotherapy and standard
dose cranial-spinal radiation (3600 cGy) with a boost to the surgical bed
(5940 cGy). The mean (�SD) ages of participants at the time of testing
were as follows: in 18 healthy children, 136.1 � 41.49 months; in 20
patients, 144.78 � 30.98 months. There were no significant differences in
age or sex between the control group (12 males and 6 females) and the
patient group (13 males and 7 females; age: t(36) � 0.71, p � 0.05; sex: X2
(1, N � 38) � 0.012, p � 0.05). All participants were right handed.

Magnetoencephalography recordings
Neuromagnetic activity was recorded using a whole-head 151 channel
CTF MEG system located in a magnetically shielded room. Magnetoen-
cephalography (MEG) data were collected continuously at a rate of 1200
samples/s and were filtered at 0.3–300 Hz. Before MEG data acquisition,
each patient was fitted with three fiducial localization coils placed at the
nasion and preauricular points to localize the position of the patient’s
head relative to the MEG sensors. Participants lay supine in the MEG
room, with their eyes open and fixated on a black cross (2 � 2 cm)
presented on a semitransparent screen placed 50 cm from subjects’ eyes.
Eyeblinks and saccades were monitored with electro-oculograms (EOGs)
applied just distal to the lateral canthus of each eye, and one on the left
mastoid process. Continuous head movement was monitored with a

head-tracking system during data acquisition. An off-line system tracked
motion artifacts in the following two ways: (1) where the current position
deviated 5 mm from the reference position; and (2) when there was a 5
mm deviation within a single trial. Any trials in which head movement
was �5 mm were also not included in any analysis (this ended up being
�1% of trials for either group). These parameters for detecting and
correcting for motion artifact are widely accepted in the MEG pediatric
literature (Xiang et al., 2013; Cheyne et al., 2014; Todd et al., 2014). After
the removal of above-threshold data, we conducted a head motion anal-
ysis and determined that there were no group differences in head motion
in any task, as measured by the average fiducial distance from the original
head position across a task as well as the average head movement within
each trial (all p values were �0.05). Children were monitored through a
camera and head movement/EOG/EMG activities displayed on a moni-
tor outside the MEG room. The time points of overt saccades/blinks were
marked and visually inspected at a later date. Trials were marked “bad”
and removed before analysis for any that contained overt saccades/eye
movements occurring from �200 to 0 ms before onset of the visual cue.
Moreover, all participants received a brief (�20 s) trial of each task to
ensure that they understood instructions, could comfortably see the
screen and the target stimuli, and could comfortably press the response
button before data collection. One patient required corrective lenses for
the task, and MEG-compatible lenses were made available. Upon com-
pletion of MEG data collection, the coils were replaced with MRI-visible
markers for coregistration between MEG and MRI information.

MEG tasks
Resting state
Participants were instructed to lie still, keep their eyes open, and fixate on
the cross for the duration of a 3 min recording.

Visual-motor reaction time task
Lower load task. During the task, participants’ eyes were open and fixated
on a black cross. Their dominant hand was resting at their side with their
thumb gently resting on the button of a button box. Pseudo-randomly,
every 1.5–2.5 s the black fixation cross was replaced with a green cross
accompanied by a static visual contrast grating in the lower visual field.
The location and dimensions of this contrast grating have been shown to
elicit a strong visual evoked field �75 ms after stimulus onset (Koelewijn
et al., 2011). Participants were instructed to push the button with their
dominant thumb as soon as the green cross appeared. The time of the
button press in response to the green cross was recorded as the “reaction
time.” Each participant underwent 100 trials.

Higher load task. This task was similar to the lower load task (LLT);
however, every 1.5–2.5 s the black fixation cross was replaced with either
a green cross or a red cross accompanied by a static visual contrast grat-
ing. Subjects were instructed to press the button as quickly as possible in
response to the green cross and to do nothing in response to a red cross.
The time of the button press in response to the green cross was recorded
as the “reaction time.” There were 197 green crosses and 100 red crosses
presented pseudo-randomly. As stimulus discrimination and response
selection was required, this task had a higher cognitive load than the
lower load task. The presentation order of all tasks was counterbalanced
across participants within each group (Fig. 1).

Analyses
MEG analyses
MEG data were digitally filtered off-line for low-gamma (30 –59 Hz) and
high-gamma (60 –100 Hz). We divided gamma oscillations into low-
frequency and high-frequency bandwidths based on recent evidence that
low (�60 Hz) and high (�60 Hz) gamma-band responses can be disso-
ciated during task performance (Brovelli et al., 2005; Sun et al., 2012;
Grent-’t-Jong et al., 2013) and can be differentially affected in popula-
tions with cognitive deficits (Sun et al., 2012). Data were also filtered
outside the gamma range to ask whether there were any group effects in
other bandwidths, as follows: delta (0.5–3 Hz), theta (4 –7 Hz), alpha
(8 –12 Hz), and beta (13–29 Hz).
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Resting-state oscillations
Average absolute power— or total power—across 120 s was calculated
for a single trial from 30 to 150 s from the onset of the resting state for
each channel, within each bandwidth, and across the whole brain (i.e., all
channels), as well as regionally for each individual. In the latter, MEG
channels were grouped into the following 10 distinct regions: bilateral
frontal, temporal, parietal, occipital, and central (Fig. 2A). These regions
were based on the work of Bosma et al. (2008). Topographic representa-
tions of the power spectrum were created in which each individual pixel
on the topoplot represented the value of spectral power for the corre-
sponding local MEG channel.

Task-related oscillations
Whole-brain oscillations (baseline and active periods). A baseline interval
for each bandwidth was calculated as the time period just before the
visual cue. The change in absolute power during the active period was
then calculated by subtracting series of active windows (following the
visual cue) from baseline. The changes in power were averaged across the
whole-brain for both LLTs and higher load tasks (HLTs). The corre-
sponding baseline/active time windows were applied: delta (0.5–3 Hz),
baseline �600 ms to 0 ms, active time window 0 to 600 ms after visual
cue); theta (4 –7 Hz), baseline �200 ms to 0 ms, active time windows
starting at 0 –200 ms after visual cue and every 200 ms following; � (8 –12
Hz), baseline �100 ms to 0 ms, time windows starting at 0 –100 ms after
visual cue and every 100 ms following; beta (13–29 Hz), baseline �75 ms

to 0 ms, active time windows starting at 0 –75 ms after visual cue and
every 75 ms following; gamma (both low and high 30 –100 Hz), baseline
�30 ms to 0 ms, active time windows starting at 0 –30 ms after visual cue
and every 30 ms following. These windows were corresponded to the
number of oscillations of a particular frequency in 1000 ms. Topographic
representations of the power spectrum for each time window were then
created.

Regional oscillations. Using only the bandwidth that showed significant
differences in the whole-brain analysis (60 –100 Hz), we applied the same
analysis described above to each of the 10 topographic regions separately.

Beamformer source localization. Using only the bandwidth and time
windows that showed significant group differences in the topographic,
task-related analysis we applied a beamformer method across the entire
brain to determine the exact locations of underlying neural generators
observed during task performance for each group. Spatial localization
was based on the synthetic aperture magnetometry (SAM) approach
(Robinson and Vrba, 1999) and automatized through BrainWave soft-
ware (developed by Dr. Douglas Cheyne, The Hospital for Sick Children,
Toronto, ON, Canada). Therefore, data analysis was restricted to a pe-
riod of 60 –100 Hz during the significant active time windows with a
baseline period of �30 to 0 ms relative to the visual cue. Images were
spatially normalized and registered to a pediatric template (Wilke et al.,
2002) using the BrainWave toolbox integrated with Statistical Parametric
Mapping software (Wellcome Trust Centre for Neuroimaging, London,
UK). A between-group permutation analysis of 512 replications that was
thresholded at 0.05 was applied. Talaraich labels were obtained by warp-
ing the averaged data fit to a pediatric template to the adult MNI template
(ICBM152; Mazziotta et al., 2001). Data were thresholded at a value of
0.1 (pseudo-Z). In particular, sources that corresponded to regional top-
ographic differences were investigated.

Neuropsychological information processing speed scores. A composite
index score for processing speed index (PSI) was calculated based on the
processing speed subtests of the Wechsler Intelligence Scale for Chil-
dren–fourth edition (WISC-IV; Wechsler, 2004). PSI scores were ob-
tained for patients only (during a clinical visit) and within 6 months of
MEG testing.

Statistical approach
Resting-state oscillations
A single value for each participant, within each frequency bandwidth,
was derived from the averaged absolute power value across all topoplot
pixels for each individual’s resting-state data. A MANOVA was con-
ducted on the mean absolute power across all six bandwidths with group
( patient and control groups) as a between-subjects factor for the whole
brain and, separately, for each region.

Reaction time during task
A repeated-measures ANOVA was conducted on the mean reaction time
to the cue for the visual-motor tasks, with group ( patient and control
groups) as a between-subjects factor and task (LLT and HLT) as a within-
subjects factor.

Task-related oscillations
Active periods. Overall, we conducted a series of repeated-measures
ANOVAs to test the effects of group, active time windows, and task on
whole-brain frequency power and regional frequency power, respec-
tively. For all analyses, significant main effects and lower-order interac-
tions were interpreted in the context of the highest-order interaction that
was significant: tests of simple effects— corrected for multiple compari-
sons (Bonferroni correction) to address type 1 errors—were then used to
interrogate the highest-order interaction.

Whole-brain oscillations. First, we examined group differences in the
time course of changes in absolute oscillatory power during the visual-
motor LLTs and HLTs across the whole brain for each bandwidth sepa-
rately. Separate repeated-measures ANOVAs were conducted on mean
absolute power for each bandwidth with group (patient and healthy
children groups) as a between-subjects factor, and task (LLT and HLT)
and time (active time window) as within-subjects factors. Investigation
of temporal changes continued up to 600 ms after the visual cue as the

Figure 1. Participants performed two counterbalanced tasks in the MEG: visual-motor
reaction-time LLTs and HLTs. In both tasks, participants were to attend to a visual stimulus and
respond as quickly as possible when cued. Reaction time was recorded for each trial. Only
“Respond” trials were presented for the LLT. For the HLT, Respond trials were presented on 67%
of trials, and on 33% of trials a different cue was presented in which no response was required
(i.e., “Don’t Respond” trials). The HLT involves increase cognitive load versus the LLT, as stimulus
discrimination is required. See also Table 1.
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average reaction time � SD fell within this time period for both groups,
in both conditions. Only those bandwidths showing whole-brain effects
were carried forward in the subsequent analyses.

Regional oscillations. Second, regionally specific estimates in the time
course of changes in absolute oscillatory power in bilateral frontal, cen-
tral, parietal, temporal, and occipital brain regions were examined for
each of the 10 topographic compartments. Separate repeated-measures
ANOVAs were conducted on the mean power for each region compared
with group (patient and healthy children groups) as a between-subjects
factor, and task (LLT and HLT) and time (time window) as within-
subjects factors. We then used tests of simple effects (with Bonferroni
correction for multiple comparisons) to test for group effects in fre-
quency power in each region, whether or not the overall model was
significant. To further reduce the chance of spurious effects, we consid-
ered group differences to be significant only if they were evident in clus-
ters that spanned across three or more consecutive epochs.

Baseline period
We conducted post hoc t tests to determine whether there were baseline
group differences in total gamma power only for conditions in which
changes in task-related gamma power were significantly different be-
tween groups.

Source localization. To localize the neural generators underlying any
effects, we applied a scalar beamformer method (i.e., SAM) and we aver-
aged the results by group using the Statistical Parametric Mapping soft-
ware, as described above.

Correlational analyses. Finally, only those bandwidths and regions
where significant effects were identified in our prior analyses were carried
forward to test for the relations between frequency power and
information-processing speed in patients. Correlation analyses (with
Bonferroni corrections for multiple comparisons) were performed be-
tween (1) the regional frequency power for time epochs from the LLT
and HLT performance, and (2) the PSI from the WISC-IV.

Results
Reaction time
All participants were slower on the HLT versus the LLT, indicat-
ing that greater effort was required to complete this task. Patients’

reaction times were slower than those of healthy children across
both tasks (p values �0.01; Table 1). The error rate for pressing
the button on trials with a red cross in the LLT was �10% for each
group.

Resting-state oscillations
Across the whole brain, no multivariate difference was evident
between the groups in absolute power across bandwidths (Wilks
lambda � 0.759, F(1,36) � 1.64, p � 0.17). There was a single
univariate difference, however, with patients showing greater
resting-state theta power compared with control subjects (F(1,36)

� 5.78, p � 0.021). Regionally, however, patients had signifi-
cantly lower total high-gamma power in bilateral central and
parietal regions compared with healthy children (p � 0.05; Fig.
2). There were no significant differences between groups in mea-
sures of SD.

Task-related changes in whole-brain activity
During the active period (�0 ms from onset of the visual cue),
there were main effects of changes in absolute global high-gamma

Figure 2. Deficit in regional gamma power in patients during the resting state. A, Compartmental organization of regional topoplot analysis is based on the work of Bosma et al. (2008). B,
Children treated for brain tumors showed lower high-gamma power (60 –100 Hz) in bilateral central and parietal brain regions.

Table 1. Reaction time data and analyses

Data

Healthy children Patients

p value df F statisticMean RT (ms) SD Mean RT (ms) SD

Task
LLT 291.61 72.98 384.37 72.99 0.000
HLT 429.66 93.74 503.48 93.75 0.02

Analyses 0.000
ANOVA

Group 0.002 1,36 11.00
Task 0.000 1,36 143.8

Findings are from analyses with group (healthy children and patient) as a between-subjects factor and task (LLT and
HLT) as a within-subjects factor.
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power (60 –100 Hz) for group (F(1,36) � 7.2, p � 0.011), task
(F(1,36) � 10.79, p � 0.002), and time (F(19,18) � 5.98, p � 0.000),
and for task � group interactions (F(1,36) � 7.48, p � 0.01),
time � group interactions (F(19,18) � 9.35, p � 0.000), and task �
time interactions (F(19,18) � 5.23, p � 0.000). All main effects and
lower-order interactions were interpreted in the context of a
three-way interaction among task � time � group (F(1,36) � 5.71,
p � 0.000). Tests of simple effects for this interaction showed that
the healthy children had a greater increase in absolute high-
gamma power during task performance than children treated for
brain tumors, that the increase was greater in the higher load task,
and that the increase occurred in the early time epochs for both
tasks (Table 2). Patients showed little change in absolute high-
gamma power and no association with load (Fig. 3). There were
no significant differences between groups in measures of SD.
Analyses were also conducted for delta (0.5–3 Hz), theta (4 –7
Hz), alpha (8 –12 Hz), beta (13–29 Hz), and low gamma (30 –59
Hz) bandwidths; however, there were no significant effects for
any of these bandwidths.

Task-related whole-brain baseline measures
In the baseline period (�30 to 0 ms of visual cue onset), healthy
children showed significantly more total whole-brain high-
gamma power than patients for both the LLT (t(58) � 4.73, p �
0.0001) and HLT (t(58) � 3.65, p � 0.0006) paradigms. To visu-
ally depict changes in absolute high-gamma power within each
group, we plotted the changes in total high-gamma power and
measured the peak change in power from baseline for each group
separately. Although patients had significantly lower total high-
gamma power, they showed a greater relative potentiation of
high-gamma across the whole brain in the LLT, but not the HLT
(Fig. 4).

Task-related changes in regional activity
For the left central region, there was a main effect of time (F(9,28)

� 5.3, p � 0.000) and time � group interactions (F(9,28) � 4.26,
p � 0.002) and time interactions task interactions (F(9,28) � 2.6,
p � 0.025), which were interpreted in the context of a three-way
task � time � group interaction (F(9,28) � 3.13, p � 0.01). Tests
of simple effects showed that the healthy children exhibited a
greater increase in left central absolute high-gamma power dur-
ing task performance than children treated for brain tumors, and
that this difference was greater in the HLT, and in the early and
middle stages of the trial (180 –390 ms; Table 3, Fig. 5). Healthy

children also displayed more absolute high-gamma power (60 –
100 Hz) than patients in the right occipital, left parietal, right
parietal, and left frontal topographic regions for the HLT only
(Table 4). There were no significant differences among groups in
measures of SD.

Task-related regional baseline measures
In the baseline period (�30 to 0 ms of visual cue onset), healthy
children showed significantly more total left central high-gamma
power than patients for both the LLT (t(58) � 3.015, p � 0.0038)
and HLT (t(58) � 5.69, p � 0.0001) paradigms. To visually depict
changes in the left central region in absolute high-gamma power
within each group, we plotted the changes in total high-gamma
power and measured the peak change in power from baseline for
each group separately: although patients had significantly lower
total high-gamma power, they showed a greater relative potenti-
ation of high-gamma power in the left central region in the LLT,
but not in the HLT (Fig. 6). Note that evidence of relative changes
in gamma power from baseline in this lower cognitive load par-
adigm was published in our earlier study for the majority of our
participants [previous parameters: 30 –100 Hz; single time win-
dow across entire trial; and contralateral motor cortex (MIc) vir-
tual sensor coordinate]. This earlier finding is similar to our
topographic results of 60 –100 Hz for this region.

Neural generators of the high-gamma response
Based on source localization, left central gamma power (60 –100
Hz) during both tasks was localized to the motor cortex (BA4),
with healthy children showing markedly greater power than pa-
tients (Fig. 7A,B). As all participants were right handed, this
region corresponded to their MIc. Right occipital source power
was localized to the right primary visual cortex (BA18), and pa-
rietal source power to the bilateral regions of the primary so-
matosensory cortices (BA3). Other prominent HLT source
powers were localized in the anterior cingulate cortex (ACC;
BA24) and the posterior cingulate cortex (PCC; BA23, A29, and
A30), respectively (Fig. 5C–F). Overall, patients displayed lower
high-gamma power in these regions.

Correlations between gamma power and
cognitive performance
Finally, we examined whether high-gamma power predicted cog-
nitive performance. There were no significant relations between
MEG reaction times and total high-gamma power during resting

Table 2. Significant tests of simple effects for group differences in time epochs for the interaction of group � task � time in the whole-brain analyses of high-gamma
(60 –100 Hz) power

Time after visual cue (ms)

Healthy children Patients

p valueMean change in power (tesla) SD Mean change in power SD

LLT
1–30 1.54E-30 2.58E-30 �0.51E-30 2.74E-30 0.021
31– 60 2.00E-30 2.82E-30 �0.56E-30 3.00E-30 0.009
61–90 5.02E-30 5.63E-30 �0.6E-30 5.99E-30 0.004
91–120 5.39E-30 6.01E-30 �0.65E-30 6.41E-30 0.004
121–150 3.56E-30 3.66E-30 �0.69E-30 3.23E-30 0.001

HLT
31– 60 58.69E-30 22.27E-30 1.15E-30 7.89E-30 0.000
61–90 66.5E-30 88.49E-30 �0.02E-30 3.77E-30 0.028
91–120 70.78E-30 45.23E-30 0.1E-30 5.04E-30 0.000
121–150 60.7E-30 48.05E-30 �0.24E-30 14.53E-30 0.000
151–180 31.02E-30 36.29E-30 �3.29E-30 22.65E-30 0.007
181–210 20.42E-30 22.47E-30 �1.56E-30 32.04E-30 0.033
421– 450 �5.07E-30 17.34E-30 3.31E-30 11.36E-30 0.022
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state in either group. However, patients showed a significant cor-
relation between less of an increase in high-gamma power (left
central region) and slower reaction times at several time windows
during LLT performance (151–180 ms: r � �0.71, p � 0.0005;
181–210 ms: r � �0.71, p � 0.0005; 211–240 ms: r � �0.71, p �
0.0005; 301–330 ms: r � �0.69, p � 0.0008; 361–390 ms: r �
�0.68, p � 0.001; 391– 420 ms: r � �0.68, p � 0.001; 421– 450
ms: r � �0.68, p � 0.001). In healthy children, greater increases
in whole-brain high-gamma power (60 –100 Hz) immediately
after the visual cue predicted faster reaction times in the HLT
(31– 60 ms: r � �0.7, p � 0.0012). There was no relationship
between high-gamma power increases and reaction time in pa-
tients on the HLT; however, smaller increases in high-gamma
power on the HLT predicted slower processing speeds on the
WISC-IV (181–210 ms: r � 0.67, p � 0.0012; 211–239 ms: r �
0.62, p � 0.0035; 240 –270 ms: r � 0.70, p � 0.0006), suggesting
that gamma characteristics in the MEG task could predict
broader cognitive impairment outside the MEG in patients.

Discussion
We present novel evidence that high-gamma oscillations (60 –
100 Hz) are disrupted in children treated with CRT for brain
tumors of the posterior fossa. Overall, these children had lower

total high-gamma power and lower total increases in high-
gamma power during task performance, regardless of cognitive
load. Reduced levels of total high-gamma power were correlated
with poorer task performance in these children. In contrast,
healthy children demonstrated higher total high-gamma power,
and significant total increases in response to task requirements
and increased cognitive load. Moreover, these increases in high-
gamma power were correlated with faster response times during
task performance in healthy children. Lower levels of total high-
gamma power (60 –100 Hz) at rest and during task performance
may be an index of impaired information processing in the de-
veloping brain. As a lack of gamma power was observed consis-
tently across resting, task-baseline, and task-active states, and
varying stages of cognitive demand, we also suggest that charac-
teristics of neural oscillations that persist between resting state
and task operations may be an ideal biomarker for populations
whose deficits become apparent during cognitive performance.

The relationship of increases in total high-gamma power to
task performance and increased cognitive load may reflect in-
creased synchrony of fast oscillations recruited to support func-
tions underlying task performance, such as perceptual processing
[60 –250 Hz (Edwards et al., 2005); 40 –200 Hz (Lachaux et al.,

Figure 3. Across the whole brain healthy children showed significantly greater high-gamma power (60 –100 Hz) in the LLT and HLT than patients. A, Topoplot map of high-gamma power used
for these analyses. B, Time representation of whole-brain high-gamma activity across trials. The blue arrow depicts mean reaction time for healthy control subjects; the red arrow depicts the mean
reaction time for patients. Highlighted regions represent epochs in which there were significant group differences in gamma power. See also Table 2.
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2007)], attention [�60 Hz (Hauck et al., 2007; Ray et al., 2008)],
and volitional movement [65– 80 Hz (Cheyne et al., 2008); 62– 87
Hz (Waldert et al., 2008); 75–100 Hz (Crone et al., 1998)]. The
observation that further gamma potentiation did not occur in
patients during the higher load task, relative to the lower load
task, suggests that high-gamma power had reached an asymptote
and further potentiation in response to a more difficult task was
not possible. We recently published findings that children treated
for brain tumors with CRT qualitatively showed relatively greater
increases from baseline in visual and motor gamma power (30 –
100 Hz) during a lower load visual-motor reaction time task

(Dockstader et al., 2013). The current findings add important
insight into these earlier findings. We propose that children
treated with CRT have reduced total high-gamma power (60 –
100 Hz) and that global or regional relative increases compared
with healthy control children during task performance may re-
flect compensatory mechanisms for total gamma loss in the lower
load task (Fig. 8). Compensatory increases in gamma activity
during task performance have been documented in other clinical
populations with suggested gamma deficits (Buard et al., 2013;
Florin et al., 2013). As gamma synchrony is thought to reflect
neural computations underlying numerous higher-order pro-
cesses (Fries, 2009), reduced synchrony power of these fastest
oscillations suggests that computational processes may be com-
promised in patients, which leads to impaired task performance.
The lack of total high-gamma power in our patients may reflect
the limited capacity of their brains to fire in synchrony at the
fastest oscillations.

Gamma deficits in patients were specific to the high-gamma
band (60 –100 Hz). While gamma oscillations are often portrayed
with a broadly defined frequency range of 30 –100 Hz, we did not
show any group differences in gamma-band modulations from
30 to 59 Hz. The fact that high-gamma deficits correlated with
poor processing speeds in our patients suggests that oscillations
of �60 Hz play a critical role in our task. Other studies have
demonstrated that event-related activations of �60 Hz are reli-
ably associated with processing speeds (Brücke et al., 2013), at-
tentional modulation (Hauck et al., 2007; Ray et al., 2008), and
decision making (Guggisberg et al., 2007). Moreover, very cir-
cumscribed deficits in high-gamma power have been reported in
other clinical populations with cognitive impairments (Sun et al.,

Figure 4. A, B, Baseline period whole-brain high-gamma levels and separate group total gamma responses for LLT (A) and HLT (B).

Table 3. Significant tests of simple effects for group differences in time epochs for
the interaction of group � task � time in the regional analyses of left central
region high-gamma (60 –100 Hz) power

Time after visual
cue (ms)

Healthy children Patients

p value
Mean change in
power (tesla) SD

Mean change in
power SD

LLT
181–210 33.2E-30 3.46E-30 0.39E-30 36.86E-30 0.006
211–240 63.3E-30 85.8E-30 3.68E-30 91.47E-30 0.041
241–270 40.77E-30 46.62E-30 6.83E-30 4.44E-30 0.018
271–300 61.61E-30 62.32E-30 22.21E-30 5.94E-30 0.038
301–330 50.72E-30 44.6E-30 13.49E-30 47.53E-30 0.015
331–360 56.11E-30 46.61E-30 18.47E-30 49.18E-30 0.018

HLT
361–390 78.77E-30 49.18E-30 14.54E-30 52.44E-30 0.000
391– 420 163.6E-30 131.77E-30 15.27E-30 140.51E-30 0.002
421– 450 201.43E-30 190.39E-30 18.47E-30 203.29E-30 0.005
451– 480 206.01E-30 209.2E-30 33.21E-30 223.02E-30 0.016
481–510 182.25E-30 186.44E-30 29.74E-30 198.71E-30 0.017
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2012, 2013; Snijders et al., 2013). Future work might reveal that
specific cognitive effects are best characterized within well de-
fined gamma sub-bands.

Both global and regional total high-gamma power differences
were shown between our groups. Global increases in oscillatory
power can reflect increases in long-range connectivity when mul-
tiple cortical regions are involved in task performance and local-
ized increases in communication in task-specific cortical regions
(Fries et al., 2001; Fries, 2005). Since cognitive functions are
thought to depend on integrated activity across specialized brain
regions, either global changes or regional changes in oscillatory
activities may influence the performance of cognitive tasks in a
population where tumor location is specific but treatment effects
(such as chemotherapy and whole-brain CRT) are diffuse across
the entire brain. In our study, the relationship of increases in
gamma power to increases in processing speed was particularly
associated with the MIc on our visual-motor tasks. Gamma
power increases in MIc that occurred just before, and during, the
motor response may reflect the activity of cortico-subcortical
networks involved in feedback control for motor performance
(Cheyne et al., 2008). With increased cognitive load, increases in
gamma power were potentiated in the healthy children, which
may also enhance regional communication relevant for efficient

task performance when cognitive demand is increased (Fries et
al., 2001; Fries, 2005).

The more demanding task also elicited increased gamma re-
sponses from several other neural generators, including the bilat-
eral somatosensory cortices and the dorsal ACC and PCC. The
dorsal part of the ACC is connected with the prefrontal cortex
and parietal cortex, as well as the motor system and the frontal eye
fields, making it a central station for processing top-down and
bottom-up stimuli and assigning appropriate control to other
areas in the brain. The ACC seems to be especially involved when
effort is needed to carry out a task (Botvinick et al., 1999; Bush et
al., 1999; Carter et al., 1999). Although there is less certainty
about the function of the posterior cingulate cortex, PCC subre-
gions showed distinct patterns of activity modulation during the
performance of an attentionally demanding task (Leech and
Sharp, 2014). Although our patients showed peaks in each of
these regions, they showed lower total gamma power in these
regions than the healthy control children. These observations
suggest an overall lack of gamma rhythmicity in many neural
regions in children treated for brain tumors with cranial radia-
tion. They also suggest that task performance in this population
may be compromised by task-specific regional requirements of
increased gamma power during activities. The fact that the beam-

Figure 5. Healthy children showed significantly more fast-wave gamma power (60 –100 Hz) reactivity in the left central region from the LLT to the HLT than patients. A, Topoplot map of
high-gamma power used for these analyses. B, Time representation of whole-brain high-gamma power activity across trials. The blue arrow depicts the mean reaction time for healthy control
subjects; the red arrow depicts the mean reaction time for patients. Highlighted regions represent epochs in which there were significant group differences in gamma power. See also Table 3.
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former analysis did not find localized peaks in the left frontal
region, which showed significant regional differences in the to-
pographical analysis, suggests that there is not a single neural
generator of gamma activity in this area during task performance.

More likely, multiple gamma sources are activated in frontal re-
gions during task performance, suggesting that future directions
should include a network analysis asking whether multiple fron-
tal gamma sources act in tandem during such a task.

Table 4. Planned tests of simple effects for group differences in time epochs for high-gamma (60 –100 Hz) power across all remaining brain regions

Time after visual cue (ms)

Healthy children Patients

p valueMean change in power (tesla) SD Mean change in power SD

Left frontal
421– 450 20603.9E-30 21682E-30 2895.33E-30 23116E-30 0.018
451– 480 20772E-30 22393E-30 1827.14E-30 23878E-30 0.014
481–510 25770E-30 29913E-30 824.00E-30 31891E-30 0.015

Left parietal
391– 420 235.13E-30 318.28E-30 �64.3E-30 301.94E-30 0.007
421– 450 938.98E-30 1257E-30 �57.94E-30 1193E-30 0.021
451– 480 1000.16E-30 1308E-30 �49.24E-30 1237E-30 0.020
481–510 1153.13E-30 1517E-30 �70.05E-30 1439.3E-30 0.019
511–540 970.26E-30 1221E-30 32.26E-30 1158E-30 0.025
541–570 797.39E-30 963.31E-30 11.11E-30 913.88E-30 0.039

Right parietal
301–330 76.31E-30 87.49E-30 �7.0E-30 82.99E-30 0.006
331–360 146.22E-30 161.E-30 �8.9E-30 153.09E-30 0.006
361–390 166.56E-30 181E-30 �10.85E-30 171.91E-30 0.005
391– 420 186.9E-30 201E-30 �3.78E-30 190.68E-30 0.006
421– 450 144.35E-30 140E-30 �1.08E-30 133.01E-30 0.003
480 –510 118.15E-30 125E-30 1.95E-30 118.86E-30 0.008
511–540 111.29E-30 119E-30 �12.67E-30 113.02E-30 0.003
541–570 104.44E-30 1227E-30 �24.48E-30 116.42E-30 0.002

Right occipital
391– 420 340.89E-30 504.0E-30 �80.48E-30 478E-30 0.015
421– 450 576.69E-30 839E-30 �69.99E-30 79.7E-30 0.025
451– 480 605.13E-30 851E-30 �42.87E-30 808.25E-30 0.026
481–510 766.04E-30 1067E-30 �53.31E-30 1012E-30 0.025

Figure 6. Baseline period for left central region high-gamma levels and separate group total gamma responses for LLT (A) and HLT (B).
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The current findings suggest that patients show a reduced
fast-oscillation response after treatment for brain tumors. Al-
though factors such as tumor pathology, radiation dose, and
amount of resection may all contribute differentially to high os-
cillation synchrony, we did not have a large enough sample to
consider these variables and our patient population. Moreover,
our patient sample is heterogeneous in terms of tumor type and
radiation dose. However, when tumor variables are controlled
for, CRT is more associated with declines in processing speed, IQ,
and working memory performance than surgery-only or surgery
and chemotherapy treatment in pediatric posterior fossa tumor
populations (Anderson et al., 1997; Schatz et al., 2000b; Langer et
al., 2002). Brain-based explanations for CRT-related behavioral
delays in information-processing speed include radiation-
induced mechanical disruptions in relaying neural signals such as
injury to existing white matter that modulates conduction times
and synchrony of impulse conduction (Fields, 2008a,b) or dam-
age to glial progenitor cells that regulate future myelination and
neurotransmitter functions that are important for neural trans-
mission (Monje et al., 2002; Dietrich and Kempermann, 2006;
Roy et al., 2007). Future directions for study should include
investigating whether compromised white matter structure is
related to abnormal neuronal activation after CRT and
whether treatment with surgery alone, or surgery and chemo-

Figure 8. Hypothesized high-gamma power (60 –100 Hz) neural response to cognitive de-
mand in healthy children and children treated for brain tumors with CRT. We propose that
children treated with CRT have reduced total high-gamma power (60 –100 Hz) and that relative
high-gamma increases compared with healthy control children in the lower load task may
reflect compensatory mechanisms for lower levels of absolute gamma power. The observation
that further gamma potentiation did not occur in patients during the higher load task, relative
to the lower load task, suggests that high-gamma power has an asymptote in this population,
which makes further potentiation in response to a more difficult task impossible. The lack of
total high-gamma power in our patients may reflect the limited capacity of their brains to fire in
synchrony at the fastest oscillations.

Figure 7. Left central region gamma reactivity was localized to the left precentral gyrus, BA 4, and MIc. A, Healthy children showed markedly more MIc high-gamma power than
patients in both tasks. The corresponding time course and power values are shown in B. C–F, Regional group differences in high-gamma power localized to the right primary visual cortex,
BA 18 (C); bilateral somatosensory cortices, BA3 (D); right ACC, BA 24 (E); and left PCC, BA 23, 29, and 30 (F ). Time windows shown were the windows in which group-averaged activity
was most robust. See also Table 4.

8822 • J. Neurosci., June 25, 2014 • 34(26):8813– 8824 Dockstader et al. • Gamma Rhythms as an Index of Cognitive Impairment



therapy without CRT, and other patient variables predict
gamma deficits.

In summary, we present novel and compelling evidence that
the power of high-gamma oscillations (60 –100 Hz) may directly
index how quickly the brain can process information. Under-
standing how neural injury transgresses into cognitive impair-
ment is critical to the development of appropriate intervention
and rehabilitation strategies. We submit that the amount of total
high-gamma power is a robust reflection of normal and impaired
information processing.
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Padovani L, André N, Constine LS, Muracciole X (2012) Neurocognitive
function after radiotherapy for paediatric brain tumours. Nat Rev Neurol
8:578 –588. CrossRef Medline

Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE (2008) High-frequency
gamma activity (80 –150Hz) is increased in human cortex during selective
attention. Clin Neurophysiol 119:116 –133. CrossRef Medline

Reddick WE, White HA, Glass JO, Wheeler GC, Thompson SJ, Gajjar A, Leigh
L, Mulhern RK (2003) Developmental model relating white matter vol-
ume to neurocognitive deficits in pediatric brain tumor survivors. Cancer
97:2512–2519. CrossRef Medline

Riggs L, Bouffet E, Laughlin S, Laperriere N, Liu F, Skocic J, Scantlebury N,
Wang F, Schoenhoff NJ, Strother D, Hukin J, Fryer C, McConnell D,
Mabbott DJ (2014) Changes to memory structures in children treated
for posterior fossa tumors. J Int Neuropsychol Soc 20:168 –180. CrossRef
Medline

Robinson S, Vrba J (1999) Functional neuroimaging by synthetic aperture
magnetometry (SAM). Sendai, Japan: Tohku UP.

Roy K, Murtie JC, El-Khodor BF, Edgar N, Sardi SP, Hooks BM, Benoit-

Marand M, Chen C, Moore H, O’Donnell P, Brunner D, Corfas G (2007)
Loss of erbB signaling in oligodendrocytes alters myelin and dopaminer-
gic function, a potential mechanism for neuropsychiatric disorders. Proc
Natl Acad Sci U S A 104:8131– 8136. CrossRef Medline

Schadow J, Dettler N, Paramei GV, Lenz D, Fründ I, Sabel BA, Herrmann CS
(2009) Impairments of Gestalt perception in the intact hemifield of
hemianopic patients are reflected in gamma-band EEG activity. Neuro-
psychologia 47:556 –568. CrossRef Medline

Schatz J, Craft S, Koby M, DeBaun MR (2000a) A lesion analysis of visual
orienting performance in children with cerebral vascular injury. Dev
Neuropsychol 17:49 – 61. CrossRef Medline

Schatz J, Kramer JH, Ablin A, Matthay KK (2000b) Processing speed, work-
ing memory, and IQ: a developmental model of cognitive deficits follow-
ing cranial radiation therapy. Neuropsychology 14:189 –200. CrossRef
Medline

Snijders TM, Milivojevic B, Kemner C (2013) Atypical excitation-inhibition
balance in autism captured by the gamma response to contextual modu-
lation. Neuroimage Clin 3:65–72. CrossRef Medline

Spiegler BJ, Bouffet E, Greenberg ML, Rutka JT, Mabbott DJ (2004) Change
in neurocognitive functioning after treatment with cranial radiation in
childhood. J Clin Oncol 22:706 –713. CrossRef Medline
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Sun L, Castellanos N, Grützner C, Koethe D, Rivolta D, Wibral M, Kranaster
L, Singer W, Leweke MF, Uhlhaas PJ (2013) Evidence for dysregulated
high-frequency oscillations during sensory processing in medication-
naive, first episode schizophrenia. Schizophr Res 150:519 –525. CrossRef
Medline

Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced
gamma-band activity during the delay of a visual short-term memory task
in humans. J Neurosci 18:4244 – 4254. Medline

Taylor AM (2012) Neuropsychological evaluation and management of
sport-related concussion. Curr Opin Pediatr 24:717–723. CrossRef
Medline

Todd RM, Taylor MJ, Robertson A, Cassel DB, Doesberg SM, Lee DH, Shek
PN, Pang EW (2014) Temporal-spatial neural activation patterns linked
to perceptual encoding of emotional salience. PLoS One 9:e93753.
CrossRef Medline

Uberall MA, Hertzberg H, Meier W, Langer T, Beck JD, Wenzel D (1996)
Visual-evoked potentials in long-term survivors of acute lymphoblastic
leukemia in childhood. The German Late Effects Working Group. Neu-
ropediatrics 27:194 –196. CrossRef Medline

Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring
C (2008) Hand movement direction decoded from MEG and EEG.
J Neurosci 28:1000 –1008. CrossRef Medline

Wechsler D (2004) The Wechsler intelligence scale for children, Ed 4. Lon-
don: Pearson Assessment.

Wilke M, Schmithorst VJ, Holland SK (2002) Assessment of spatial normal-
ization of whole-brain magnetic resonance images in children. Hum
Brain Mapp 17:48 – 60. CrossRef Medline

Winick N (2011) Neurocognitive outcome in survivors of pediatric cancer.
Curr Opin Pediatr 23:27–33. CrossRef Medline

Xiang J, Degrauw X, Korman AM, Allen JR, O’Brien HL, Kabbouche MA,
Powers SW, Hershey AD (2013) Neuromagnetic abnormality of motor
cortical activation and phases of headache attacks in childhood migraine.
PLoS One 8:e83669. CrossRef Medline

Zou P, Mulhern RK, Butler RW, Li CS, Langston JW, Ogg RJ (2005) BOLD
responses to visual stimulation in survivors of childhood cancer. Neuro-
image 24:61– 69. CrossRef Medline

8824 • J. Neurosci., June 25, 2014 • 34(26):8813– 8824 Dockstader et al. • Gamma Rhythms as an Index of Cognitive Impairment

http://dx.doi.org/10.1215/15228517-2006-002
http://www.ncbi.nlm.nih.gov/pubmed/16723629
http://dx.doi.org/10.1037/0894-4105.22.2.159
http://www.ncbi.nlm.nih.gov/pubmed/18331158
http://dx.doi.org/10.1017/S1355617709090249
http://www.ncbi.nlm.nih.gov/pubmed/19203432
http://dx.doi.org/10.1093/jpepsy/jsm028
http://www.ncbi.nlm.nih.gov/pubmed/17522113
http://dx.doi.org/10.1002/hbm.20264
http://www.ncbi.nlm.nih.gov/pubmed/16767775
http://dx.doi.org/10.1162/jocn.2007.19.6.921
http://www.ncbi.nlm.nih.gov/pubmed/17536963
http://dx.doi.org/10.1098/rstb.2001.0915
http://www.ncbi.nlm.nih.gov/pubmed/11545704
http://dx.doi.org/10.1016/j.ijrobp.2005.05.028
http://www.ncbi.nlm.nih.gov/pubmed/16115736
http://dx.doi.org/10.1200/JCO.2008.21.2738
http://www.ncbi.nlm.nih.gov/pubmed/19581535
http://dx.doi.org/10.1038/17126
http://www.ncbi.nlm.nih.gov/pubmed/9989409
http://dx.doi.org/10.1038/nm749
http://www.ncbi.nlm.nih.gov/pubmed/12161748
http://dx.doi.org/10.1002/1531-8249(199912)46:6<834::AID-ANA5>3.0.CO;2-M
http://www.ncbi.nlm.nih.gov/pubmed/10589535
http://dx.doi.org/10.1016/S0167-8760(00)00171-9
http://www.ncbi.nlm.nih.gov/pubmed/11102668
http://dx.doi.org/10.1038/nrneurol.2012.182
http://www.ncbi.nlm.nih.gov/pubmed/22964509
http://dx.doi.org/10.1016/j.clinph.2007.09.136
http://www.ncbi.nlm.nih.gov/pubmed/18037343
http://dx.doi.org/10.1002/cncr.11355
http://www.ncbi.nlm.nih.gov/pubmed/12733151
http://dx.doi.org/10.1017/S135561771300129X
http://www.ncbi.nlm.nih.gov/pubmed/24460980
http://dx.doi.org/10.1073/pnas.0702157104
http://www.ncbi.nlm.nih.gov/pubmed/17483467
http://dx.doi.org/10.1016/j.neuropsychologia.2008.10.012
http://www.ncbi.nlm.nih.gov/pubmed/18996403
http://dx.doi.org/10.1207/S15326942DN1701_03
http://www.ncbi.nlm.nih.gov/pubmed/10916574
http://dx.doi.org/10.1037/0894-4105.14.2.189
http://www.ncbi.nlm.nih.gov/pubmed/10791859
http://dx.doi.org/10.1016/j.nicl.2013.06.015
http://www.ncbi.nlm.nih.gov/pubmed/24179850
http://dx.doi.org/10.1200/JCO.2004.05.186
http://www.ncbi.nlm.nih.gov/pubmed/14966095
http://dx.doi.org/10.1523/JNEUROSCI.1073-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22787042
http://dx.doi.org/10.1016/j.schres.2013.08.023
http://www.ncbi.nlm.nih.gov/pubmed/24016727
http://www.ncbi.nlm.nih.gov/pubmed/9592102
http://dx.doi.org/10.1097/MOP.0b013e32835a279b
http://www.ncbi.nlm.nih.gov/pubmed/23080132
http://dx.doi.org/10.1371/journal.pone.0093753
http://www.ncbi.nlm.nih.gov/pubmed/24727751
http://dx.doi.org/10.1055/s-2007-973786
http://www.ncbi.nlm.nih.gov/pubmed/8892368
http://dx.doi.org/10.1523/JNEUROSCI.5171-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18216207
http://dx.doi.org/10.1002/hbm.10053
http://www.ncbi.nlm.nih.gov/pubmed/12203688
http://dx.doi.org/10.1097/MOP.0b013e32834255e9
http://www.ncbi.nlm.nih.gov/pubmed/21157347
http://dx.doi.org/10.1371/journal.pone.0083669
http://www.ncbi.nlm.nih.gov/pubmed/24386250
http://dx.doi.org/10.1016/j.neuroimage.2004.08.030
http://www.ncbi.nlm.nih.gov/pubmed/15588597

	Gamma Deficits as a Neural Signature of Cognitive Impairment in Children Treated for Brain Tumors
	Introduction
	Materials and Methods
	Participants
	Magnetoencephalography recordings
	MEG tasks
	Analyses
	Statistical approach
	Results

	Reaction time
	Resting-state oscillations
	Task-related changes in whole-brain activity
	Task-related whole-brain baseline measures
	Task-related changes in regional activity
	Task-related regional baseline measures
	Neural generators of the high-gamma response
	Correlations between gamma power and cognitive performance
	Discussion
	References

