
Systems/Circuits

Orientation Decoding in Human Visual Cortex: New Insights
from an Unbiased Perspective
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The development of multivariate pattern analysis or brain “decoding” methods has substantially altered the field of fMRI research.
Although these methods are highly sensitive to whether or not decodable information exists, the information they discover and make use
of for decoding is often concealed within complex patterns of activation. This opacity of interpretation is embodied in influential studies
showing that the orientation of visual gratings can be decoded from brain activity in human visual cortex with fMRI. Although these
studies provided a compelling demonstration of the power of these methods, their findings were somewhat mysterious as the scanning
resolution was insufficient to resolve orientation columns, i.e., orientation information should not have been accessible. Two theories
have been put forth to account for this result, the hyperacuity account and the biased map account, both of which assume that small biases
in fMRI voxels are the source of decodable information. In the present study, we use Hubel and Wiesel’s (1972) classic ice-cube model of
visual cortex to show that the orientation of gratings can be decoded from an unbiased representation. In our analysis, we identify
patterns of activity elicited by the edges of the stimulus as the source of the decodable information. Furthermore, these activation patterns
masquerade as a radial bias, a key element of the biased map account. This classic model thus sheds new light on the mystery behind
orientation decoding by unveiling a new source of decodable information.
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Introduction
Multivariate pattern analysis (MVPA) methods have made a large
impact on fMRI research (Norman et al., 2006; Kriegeskorte and
Kreiman, 2011). The inherent complexity of MVPA, however,
can obscure the source of decodable information (Op de Beeck,
2010). This is exemplified in the debate about the (theoretical)
spatial resolution of MVPA. In 2005, two impactful fMRI decod-
ing studies showed that the orientation of gratings is decodable
from primary visual cortex. From this work, it was postulated
that MVPA confers hyperacuity or subvoxel resolution to fMRI
(Boynton, 2005; Haynes and Rees, 2005; Kamitani and Tong,
2005). The foundation of this conclusion was knowledge of the
organization of primary visual cortex (V1), famously described
by Hubel and Wiesel (1972) using the ice-cube model (Hubel,
1988), in which hypercolumns represent orientation continu-
ously within V1’s retinotopic map. These early influential MVPA
studies scanned at an insufficient resolution to measure hyper-
columns directly, which led to the hyperacuity account.

How does decodable information about orientation arise at
the resolution of fMRI? This question has been the subject of

recent vigorous debate. There are currently two theories. The first
is the hyperacuity account, which suggests that imperfect sam-
pling of orientation columns in fMRI voxels creates small biases,
and that MVPA exploits these biases to recover orientation (Boy-
nton, 2005; Haynes and Rees, 2005; Kamitani and Tong, 2005).
The alternative is the biased map account, which argues that
orientation decoding relies on coarse scale biases at the reti-
notopic map level, and in particular a bias for radial orienta-
tions (Sasaki et al., 2006; Mannion et al., 2009; Freeman et al.,
2011). A number of approaches have been taken to study these
possibilities. Spatial filtering of the fMRI data initially seemed
to yield straightforward predictions (Op de Beeck, 2010). The
results, however, have been equivocal (Kamitani and Sawa-
hata, 2010; Kriegeskorte et al., 2010; Swisher et al., 2010; Alink
et al., 2013). Freeman et al. (2011) attempted to establish what
information is “necessary” and “sufficient” for decoding; but
again the findings were not so clear-cut (Alink et al., 2013).
Finally there was a stimulus-based approach, spurred by the
argument that radially balanced spirals should not be decod-
able if decoding relies solely on a radial bias, but this again was
not definitive (Mannion et al., 2009; Clifford et al., 2011; Free-
man et al., 2013).

In the present study, we take a modeling approach. We con-
structed a model of visual cortex based on the classic ice-cube
model (Hubel and Wiesel, 1972; Hubel, 1988), and then at-
tempted the decode the orientation of gratings from the model’s
outputs. Importantly the “cubes” in our implementation were
perfect, i.e., they had no biases whatsoever. We show the orien-
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tation of gratings is decodable from an unbiased representation, a
result that neither of the current theories put forth to explain
orientation decoding can account for. We then identify the stim-
ulus’s edges as a source of decodable information for orientation
decoding and show the model can account for a range of findings
in the literature.

Materials and Methods
Model inputs/stimuli
To study the nature of decodable information in visual cortex, we exam-
ined five sets of stimuli. Each stimulus set was based on previous studies
examining the basis of orientation decoding (Kamitani and Tong, 2005;
Freeman et al., 2011, 2013). There were four sets of oriented gratings. The
parameters of the gratings were taken from Freeman et al. (2011), which
examined four grating patterns including a set modeled after the stimuli
used by Kamitani and Tong (2005). The spiral stimuli were created using
methods and parameters described by Freeman et al. (2013). To trans-
form physical stimulus descriptions in visual angle to images for the
model, we used a conversion of 25 pixels to 1° of visual angle. For de-
scriptive purposes, we describe the results in terms of visual angle to
maintain intuitive compatibility with the neuroimaging studies.

General stimulus parameters. Image intensity values were scaled to
range from 0 to 255. The stimuli had an outer radius of 9.5° of visual angle
(237.5 pixels). The grating stimuli were centered on a 25.5 � 25.5°
(640 � 640 pixels) uniform gray background (intensity value � 127),
which served as padding for the convolution of the images with model
filters (see model below). The spiral stimuli were centered on a larger
32 � 32° background (800 � 800 pixels) background, which allowed
sufficient padding the larger filters in the multiscale model (see model
below).

Grating stimulus parameters. The gratings spatial frequency was 16
cycles/degree (cpd) of visual angle (0.025 cycles/pixel in the image). Each
set of gratings had eight orientated exemplars (0°, 22.5°, 45°, 67.5°, 90°,
112.5°, 135°, 157.5° rotations from vertical).

Square-wave gratings. The original claim that decoding methods con-
fer hyperacuity used square-wave gratings (Kamitani and Tong, 2005).
Freeman et al.’s (2011) rendering of their stimuli was a square-wave
grating displayed in an annulus with an outer radius of 9.5°. The inner
radius of the annulus was 0.5° (12.5 pixels).

Sine-wave gratings. Freeman et al. (2011) tested three types of sinusoi-
dal gratings. The first had the same edge boundaries as the square-wave
stimuli described above, outer radius (9.5°) and the inner radius (0.5°).

Sine-wave gratings with large annulus and blurred transition. The sec-
ond set of sinusoidal gratings had a larger inner radius of 4.5° (112.5
pixels). For this set, Freeman et al. (2011) blurred the inner and outer
edges of the annulus with a 1° raised cosine transition (25 pixels).

Sine-wave gratings with large annulus very blurred transition. Freeman
et al. (2011) additionally tested a stimulus set with a wider edge transi-
tion. Here, the cosine transition was applied over half of the width of the
annulus (2.5°), such that the stimulus was only full contrast at a single
eccentricity. Following this, our rendered version was the same as above
except with a transition period of 67.5 pixels over the inner and outer
edges.

Log spiral gratings. The capacity to decode spiral gratings has been used
to argue that multivariate patterns analysis methods must rely on more
than global radial preference maps (Clifford et al., 2011; but see Freeman
et al., 2013). Following the procedure of Freeman et al. (2013), we created
a set of spiral gratings by plotting spiral lines and rasterizing the images in
MATLAB (� factor � 0.7). After rendering the stimulus image, an image
mask was used to set the inner radius 4.5° (112.5 pixels), the outer radius
to 9.5°. Both edges were blurred using 1° (25 pixels) cosine transition.

Perfect cube model
We constructed a model of visual processing to study sources of decod-
able information beyond local and global biased representations. The
model was based on the ice-cube model described by Hubel and Wiesel
(1972; Hubel, 1988). Ocular dominance columns were not included in
the model as eye of origin information was not relevant. In the model,

orientation is encoded using Gabor filters (Fig. 1B), which simulate the
response of simple cells (Hubel and Wiesel, 1959). The model encoded
eight orientations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5° rotation
from vertical), the same as the stimulus orientations. The filters were 2D
sine-wave gratings with a spatial frequency of 16 cpd (0.025 cycles/pixel
in the image) multiplied times a 2D Gaussian kernel (� � 0.5°/ 20 pixels)
with a width of 3° (120 pixels). Note the spatial frequency of the filters
matches that of the sine-wave grating stimuli, and thus are optimally
suited to encode these patterns. The spatial frequency of the filters also
matched the first harmonic (the fundamental frequency) of the square-
wave gratings, and thus was also well suited to encode these stimuli. We
also implemented a multiscale perfect cube model (PCM; Fig. 1) model
(described below) that encoded the higher order harmonic frequencies of
the square-wave stimulus. The model outputs for these frequencies were
not substantially different from that of the fundamental (data not
shown).

Each of the grating stimuli was convolved with the eight oriented
Gabor filters to generate an activation map representing the spatial re-
sponse of the filter. To remove the effect of the stimulus phase, we fol-
lowed the approach used by Freeman et al. (2011). In their fMRI study,
the authors presented subjects 16 equally spaced phase exemplars at a
high rate (250 ms/exemplar). By presenting the stimuli at a high rate,
the slow hemodynamic response was used to temporally average the
response to the individual phase exemplars, generating a phase-
independent pattern of activation in the cortex. In the model, we gener-
ated a phase-independent response by pooling the model’s response to 64
equally spaced phase-stimulus exemplars (Fig. 1A). In this procedure,
each phase exemplar was convolved with each filter (Fig. 1B) producing
64 responses for each filter. These responses were squared individually
(to make the response output non-negative) and then summed to pro-
duce a single spatial map describing the activity from each filter (inde-
pendent of stimulus phase; Fig. 1C). Finally, the filter response maps
were summed into a single topographic map, which is the pattern re-
sponse of the PCM model. Each pixel’s intensity in the pattern response
is the summed activity of all the orientation channels, and can be thought
of as a perfect cube or as an unbiased fMRI voxel. The collective pattern
represents the activation of simple cells in V1 ’s topographic representa-
tion of the stimulus.

The PCM model has two key properties. (1) Orientation is implicit. By
summing the filters’ responses, activity at a given location indicates only
that there is orientation “energy” at that location. The individual contri-
bution of any orientation channel is ambiguous. Decodable information
therefore can only arise at the pattern or map level. (2) Local orientation
is perfectly balanced. All eight oriented filters contribute equally to the
response at each location (pixel/voxel). This is critical as both the current
theories of orientation decoding assume biases (either random or orga-
nized in a global map) are the source of decodable information for ori-
entation decoding.

Multiscale PCM. For spiral stimuli, the spatial frequency of the pattern
changes as a function of eccentricity. Although a single-level model is
sufficient for the grating stimuli, in which there is a dominant frequency,
the spiral stimuli require a model that encodes multiple spatial frequen-
cies. We thus constructed a multilevel model in which orientation is
encoded at multiple scales, akin to the S1 layer of the HMAX (Riesenhu-
ber and Poggio, 1999; Serre et al., 2007). The spatial frequency channels
were consisted of six different sized filters. The filters had a fixed fre-
quency of three cycles and varied in size (30, 60, 90, 120, 150, and 180
pixels). This scaling resulted in filters that encode the stimuli at 2.5, 1.25,
0.825, 0.625, 0.50, and 0.425 cycles/°, respectively. The responses of the
spatial frequency channels were analyzed both individually, and as a
summed response map (see Results). All other aspects of the model were
the same as the single level PCM model.

Results
The orientation of gratings is decodable from an unbiased
visual representation
Although fMRI voxels undoubtedly will have small biases in the
number of neurons representing different orientations, there is
no evidence that these biases are sufficiently large to be measured

8374 • J. Neurosci., June 11, 2014 • 34(24):8373– 8383 Carlson • fMRI Orientation Decoding



from the noisy fMRI signal. These biases are a key assumption of
both the hyperacuity and global biased map accounts of orienta-
tion decoding. To date, no one to our knowledge has tested
whether this assumption is necessary to account for orientation de-
coding. To study this, we constructed a model of early visual process-
ing that lacked any such biases, which we refer to as the PCM (Fig. 1).

We first attempted to decode orientation from PCM’s out-
puts. Our study tested a range of grating stimuli used by studies
investigating the nature of decodable information in visual cortex
(Kamitani and Tong, 2005; Freeman et al., 2011). There were four
sets of gratings, each with eight orientations. To determine
whether orientation is decodable from the PCM, we computed
the correlation distance (1 � �) between PCM’s pattern response
for all possible pairwise comparisons between orientations. If the
correlation distance between the PCM’s outputs is greater than
zero, a correlation classifier (and virtually all other classifiers as
well) would be capable of “decoding” the patterns. Figure 2A–D
shows the decoding results formatted as dissimilarity matrices
(DSM). Each entry in the DSM is the correlation distance be-
tween a pair of stimuli. The diagonal is the correlation distance
between the model outputs for the same stimulus, which by def-
inition is 0. For all the sets of stimuli, we found that orientation is
decodable. It is notable that there is a relationship between ori-
entation disparity and decodability. The diagonal stripe pattern
in the DSMs shows that larger orientation differences are more
decodable, concordant with the findings of Kamitani and Tong
(2005). It is also noteworthy that not all the stimulus sets were
equally decodable. The correlation distance between the heavily

blurred grating stimuli is more than a factor of 2 lower than the
other stimulus sets (note the scale change from Figs. 2A–C and D).
This suggests that the edge blurring manipulation used by Freeman
et al. (2011) is degrading the decodability of the patterns.

Using the PCM and stimuli used previously to study the na-
ture of decodable information in visual cortex, our analysis thus
far has shown that decodable orientation information need not
arise from biases in fMRI voxels. These findings suggest that cur-
rent theories may have overlooked alternative sources of infor-
mation that might account for orientation decoding.

Stimulus edges produce nonuniform spatial responses at the
pattern response level
We found decodability was lower for the patterns with heavily
blurred edges, indicating a candidate source of decodable infor-
mation is the edges. We examined this first by looking at the
response of the individual filters, before summing their re-
sponses. Figure 3A shows the individual filter responses to a ver-
tical exemplar from the four stimulus sets. The vertical filter that
is aligned with the orientation of the stimulus produces a uniform
spatial response shaped like the stimulus. The filters that are not
in alignment with the stimulus orientation, however, show non-
uniform spatial responses. The 45° filter, for example, shows
more activity in the upper right and lower left quadrants. It is also
apparent that the distortions are localized to the edges of the
stimulus. Note that the stimulus sets with the small inner radius
(Fig. 3A, top two rows) have distortions in a small region in the
center, whereas the stimulus sets with a larger inner radius (Fig.

Figure 1. The PCM. A, Sixty-four phase-shifted stimulus exemplars. B, Oriented filters acting as simple cells encoding orientation are convolved with the stimulus exemplars. C, The response of
each filter to each exemplar is squared, and then the exemplar responses are summed to make an activity map for each orientation filter. D, The filters’ response maps are summed into a single
pattern response map, in which each pixel is a “cube” that has a perfectly balanced contribution from each orientation channel, representing an unbiased fMRI voxel.
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3A, bottom two rows) have a ring shaped distortion pattern near
the inner edge of the stimulus. It is important to note this analysis
is done at the individual filter level, which is not accessible to the
classifier. If these distortions vary systematically with orientation
exist after summing the filter responses, then a classifier could use
these patterns to “decode” orientation from an unbiased
representation.

We next turned our examination to the summed output of the
model. One simple way to determine the source of the decodable
information is to look at the difference in the model’s response to
pairs of stimuli. Figure 3B–E show the absolute difference in pat-
tern response for all possible pairwise combinations between
the stimuli. The difference between stimuli is clearly localized
to the edges, as expected from the analysis of the individual filters.

The square-wave stimulus (Fig. 3B) has a small differential re-
sponse in the center and a large ring-shaped differential response,
coinciding with the inner and outer edges. The stimulus set with
the same edge profile (Fig. 3C) has nearly the identical pattern.
Figure 3D is the stimulus set that has an inner edge with a larger
radius. In comparing Figure 3, C and D, the differential activity
shifts in accordance with the relocation of the edge. Finally, Fig-
ure 3E shows the differential response for the stimulus set with an
extremely blurred edge. This notably was Freeman et al.’s (2011)
best effort to address the possibility of an edge artifact. Although
the edge related differential activity is moderated substantially,
there remain differences.

This analysis shows that (1) orientation filters not aligned with
the stimulus produce distorted spatial responses, (2) that these

Figure 2. Decoding results. A–D, Correlation classifier DSMs for the four sets of grating stimuli. Rows and columns are stimulus orientation. Individual entries in the DSM are correlation distances
(i.e., the decodability) between pairs of oriented gratings. Inset, Example stimuli. A, Square-wave grating with a small inner radius edge. B, Sine-wave grating with a small inner radius edge. C,
Sine-wave grating with a large inner radius edge. D, Sine-wave grating with a small inner radius edge and heavy blur function. Note the scale change in dissimilarity for A–C DSMs to the
DSM for D.

Figure 3. Edge related activity. A, Orientation filter-response patterns for a vertical stimulus. The oriented filters are shown at the top of each column. Vertically oriented exemplars from each
stimulus set are shown at the beginning of the rows. Pattern responses from the filters to the vertical exemplar from each sets shown as images. Pattern responses are scaled individually from 0 to
1. B–E, DSM of the differential response between oriented stimuli. Rows and columns are exemplar orientations. Each entry in the DSM is the absolute difference in the model response to a pair of
exemplars. The four DSMs were normalized collectively to range from 0 to 1 for the purposes of comparing responses across stimulus sets. Example stimuli are shown in the insets. B, Square-wave
grating with a small inner radius edge. C, Sine-wave grating with a small inner radius edge. D, Sine-wave grating with a large inner radius edge. E, Sine-wave grating with a small inner radius edge
and heavy blur function.
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distortions are a source of decodable information as they produce
differential responses at the map level, and (3) that these distor-
tions are produced by the edges of the stimulus.

Edges-related activity masquerades as a radial bias
Freeman et al. (2011) presented a parsimonious account of ori-
entation decoding based on the radial bias. We have now shown
that the edges of stimuli generate decodable activation patterns in
a model of visual processing without any such bias. We next
examined whether there is a relationship between the spatial dis-
tribution of activity elicited by edges and the radial bias as ob-
served in fMRI studies (Sasaki et al., 2006; Mannion et al., 2010;
Freeman et al., 2011). Briefly the radial bias in fMRI is increased
activation in retinotopic maps locations that are in correspon-
dence with the orientation of the stimulus; e.g., a vertically ori-
ented grating stimulus would evoke more activity in the upper
and lower visual field, and a horizontal grating would evoke more
activity in the left and right visual field. The accepted interpreta-
tion of this result is that there are a greater proportion of neurons
representing orientations pointing toward the fovea in visual cor-
tex (Sasaki et al., 2006; Mannion et al., 2010; Freeman et al.,
2011).

Is there a relationship between the edge distortions in PCM’s
pattern response and the radial bias? Figure 4A shows the model
output for the eight orientated exemplars from the large inner
annulus sine-wave stimulus set. The top row is the exemplars, the
middle row is PCM’s pattern response to the exemplar, and the
bottom row is the 2D Fourier transform (2DFT) of PCM’s pat-
tern response. Note the pattern responses are slightly elongated
along the axis corresponding to the stimulus orientation. The
vertical stimulus, for example, is stretched vertically in PCM’s
pattern response. This nonuniform spatial response is more eas-
ily seen in the 2DFT, which clearly shows more orientation en-
ergy aligned with the stimulus orientation. This response pattern
accords with the radial bias prediction, which in the case of the
vertically stimulus predicts greater activity in the upper and lower
visual field. For all the orientations, PCM’s pattern response is
elongated along an axis in accordance with the stimulus orienta-
tion, matching the radial bias prediction.

The 2DFT of PCM’s pattern response (Fig. 4A, bottom row) is
organized with the low spatial frequencies in the center and in-
creasingly higher spatial frequencies going outward. Note the
energy in the 2DFT is neither strongly localized to the center (low
frequencies) nor a ring pattern corresponding to high spatial
frequencies. The response is broadband. This is in agreement
with studies showing that information for orientation decoding is
not strongly localized to either low or high spatial frequency pat-
terns of activation in the cortex, which are the predictions of the
global map and hyperacuity accounts respectively (Kamitani and
Sawahata, 2010; Kriegeskorte et al., 2010; Op de Beeck, 2010;
Swisher et al., 2010; Freeman et al., 2011; Alink et al., 2013), albeit
this is somewhat oversimplified.

We next examined the relationship between PCM’s pattern
response and its relationship to the radial bias more directly.
Figures 4B–E show the mean activation of the model as a function
of polar angle for a region defined by a double wedge (see icons
below the plots) for different orientations. For all four sets of
grating patterns, there is a clear relationship between polar angle
and stimulus orientation. Vertically oriented stimuli evoke greater
activity in the top and bottom of the map; stimuli tilted 45° evoke
greater activity in the upper right and lower left regions of the map;
horizontal stimuli evoke greater activity in the left and regions of the
map, etc; exactly matching the radial bias prediction.

Next, to hone in on whether it is edge-related activity specifi-
cally that is mimicking the radial bias, we plotted the data at three
radiuses corresponding to the inner edge, the outer edge, and an
intermediate eccentricity in the middle of the annulus for the
sine-wave grating stimuli with a large inner radius (Fig. 5A). At
the inner edge (Fig. 5A, left plot) and outer edge (Fig. 5A, right
plot) activity waxes and wanes in agreement with the radial bias
prediction. In the middle of the annulus (Fig. 5A, middle plot)
activation is at ceiling, indistinguishable across different polar
angles. This shows that it is the edges of the stimulus that are the
source of the activation patterns mimicking the radial bias.

Last, we considered whether the observed edge activity is suf-
ficiently large to be measured with fMRI. There are many factors
that would contribute to the magnitude of the effect at the level of
BOLD, e.g., the contrast response function, surround suppres-
sion, and the translation of neuronal activity to BOLD response.
One way to examine whether the observed edge related activity is
sufficiently large to be measured with fMRI is to compare its
magnitude to activity driven purely by the stimulus, which clearly
can be measured using fMRI. Figure 5A shows PCM’s response to
both the edges and the stimulus normalized to range from 0 to 1.
To estimate the stimulus activity, we can take the response from
the intermediate eccentricity (Fig. 5A, middle plot). Expectedly
the PCM responds strongly to the stimulus (value of 1). In com-
parison, edge activation ranges from 0.25 to 0 to the inner edge
(Fig. 5A, left plot) and from 0.15 to 0 to the outer edge (Fig. 5A,
right plot). The edge effect is thus �20% the magnitude of the
stimulus for this stimulus set. Figures 5B–D show the same data
for the square wave, the small inner radius sine wave, and the
heavily smoothed stimulus. For these stimuli, the edge effect
ranges from 20 to 10%. Of the four stimulus sets, the edge effect is
weakest for the heavily smoothed stimulus; however, note the
radial bias effect bleeds into the center of the stimulus (presum-
ably due to smoothing). This suggests that decodable edge related
activity for the heavily smoothed stimulus would be more distrib-
uted. Importantly, whereas the edge effect is clearly lower than
the stimulus effect, 10 –20% of the magnitude of a full contrast
stimulus (typical in fMRI orientation decoding studies) would
likely be sufficient to be measured in the fMRI signal.

To summarize, we have shown that (1) oriented stimuli elicit
activation patterns that mimic the radial bias in PCM, (2) that
these patterns of activation are broadband, (3) the source of the
activation patterns are the stimulus’s edges, and (4) the magni-
tude of edge activity is likely sufficient to be detectible with fMRI.

Orientation decoding and edge activity
We have shown decodable activity for orientation emerges from
the edges of the stimulus in the PCM, and that this activity mas-
querades as a radial bias. We next examined how filters with
varying orientation disparity (OD) relative to the stimulus (i.e.,
stimulus orientation–filter orientation) contribute to the edge
effect mimicking the radial bias (Fig. 6). Figure 6A shows the
responses of five filters with varying ODS (0°, 22.5°, 45°, 67.5°,
and 90°). By visual inspection, the filter aligned with the stimulus
(i.e., 0° OD) generates a uniform spatial response in the shape of
the stimulus. In contrast, the filters with ODS greater than zero all
showed spatially nonuniform responses. The filter with the
smallest OD (22.5°) evoked an ellipse-shaped pattern response
tilted slightly away from the orientation of the stimulus in the
direction of the filter’s orientation. The filter notably also showed
a stronger response to the edges (note the bright areas corre-
sponding to the stimulus edges along the principle axis of the
ellipse). The filters with ODS �22.5° did not respond to the inner
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region of the stimulus, but did respond to the edges. Similar to the
22.5° OD filter, the peak of the response to the edge is tilted away
from the orientation of the stimulus in the direction of the filter’s
orientation. A dashed white line denotes the orientation of the
peak edge response for ODS greater than zero in the figure. Nu-
merically, the orientation of the peak edge response was 11.25°,
22.5°, 33.75°, and 45° for the 22.5°, 45°, 67.5°, and 90° OD filters,
or the average of the filter and stimulus orientation. Importantly
this means that the edge response of the non-zero OD filters will

be shifted toward locations in the map corresponding to the stim-
ulus orientation (the radial bias prediction). Although the exact
location of the edge is not perfect, when the positive (clockwise
rotation) and negative (counterclockwise rotation) OD filter off-
sets are pooled, there is more activity in the response map in
locations corresponding to the stimulus orientation (Fig. 6B). In
particular, note that the filters with shallow ODS (22.5° and 45°)
generate an edge response in the upper and lower visual field for
a vertical stimulus, matching the radial bias prediction. Activity

Figure 4. Model activity mimics a radial bias. A, Top, Orientation exemplars from the sine-wave stimulus set with a large inner edge radius. Middle, PCM’s pattern response. Bottom, Log
amplitude of the 2D Fourier analysis on the model response. Spatial frequency is lowest in the center of the image and increases from the center. The highlighted central region indicates frequencies
below the Nyquist sampling rate. B–E, PCM activity as a function of polar angle. The x-axis is a double wedge region of the PCM’s pattern response (diagrammatically shown below the axis). The
wedge has a width of 45° and its angular position shifts stepwise in 22.5° steps. The y-axis is the mean PCM activation within the defined region. The lines are different stimulus orientations. B,
Square-wave grating with a small inner radius edge. C, Sine-wave grating with a small inner radius edge. D, Sine-wave grating with a large inner radius edge. E, Sine-wave grating with a small inner
radius edge and heavy blur function.
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from non-zero disparity filters, particularly those with shallow
ODS, is thus the likely source of the edge activity masquerading as
a radial bias.

Before examining the contribution of both the zero and non-
zero OD filters to the edge response, we sought an explanation for
why the non-zero OD filters respond to the edges. Figure 6C
shows four panels displaying the upper right quadrant of the
vertical stimulus with semi transparent diagrammatic filters su-
perimposed over the stimuli. To best explain the edge response,
the filters have been placed at the location on the stimulus where
the filter generates the maximum edge response (peak location
denoted by the dashed line; Fig. 6A). On the edge, the receptive
field of the filter is occupied partially by the stimulus and partially
by the empty background. It is the interaction between the stim-
ulus region and the empty background that is the source of the
edge response. For example, for the 22.5° OD filter (Fig. 6A, top)
the filter’s receptive field is partially occupied by the stimulus and
in the region there is a relatively good correspondence with the
pattern, which would drive a strong response. The other part of
the filters receptive field is occupied by the background, which
has no effect on the response. The net effect is a positive response
(strong response from the stimulus � no response from the back-
ground). This is even more pronounced in the filters with ODS
�22.5° (Fig. 6B, bottom three panels). Each of these filters does
not respond to the body of the stimulus (Fig. 6A) because the

misalignment between the stimulus orientation and filter orien-
tation is sufficiently large that the positive and negative compo-
nents perfectly cancel one another. At the edges, however, these
filters net a positive response because of the imbalance created by
the empty background region.

We examined each of the different OD filters’ contribution to
the edge response to better determine the source of the edge
effect. Figure 6D–G shows the cumulative response of the OD
filters to the edge for a vertical stimulus at different polar angles.
The “hump” in the middle of the plot corresponds to the activity
mimicking the radial bias, in this case activity in the upper and
lower visual field in response to a vertical stimulus. For the zero
OD filter, there is a large amount of activity contributed to the
overall edge response, but little or no variation as a function of
polar angle. The zero OD filter thus contributes little to the re-
sponse that is mimicking the radial bias. The source is clearly the
non-zero OD filters, and particularly the filters with smaller dis-
parities. Activity for the 22.5° and �22.5° OD filters, in fact ac-
counts for �90% of the activity mimicking the radial bias. It is the
response of the low OD filters that best accounts for the activity
masquerading as a radial bias.

In summary, (1) filters (neurons) of all levels of OD generate a
response that mimics the radial bias, (2) edge related activity for
non-zero disparity filters (neurons) is brought about from an
interaction between the stimulus and background (nonstimulus)

Figure 5. Edge related activity mimics a radial bias. A, Mean activation of the PCM as a function of polar angle for 3 radiuses: the inner edge (left), the center of the annulus (middle), and the outer
edge (right). The image in the inset of the legends graphically shows the radius. The x-axis is a defined double wedge region with a width of 45° that shifts stepwise in 22.5° steps (diagrammatically
shown below the axis). The y-axis is the mean PCM activation within the defined region. The lines are different stimulus orientations. Activity was normalized collectively over the three radius
conditions (inner edge, middle of the annulus, and outer edge) to range from 0 to 1 for the purposes of comparison. B–D, Mean activation of the PCM as a function of polar angle for two radiuses:
the center of the annulus (top), and the outer edge (bottom) for the square-wave stimulus (B), the sine-wave grating stimuli with a small inner radius (C), and the heavily smoothed sine-wave
grating stimuli with a large inner radius (D).
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region of the figure, and (3) the edge related activity mimicking
the radial bias is best accounted for by filters (neurons) with small
ODS.

Spiral sense is decodable from an unbiased visual
representation too
Spiral sense (i.e., direction of rotation; Fig. 7A) is decodable from
activity in the visual cortex measured using fMRI (Mannion et al.,
2009; Alink et al., 2013; Freeman et al., 2013). This observation
has been used to argue that the radial bias is insufficient to explain
orientation decoding (Clifford et al., 2011; but see Freeman et al.,
2013). We next asked whether spiral sense could be decoded from
an unbiased representation. Because the spatial frequency of spi-
ral stimuli changes as a function of eccentricity, we constructed a
variant of the PCM called msPCM that encodes the stimuli at
multiple scales using six spatial frequency channels.

We first examined msPCM’s differential response to spiral
sense in the six spatial frequency channels individually (Fig. 7B).
The differential spatial response varied across the spatial fre-
quency channels. The high-frequency channels (top row) showed
a larger differential response to the interior portion of the spiral;
while the low spatial frequency channels (bottom row) showed a
larger differential response to the outer region. This is expected as
the center of the spiral has high spatial frequencies and the outer
region has low frequencies. Importantly each of the six channels

produces a differential pattern response, thus spiral sense is de-
codable from msPCM’s representation.

We next examined how the differential activation patterns
between spiral sense changes as a function of polar angle (Fig.
7C). Here we observed a relationship between location in the
response map and the differential response. All of the channel’s
differential responses waxed and waned as a function of polar
angle, but phase differed depending on spatial frequency. Chan-
nels encoding high spatial frequencies (i.e., spatial frequencies
less than or equal to 0.033 cycles/pixel) showed the largest differ-
ential response in the upper visual field and the smallest in the
lower visual field; the intermediate spatial frequency channel
(0.025 cycles/pixel) showed the largest differential response in the
upper left visual field and the smallest in the lower right visual
field; and the channels encoding low spatial frequency patterns
(i.e., spatial frequencies greater than or equal to 0.02 cycles/pixel)
showed the largest differential response in the upper right visual
field and the smallest in the lower left visual field.

At the level of typical measurement in fMRI (3 mm 3 voxel),
the response of neurons encoding different spatial frequencies
(and orientations) will be pooled. We next examined the pooled
response of msPCM. Figure 7D shows the differential activation
between spiral senses pooled over the six spatial frequency chan-
nels. As there is a differential response at the pooled pattern level,

Figure 6. Orientation coding and edge activity. A, The response to oriented gratings by filters with different levels of OD. Shown are four oriented grating exemplars with 0°, 45°, 90°, and 135°
orientations. To the right of the exemplars is the response of filters with varying levels of OD. The orientation disparity of the filters increases left to right with 0°, 22.5°, 45°, 67.5°, and 90° offsets (top
row). Below each filter the filter’s pattern response. The dashed line placed over the pattern response indicates the orientation of the peak response to the edge. B, Summed response of the positive
(clockwise) and negative (counterclockwise) OD filter responses a vertical grating pattern. C, Graphical depiction of interaction between filter disparity and the stimulus edge. Shown is the upper
right quadrant of a vertically sine-wave stimulus. Semitransparent filters with varying OD are superimposed over the stimulus in the location corresponding to the peak edge response
(indicated by the dashed line) for the filter. From the top to the bottom, plots show filters with increasing OD. D–G, Individual filters with varying OD contributions to the outer edge
response. Shown are area plots showing the cumulative response of the filters to the outer edge response to a vertical grating. Inset, The grating exemplar from each stimulus set. The
x-axis is a double wedge with a width of 45° region constrained to the outer edge that shifts stepwise in 22.5° steps (diagrammatically shown below the axis). The y-axis is the filter’s response within
the wedge. The filled regions are the response of individual filters. Filter orientation is described relative to the stimulus orientation. D, Sine-wave grating with a small inner radius edge. E,
Square-wave grating with a small inner radius edge. F, Sine-wave grating with a large inner radius edge. G, Sine-wave grating with a small inner radius edge and heavy blur function.
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this shows that spiral sense is decodable from msPCM’s unbiased
representation. Figure 6E shows the differential response as a
function of polar angle. Here, the cyclical relationship is still pres-
ent. In interpreting this pooled response, it is important to point
out that the pooled response will be dependent on the spatial
scales chosen to be included in the model. Including more layers
representing high spatial frequencies, for example, would in-
crease differential activation near the center of the map and
would generate a greater differential response in the upper visual
field. We selected six scales that would evenly cover the range of
spatial frequencies in the spiral stimuli. This selection may not be
representative of the actual distribution in visual cortex. What is
important is that different scales evoke different patterns of dif-
ferential activation, and it would be very unlikely that the differ-
ent scales’ patterns would cancel one another. Thus at the pooled
map level, there would likely exist a decodable pattern for recov-
ering spiral sense.

Finally, we examined whether or not decodable activation pat-
terns could be ascribed to the edges. Figure 7D shows the differ-
ential activation for sense as a function of polar angle for the two
edges (inner and outer) and two radiuses in the center of the pattern.
Unlike the grating stimuli, differential activity for spiral sense was
present throughout the annulus. This indicates that spiral decoding
can rely both on the edges and the body the pattern.

In summary, (1) spiral sense can be decoded from an unbiased
representation, (2) spiral sense can be recovered at multiple spa-
tial scales (spatial frequencies) and from the integrated multiscale
representation, and (3) decodable information for spiral sense is
not confined to the edges.

Discussion
We implemented a version of the ice cube model of visual cortex
(Hubel and Wiesel, 1972; Hubel, 1988) to study the nature of
decodable information for orientation decoding in fMRI. Using
stimuli from existing studies with the same aim (Kamitani and
Tong, 2005; Freeman et al., 2011, 2013), we tested whether or not
it was possible to decode orientation from the unbiased represen-
tation using the PCM. Contrary to the predictions of the two
prominent theories put forth to explain orientation decoding,
both of which assume a biased representation is the source of
decodable information, we found orientation was decodable.
Further analysis showed the source of information for gratings to
be a pattern level response originating from stimulus edges. We
then used a multiscale implementation of the PCM to show that
spiral sense is also decodable from an unbiased representation.
Our instantiation of the model thus has broad explanatory power
for a range of studies examining the nature of decodable infor-
mation in human visual cortex.

MVPA is rapidly becoming a standard tool for the analysis of
fMRI data. In many studies, MVPA constitutes a black box, al-
lowing researchers to answer the question of whether or not a
representation contains decodable information, while obscuring
the information source. Using models that incorporate knowl-
edge of cortical organization and neuronal tuning can reduce the
opacity of these methods. For example, progress has been made
by using existing knowledge of the receptive field properties of
visual neurons to model the response of voxels in visual cortex,
yielding more in-depth knowledge of the underlying representa-

Figure 7. Decoding spirals. A, Spiral sense exemplars. B, Multiscale PCM’s spatial pattern response output difference between spiral sense for the six different spatial frequency channels (SFC):
2.50, 1.25, 0.8250, 0.6250, 0.5000, and 0.4250 cycles/°. C, Mean activation as a function of polar angle for the different spatial frequency channels. The x-axis is a double wedge region with a width
of 90° that shifts stepwise in 22.5° steps (diagrammatically shown below the axis). The y-axis is the mean layer activation within the defined region for the spatial frequency channel. D, Spatial
difference between senses after combining the six multiscale PCM spatial frequency channels. E, Mean activation as a function of polar angle. F, Mean activation as a function of polar angle for four
radiuses: the inner edge (circles), the outer edge (diamonds), and two radiuses inside the stimulus (squares and crosses).
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tion and also the capacity to decode novel stimuli (Thirion et al.,
2006; Dumoulin and Wandell, 2008; Kay et al., 2008; Naselaris et
al., 2011). By explicitly characterizing the underlying neural rep-
resentation, these biologically inspired model-based approaches
clarify the relationship between stimulus, representation, and de-
codable activity. The current study similarly models the neuronal
representation to study the nature of the decodable information
in visual cortex.

In taking this approach, our study identifies a new source of
decodable information for orientation decoding. To date, studies
investigating mechanisms of orientation decoding have focused
on biases and inhomogeneities in the cortical representation. We
found that the edges of stimuli create distortions at the map level
that could be used by a classifier to decode orientation. Freeman
et al. (2011) was sensitive to the possibility that edges might be a
source of decodable information. The authors, however, ruled
out edge related activity based on their qualitative observations.
They first noted that the heavily blurred stimulus with very weak
edges produced similar maps to stimuli with sharper edges, albeit
with a reduced effect size. Our modeling results are in agreement
with these observations. The heavily blurred stimuli produced
distortions similar to the other stimuli (see Fig. 4B–E) and were
less decodable (i.e., had lower between stimulus correlations;
Fig. 2). Second the authors noted that the relocation of the
inner edge of the annulus did not qualitatively change the
maps. More specifically they did not see more activation near
the fovea corresponding to the radial bias when using a smaller
radius inner edge stimulus. The relocation of the edge in the
present study clearly shifted the activation patterns (Fig. 3).
One reason for this discrepancy might be signal-to-noise is
generally lower near the fovea (Schira et al., 2009), thus the
effect of the inner edge manipulation might have been ob-
scured in the fMRI data. Another is it might just be a matter of
qualitative perspective. Our own qualitative view of their
maps is that there is more activity close to the fovea for stimuli
with a smaller inner radius.

Several fMRI experiments have described an increase in activ-
ity at retinotopic locations corresponding to the radial stimulus
orientation, i.e., the radial bias (Sasaki et al., 2006; Mannion et al.,
2009; Alink et al., 2013). Our analysis showed that edge related
activity generates distortions at the map level that is qualitatively
similar to the radial bias. This is potentially a serious concern, as
it is possible that the postulation of a radial bias, at least from
fMRI studies alone, might entirely be based on edge related ac-
tivity. At present it’s unclear to what extent the fMRI data are a
result of a bias in the proportion of neurons representing radial
orientations (i.e., a true radial bias) or edge related activity. In
support of the radial bias interpretation are several animal studies
(Levick and Thibos, 1982; Leventhal, 1983; Schall et al., 1986).
The bias observed in these studies may, however, not be observ-
able with fMRI. Oddly enough, this is one of the arguments
against the hyperacuity account; that is, fMRI voxels assuredly
will have small biases from irregular sampling of orientation col-
umns but that does not necessarily mean we can measure these
biases and decode from orientation from them. The individual
contribution of a true radial bias and edge related activity to the
observed radial bias in fMRI could be resolved in future research
by studying the radial bias as function of eccentricity more care-
fully (Fig. 5) and parceling out the effect that might be ascribed to
the edges.

Clifford et al. (2011) argued that the radial bias could not
solely explain orientation coding, as log spiral stimuli are radially

balanced and decodable (Mannion et al., 2009). Subsequent re-
search has shown that a radial bias may also be sufficient for
decoding spiral sense (Freeman et al., 2013). In the present study,
we showed that spiral sense is decodable from an unbiased
representation, and this could be done at multiple scales and
also from an integrated multi scale representation. We addi-
tionally found that the deferential response between sense pat-
terns, i.e., decodable information for spiral sense, modulated
cyclically with polar angle and that its modulatory nature var-
ied with spatial scale. Freeman et al. (2013) also observed
cyclical modulation for spiral sense as a function of polar
angle, but the modulation frequency was twice that of the
model. They found a global preference for clockwise in the
top-left and lower-right visual-field quadrants; and a global
preference for counterclockwise in the top-right and lower-
left visual-field quadrants. Presently it is not clear to us
whether or not there is a relationship between these findings,
although the cyclical nature of both results is suggestive. That
aside, it is noteworthy that spiral sense can be decoded from an
unbiased representation, and thus there is no need to posit a
bias either at fine grain or coarse scale representation to ac-
count for decoding spiral sense.

Our model results are also compatible with several other
more fine-grained observations in the literature. First, a num-
ber of studies have taken a filtering approach to investigate the
nature of decodable information (Kamitani and Sawahata,
2010; Kriegeskorte et al., 2010; Op de Beeck, 2010; Swisher et
al., 2010; Freeman et al., 2011; Alink et al., 2013). Generally
these studies found decodable information for orientation is
broadband, which has been taken to favor to the global map
interpretation (Op de Beeck, 2010; Freeman et al., 2011). Here
we have shown evidence that edge related activity is also
broadband, which opens up an alternative interpretation of
these findings. Second is the observation that the radial bias is
more dominant in the periphery (Sasaki et al., 2006; Freeman
et al., 2011). Most of these studies have used stimuli with small
radius inner annuluses. This, and the low signal-to-noise in
the fovea (Schira et al., 2009) would allow the edge related
activity in the periphery to dominate. Even if one accepts the
radial bias as a dominant factor, edge related activity (mim-
icking the radial bias) would increase the effect size in the
periphery and account for the observed dominance of the ra-
dial bias in the periphery. The bias for spiral sense, in contrast,
was found to be more dominant closer to the fovea (Freeman
et al., 2013). The model might also account for these results.
We found that decodable information for spirals was distrib-
uted throughout the stimulus. This would predict that decod-
able information for spirals would be closer to the fovea, at
least when referenced to decodable information for gratings.

In summary, the present study has shown that a classic
model of the organization of V1 (Hubel and Wiesel, 1972;
Hubel, 1988) provides a robust account of the existing re-
search on orientation decoding in fMRI. To be clear, our find-
ings do not directly address the contribution of the imperfect
sampling of orientation columns in fMRI voxels (i.e., the hy-
peracuity account) or the contribution of global biases in reti-
notopic maps to orientation decoding. Our study identifies a
new source of decodable information (edge-related activity)
for decoding, and shows that the assumption of biases in fMRI
voxels is not needed to account for the capacity to decode
gratings and spiral sense.
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