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Impulse Control Disorders in Parkinson’s Disease Are
Associated with Dysfunction in Stimulus Valuation But Not
Action Valuation
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A substantial subset of Parkinson’s disease (PD) patients suffers from impulse control disorders (ICDs), which are side effects of
dopaminergic medication. Dopamine plays a key role in reinforcement learning processes. One class of reinforcement learning models,
known as the actor-critic model, suggests that two components are involved in these reinforcement learning processes: a critic, which
estimates values of stimuli and calculates prediction errors, and an actor, which estimates values of potential actions. To understand the
information processing mechanism underlying impulsive behavior, we investigated stimulus and action value learning from reward and
punishment in four groups of participants: on-medication PD patients with ICD, on-medication PD patients without ICD, off-medication
PD patients without ICD, and healthy controls. Analysis of responses suggested that participants used an actor-critic learning strategy
and computed prediction errors based on stimulus values rather than action values. Quantitative model fits also revealed that an
actor-critic model of the basal ganglia with different learning rates for positive and negative prediction errors best matched the choice
data. Moreover, whereas ICDs were associated with model parameters related to stimulus valuation (critic), PD was associated with
parameters related to action valuation (actor). Specifically, PD patients with ICD exhibited lower learning from negative prediction errors
in the critic, resulting in an underestimation of adverse consequences associated with stimuli. These findings offer a specific neurocom-

putational account of the nature of compulsive behaviors induced by dopaminergic drugs.
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Introduction

Dopaminergic medications, especially D2 agonist drugs, trigger
impulse control disorders (ICDs) such as hypersexuality, binge
eating, and pathological gambling in a subset of Parkinson’s dis-
ease (PD) patients (Voon et al., 2007). Although PD is primarily
associated with dopamine depletion in the substantia nigra and
dorsal striatum (Kish et al., 1988), the underlying neural sub-
strates of ICD in PD are mostly the ventral regions of the striatum
and their dopaminergic innervations from the ventral tegmental
area (Dagher and Robbins, 2009; Voon et al., 2010). Therefore,
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dopamine neurons projecting to the ventral striatum are rela-
tively intact in PD patients (Kish et al., 1988). Furthermore, it has
been suggested that the restoration of dopamine transmission in
the dorsal striatum may lead to excessive dopamine receptor
stimulation in the ventral striatum (Swainson et al., 2000; Cools
et al.,, 2001), thus inducing ICD in some patients (Cools et al.,
2003; Dagher and Robbins, 2009).

Overwhelming evidence has shown that dopamine neurons
encode prediction error (PE) signaling, which guides stimulus
and action value learning in reinforcement learning (RL) models
(Schultz et al., 1997; Bayer and Glimcher, 2005; Pessiglione et al.,
2006). It has also been shown that a popular RL model, known as
Q-learning (QL), is useful for understanding the mechanistic dif-
ferences in learning between on- and off-medication PD patients
(Frank et al., 2007; Rutledge et al., 2009). Although it has been
hypothesized that the functional dissociation of striatal subre-
gions is critical to understanding the underlying mechanism of
compulsive behaviors in both the general population (Everitt and
Robbins, 2005; Belin et al., 2013) and PD patients (Cools et al.,
2007; Dagher and Robbins, 2009), previous RL models of PD
have not addressed the different roles of the ventral and dorsal
striatum in the development of ICD in PD. A well known RL
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framework that models the different roles of the dorsal (motor)
and ventral (limbic) striatum is the actor-critic (AC) framework
(Barto, 1995; Dayan and Balleine, 2002). This framework has two
modules, known as the critic and the actor, where the former is
responsible for PE computations and stimulus value learning and
the latter is responsible for action valuation and selection. Em-
pirical studies suggest that the ventral and the dorsal striatum
play different roles in decision making, with the former corre-
sponding to the critic and the latter corresponding to the actor
(Cardinal et al., 2002; Packard and Knowlton, 2002; O’Doherty et
al., 2004). Based on these neuroanatomical data and a prior AC
model of addiction (Piray et al., 2010), we here hypothesize that,
whereas PD is associated with the actor (i.e., action valuation and
selection), ICDs in PD are associated with the critic (i.e., stimulus
valuation and PE computations). Therefore, we provide a novel
modeling approach that combines the concept of separate roles
for positive and negative PEs in learning (Frank et al., 2007) with
the AC framework to test this hypothesis.

Materials and Methods

Participants

This study was part of a larger project conducted at Ain Shams University
Hospital, Cairo, Egypt. Participants were asked whether they were willing
to participate in the short or long version of the project. In the short
version, participants completed 80 trials of a probabilistic learning task
compared with 160 trials for the long version. Ninety-five participants
were recruited, 79 of which participated in the long version of the project.
For this report, we only included those subjects who participated in the
long version of the task (with 160 trials). To have the same number of
data points across all subjects for estimating the parameters of computa-
tional models, we did not include the data from subjects who participated
in the short version of the task. This is because, in principle (within-
subject) variance of parameters estimated based on 80 trials is larger than
those estimated based on 160 trials and this could inflate statistical com-
parisons between groups.

Data from three participants were discarded from the analysis because
these participants had failed to respond in at least 20% of trials. There-
fore, 4 groups were included in the analyses: (1) PD patients without ICD
tested off medication (PD-OFF, n = 25, 6 females); (2) PD patients
without ICD tested on medication (PD-ON, n = 15, 3 females); (3) PD
patients with ICD tested on medication (PD-ON-ICD, n = 16, 2 fe-
males); and (4) healthy controls (n = 20, 7 females). The healthy control
participants did not have any history of neurological or psychiatric dis-
orders. All participants gave written informed consent and the study was
approved by ethical board of Ain Shams University.

The Unified Parkinson’s Disease Rating Scale (UPDRS) was used to
measure the severity of PD (Lang and Fahn, 1989). The UPDRS for all
patients, including PD-OFF, was measured before the testing session
when all PD patients were on medication. There was no difference in
UPDRS between the three patient groups (F, 53, = 0.29, p = 0.75).

The PD-OFF group was withdrawn from medications for a period of at
least 18 h. The majority of on-medication patients were taking dopamine
precursors (levodopa-containing medications) and D2 receptor ago-
nists. Specifically, all participants in the PD-ON-ICD group and 14 par-
ticipants in the PD-ON group were taking D2 agonist medications
(either Requip or Mirapex). In addition to D2 agonist medications, 10
patients in the PD-ON-ICD group and 11 patients in the PD-ON group
were taking levodopa medications.

All participants were screened for intact cognitive function and ab-
sence of dementia with the Mini-Mental Status Exam (MMSE; Folstein et
al., 1975). Participants required a score of at least 26 to be considered for
the study. All groups were matched for age and education. In addition,
we found no difference between the groups on the North American Adult
Reading Test (Uttl, 2002), the Beck Depression Inventory (Beck et al.,
1987), the MMSE, or the forward and backward digit span tasks (all
p-values >0.05, one-way ANOVA). All scales were administered by
trained experts (Table 1).
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Table 1. Demographic data

Healthy PD-OFF PD-ON PD-ON-ICD
Age 66.45 (4.70) 63.92 (3.99) 63.33 (3.98) 64.38 (3.32)
Disease duration NA 9.72 (2.64) 8.87 (3.14) 9.63 (2.45)
HYS NA 2.54(0.61) 2.40 (0.57) 2.47 (0.50)
UPDRS NA 20.36 (5.49) 19.60 (6.42) 19.00 (5.32)
NAART 36.25 (9.15) 34.64 (10.80) 35.60 (12.93) 38.00 (6.32)
MMSE 27.65 (1.18) 27.48 (0.96) 27.00 (0.93) 27.19 (1.11)
Forward DS 6.25 (1.65) 6.80 (1.66) 6.53 (2.13) 6.75 (1.69)
Backward DS 6.25 (1.59) 6.32(1.80) 6.47 (2.17) 7.00 (1.37)
BDI 7.75(1.97) 6.92(1.32) 8.00 (1.69) 6.75 (1.57)
BIS* 54.15 (4.51) 56.80 (4.74) 57.67 (4.18) 61.88 (4.56)

Means are shown with SDs in parentheses.

NA, Not applicable; HYS, Hoehn—Yahr scale; NAART, North American Adult Reading Test; DS, digit span; BDI, Beck
Depression Inventory.

*9 < 0.001.

The diagnosis of ICD was assessed with interviews conducted by neu-
rologists at Ain Shams University Hospital and associated clinics. ICDs
reported included compulsive shopping (10 patients), hypersexuality
(nine patients), gambling (six patients), and binge eating (four patients).
The majority of participants had more than one type of ICD (four pa-
tients with only one type of ICD, 11 patients with two ICDs, and one
patient with three ICDs). The Barratt Impulsiveness Scale (BIS) was ad-
ministered to measure trait impulsivity in all groups. There was a highly
significant difference in BIS scores between the groups (F; ;,, = 8.76,
P <0.001). A post hoc t test revealed that the effect was mainly driven by
a higher impulsivity in the PD-ON-ICD group. BIS scores for this group
were significantly higher than those for the other three groups (p < 0.02
for all three tests, two-tailed ¢ test). We also found significantly higher BIS
scores in the PD-ON group compared with the healthy group (p < 0.05,
two-tailed t test).

Task

All participants were administered a probabilistic reward and punish-
ment learning task (Fig. 14; Bodi et al., 2009). On each trial, participants
viewed one of four different stimuli (S1, S2, S3, and S4) and were asked to
decide whether the stimulus belonged to category A or B. Two stimuli (S1
and S2) were used in the reward-learning trials (win or no-win) and the
other two stimuli (S3 and S4) were used in the punishment-learning
trials (lose or no-lose). Participants received an outcome after making
their choices. There was an optimal choice for each stimulus, which
predominately resulted in obtaining reward or avoiding punishment
(positive feedback; Fig. 1B). Therefore, in reward trials, an optimal
choice resulted in +25 points 80% of the time and in no reward for 20%
of trials. In contrast, a nonoptimal response resulted in +25 points 20%
of the time and otherwise resulted in no reward. In punishment trials, an
optimal response resulted in —25 points with 20% probability and oth-
erwise resulted in no punishment. In contrast, a nonoptimal response
resulted in —25 points 80% of the time and otherwise resulted in no
punishment. The task had 160 trials and the order in which stimuli were
presented was pseudorandomized in blocks of 40 trials. For every block,
each stimulus was randomly presented in 10 trials.

Theoretical framework

We used computational modeling to investigate the mechanistic differ-
ences in learning between participant groups. We fitted different RL
models to each participant’s choice data. These models were variants of
either the QL or the AC framework. Notably, QL and AC frameworks use
different strategies to calculate the PE, the pivotal signal in learning
within both frameworks. Although the QL framework computes the PE
signal based on the estimated value of stimulus-action pairs, the AC
framework computes the PE based on the estimated value of stimuli
regardless of the action taken. The different claims of PE computations in
these two frameworks can be examined in a relatively theory-neutral
manner through model-independent estimation of PE. We also fitted
different models to participants’ choices and compared them using
Bayesian model comparison. All models use the sequence of choices and
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feedbacks for every participant to estimate the A
probability of action taken on every trial.
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Reinforcement learning models

The first model is the QL model with different
learning rates for positive and negative PEs
(dual-a QL; Fig. 2A). This model learns the A
value associated with each stimulus-action pair
Q,(s,, a,) using a PE signal, which is the discrep-

®

ancy between the outcome (reward or punish-
ment) and Q,(s,, a,) as follows:

8,=0,—Qfsy a)

where o, is the outcome on trial #. The model
then updates the current estimated value with
the PE as follows:

at) = Qt(sn
QL+1(SL’ at) = Qz(sn

Figure 1.
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Probabilistic learning task. A, On each trial, one of four stimuli is presented and the participant is asked to choose
whether the stimulus belongs to category A or B to avoid punishment or obtain reward. B, Structure of the task. For each stimulus,
one of the choices (the optimal action) predominantly (80% of the time) results in a positive feedback (either through obtaining a

reward or avoiding punishment). The other choice (the nonoptimal action) predominantly results in a negative feedback.

where @ and a~ are the learning rates for
positive and negative PEs, respectively. These
learning rates determine the degree that recent PEs affect the estimated
value. If « ¥ > a7, then the effect of positive PEs on learned values is
larger than that of negative PEs and vice versa if « ™ < « ~. The effect of
positive and negative PE is equal for ¥ = a . Frank et al. (2004)
hypothesized that different types of dopamine receptors within the stria-
tum mediate the ability to learn from positive and negative PEs via mod-
ulation of dopamine activity in the direct and indirect
corticostriatothalamic pathways, respectively. According to Frank et al.
(2004), the positive PE increases phasic dopamine release, resulting in
learning through D1 receptors. Conversely, the negative PE causes a
dopamine dip below baseline resulting in learning through D2 receptors
(also see Moustafa et al., 2013).

The probability of choosing each action is computed using the soft-
max equation:

ple,=Als)
_ 1
1+ eXP[_B(Qt(Sn A) = Q(s,, B)) — ¢(Ci(s, A) — Cils;, B))]
plc,=Bls) =1 —p(c,=Als,)

where p(c, = Als,) and p(c, = Bls,) are the probability of choosing A and
B, respectively, B is the inverse-temperature parameter that encodes de-
cision noise, and C,(s,, A) and C,(s,, B) represents the choice of A and Bon
the last presentation of s,, respectively (Lau and Glimcher, 2005; Rutledge
etal.,2009). Therefore, C,(s, A) = 1 and C,(s,, B) = 0 if A has been chosen
in the previous presentation of s, before trial £, but if B has been chosen,
C(sp A) = 0 and C,(s, B) = 1. Therefore, ¢ determines the extent to
which the previous choice, independent of reward history, affects the
current choice. Although positive values of ¢ represent a tendency to
perseverate on previous choices, negative values represent a tendency to
switch more frequently between available options.

The second model is the AC model (standard AC; Fig. 2B), which
assigns learning and action selection to two different modules. The PE
signal in this model is computed based on stimulus values, regardless of
the action taken, as follows:

8,=0,—Vls)

where V(s,) is the current critic’s value for s,. The critic’s value is then
updated using the PE as follows:

Vii(s) = Vi(s) + a8,

where ais the critic’s learning rate. The PE is also conveyed to the actor
to update the action value of the selected action in the actor as follows:

QH—l(sn at) = Qt(sn ar) + Ol,,S,

where «, is the actor’s learning rate. Here, if a. > «,, then the effect of
PEs on the criticis larger than that of actor, and vice versa if a. < «,. Note
that this is common practice in machine learning that the update of the
actor is slower than that of the critic to ensure that the critic has sufficient
time to evaluate the current policy (Grondman et al., 2012). However, we
enforce no constraints on the critic’s and actor’s learning rates. If partic-
ipants used an AC strategy, we would expect that the fitted parameters
satisfy this condition for the majority of participants. The probability of
each action is computed according to the actor’s action values. A similar
soft-max equation as the previous model, dual-a QL, is used to generate
the probability of actions based on actor’s action values and choice
perseveration.

The third model is the dual-ae AC model, which is very similar to the
standard AC model (Fig. 2C). The difference between these two models is
how they update stimulus and action values. The dual-a AC model up-
dates stimulus values through two different learning rates, one for posi-
tive PEs and one for negative PEs, as follows:

Vii(s) = Vi(s) + a8, 8,>0

Vini(s) = Vi(s) + o, 0, if ,<0

If «f > a, then the effect of positive PEs on the stimulus value is larger
than that of negative PEs, and vice versa if &) < «_. The actor’s action
value is also updated through the two different learning rates for positive
and negative PEs as follows:

Qi1i(si a) =
Qt+1(sn tl,) =

Here, if o] > a , then the effect of positive PEs on the actor’s action
value is larger than that of negative PEs, and vice versa if o < a . The
values for all models were initiated at zero.

Qs a) + a8,if8,>0

Qs a) + a;8,if8,<0

Model-independent estimation of PE
In this section, we derive a model-independent estimator of PE. This
estimator could then be used to assess learning strategies used by partic-
ipants in a theory-neutral manner.

RL models often assume that choices are generated using a soft-max
equation of action values as follows:

exp(BQ.(a)
exp(BQi(a)) + exp(BQi(a"))

where a and a’ are two available choices and B is the inverse-temperature
parameter. Q(a) is the action value for a on trial #, which could be
generated by either an AC model or by a QL model. Note that Q, is also a
function of state (stimulus) in all of the models. For simplicity (without

pla) =
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Diagram of the three reinforcement learning models. The environment provides three signals for each model: s, indicating the current stimulus, A, indicating the set of available actions,

and o, indicating the outcome after receiving the selected action, a, from the model. Every model learns appropriate actions by computing a PE signal (indicated by PE block in the diagram) and selects
appropriate actions using estimated Q-values of the available set of actions, A. 4, The dual-c: QL model. This model calculates PEs based on the estimated value of stimulus-selected action pair, Q(s,a).
Q-values are updated through two different learning rates, e © and o —, for positive and negative PEs, respectively. B, The standard AC framework: the critic calculates the PE, §, based on the
stimulus value, V(s), independently from the selected action, a. The actor computes action values, @, and selects appropriate action, a, from a set of available action, A, using actor’s Q-values. Both
stimulus and action values are updated using the same PE. €, The dual-cae ACmodel. This model has critical features of the previous models. Similar to the standard ACmodel, the PEis computed based
on stimulus values, /(s), independently from the action, g, selected by the actor. Similar to the dual-ce QL model, this model updates both the critic’s stimulus values, V, and the actor’s action values,
0, through two different learning rates for positive and negative PEs in the critic, o and cv, and in the actor, ;" and «; .

loss of generality), we focus on sequence of choices related to one state
and omit state in the notation in this section. The probability of taking
action a’ on trial ¢ is computed using a similar equation. Therefore:

pda) _ exp(BQ(@)
pda) ~ exp(BQ)

Without loss of generality, we suppose that a is taken at #. Then, the
action value of a should be updated using the PE, §,, as follows:

Qi1(a) = Qa) + b,

where a is the learning rate. There is no change in the action value of the
other action: Q,, ,(a") = Q,(a’). Therefore:

pii(a) _ exp(BQ.a) + Basd)

peiala’) exp(BQ,(a")
a a
By subtracting the logarithm of I% from the logarithm of I%((a,)), we
obtain the following:
Peii(a) pla)
N N = )
ngzﬂ(ll ) ngt(a ) Bas,

We define n,(a) as the number of times that a has been chosen in trials ¢’
= t. Similarly, n(a) is defined as the number of times that a" has been
chosen in trials ' = . The probability of each choice can be estimated
using these variables as follows:

n,a)

PAD =)+ na)

Accordingly, if n,(a") # 0, then Bad, can be estimated as follows:

nt+1(a) n,(a)
Pad =e =log, "oy ~ 108 )

where a is the action taken at t and ¢, is the estimator of the PE, which is
a quantity that is independent of any specific learning strategy and is
purely based on the sequence of choices. Note that the predictions of this
estimator match well with the concept of PE. First, if a is chosen in trials
tand t + 1, then &, is positive, suggesting that choosing a resulted in a
positive feedback and increased the probability of choosing a for subse-
quent trials. If a is chosen at t, but not at t + 1, then ¢, is negative,
suggesting that choosing a resulted in a negative feedback and a reduced
the probability of choosing a for future trials. In addition, the magnitude
of ¢, is smaller for larger amounts of 7,(a), which is consistent with the
idea that the magnitude of PEs should decrease over time.

Subjective utility and nonlearning models

We also fitted four additional models to participants’ choices to investi-
gate whether nonlinearity in subjective values of different outcomes, or
some nonlearning strategies, could explain data better than the previ-
ously mentioned RL models.

Utility models. We considered two utility models. These models test
the hypothesis that participants’ choices can be explained by nonlinearity
in subjective value of outcomes. For the probabilistic learning task used
in our study, the subjective value refers to the different subjective utilities
for reward and punishment.

The first model is the utility QL model as implemented by Niv et al.
(2012). In this model, the PE is computed based on a nonlinear function
of the outcomes as follows:

8r = U(ot) - Qr(sn at)

where U(o,) is the subjective utility of outcome at time . The action value
is then updated using this PE as follows:

Qt+l(st) al‘) = Qt(sb at) + aat

Similar to Nivetal. (2012), to model the subjective utility of the outcome,
we assumed (without loss of generality) that U(0) = 0, U(—25) = —25
and U(+25) = 25u, where u is a free parameter that determines the
subjective utility of outcome. Values of u that are smaller than 1 are
consistent with hypersensitivity to punishment, whereas values of u that
are larger than 1 are consistent with hypersensitivity to reward. Note
that reward and punishment are different from positive and negative PEs
that could occur in both reward and punishment trials. This model com-
putes the probability of each action in the same way as the dual-o« QL
model.

It is also possible to define a subjective utility version of the AC model
(utility AC). In this model, the PE is as follows:

6: = U(Or) - V,(S,)

This PE would then be used by the critic and the actor to update stimulus
and action values, respectively. Again, we assumed that U(0) = 0,
U(—25) = —25, and U(+25) = 25u, where u is a free parameter that
determines the subjective utility of outcome. Similar to the standard AC,
two different learning rates are used to update the critic’s stimulus values
and the actor’s action values. This model computes the probability of
each action in the same way as the standard AC.

Win-stay lose-shift model. We also considered a model that imple-
mented a win-stay, lose-shift (WSLS) strategy. This model selects actions
based only on the most recent outcome. The WSLS strategy selects the
same action that led to success on the next trial or chooses a different
option on the next trial when an action did not lead to a success. This
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Table 2. Bayesian model selection

No. of free

parameters Healthy PD-OFF PD-ON PD-ON-ICD
Standard AC 3 1653.7 2195.8 1217.5 13443
Dual-a: QL 4 1660.9 2208.9 1212.8 1299.2
Dual-ac AC 5 1587.9 2091.6 171.4 1289.7
Utility QL 4 1687.5 2182.9 1239.8 1306.7
Utility AC 4 1657.4 2180.1 1212.8 1303.6
WSLS 2 1893.8 2499.9 14143 1531.1
WSLS (fixed I¥) 1 21240 2742.6 1587.1 1683.5

These numbers represent the negative log-likelihood of data in the corresponding group given the associated
model. The Bayesian model selection takes into account both the goodness of fit and the generalizability of the
models. Lower values are associated with better fits. The dual-o: AC model fits better than other models for all four
groups.

QL, Q-learning; A, actor-critic.

strategy can be stochastically modeled using a sigmoid function as
follows:

1
1+ exp(=Bw(s))

where a is the chosen action in the previous presentation of s, and 3 > 0
encodes decision noise. To model the WSLS strategy, we assumed (with-
out loss of generality) that w, = —1 if the previous presentation of s, was
alose trial and w, = W if it was a win trial. W > 0 is the parameter that
determines the weight of win compared with loss. If W > 1, then the
effect of win on the subsequent choice is larger than that of loss and vice
versa if W < 1. The effect of win and loss on subsequent choices is
symmetric if W = 1. For all positive values of W, the probability of
choosing the same action as the previous trial is more than the alternative
action if the previous trial was a win trial and less than the alternative
action if the previous trial was a loss trial. Note that, in our probabilistic
learning task, win trials were those that resulted in obtaining a reward in
reward trials or avoiding a punishment in punishment trials. We fitted
two WSLS models to participants’ choices. For the first model we as-
sumed both B and W were free, and in the second one we fixed W at 1.
The values for all models were initiated at zero.

p(at = a|5r) =

Model fitting procedure

We used a hierarchical Bayesian procedure for fitting models to partici-
pants’ choices as described in Huys et al. (2011a, 2012). All parameters of
the models are assumed to be free (see Table 2 for the number of free
parameters in each model) except for B in the three AC models (standard
AC, dual-a AC, and utility AC), which was fixed at 1. This is because the
probabilities of choices for these models are affected by the product of the
learning rate parameter of the actor and B and this is the only way that
these parameters affect the likelihood function. These two variables are
indeed colinear. To show that fixing 3 at 1 is statistically justified, we also
fitted these models with B as a free parameter and used the likelihood
ratio test to examine whether these models fit significantly better than the
same models with B fixed at 1. For all three models, the fits were not
significantly improved by having B as a free parameter (p > 0.9 for all
groups, likelihood ratio test). Accordingly, the standard AC, dual-a AC,
and utility AC models have 3, 5, and 4 free parameters, respectively.

In the hierarchical Bayesian procedure, the parameters of an a priori
distribution for individual parameters were estimated using participants’
choices through the expectation-maximization algorithm (Dempster et
al., 1977). This algorithm is a well known method for finding maximum
a posteriori, which alternates between an expectation step and a maximi-
zation step. We used Laplace approximation (MacKay, 2003) for the
expectation step on each iteration. Assuming a normal distribution for
individual parameters, ' for the ith participant, this method estimates
the mean and the variance of the distributions across the whole group, O,
which serves as an a priori distribution for finding the maximum a pos-
teriori on the next iteration. For example, for the dual-a AC model, the
group parameters are as follows:

— ’
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where w and v indicate the mean and deviance of the corresponding
parameter, respectively. The group mean and variance were estimated
separately for each group and were used to define an a priori Gaussian
distribution for individual parameters. Therefore, four sets of parame-
ters, associated with four groups, were estimated. For the details of the
hierarchical fitting procedure, please refer to Huys et al. (2012).

Bayesian model selection
We used a Bayesian model selection approach to assess which model
better captures participants’ choices. This approach selects the most par-
simonious model by balancing between model fits and different levels of
complexity of the models (Kass and Raftery, 1995; MacKay, 2003).

We computed approximate model evidence, P(D|M), which is the
probability of participants’ choices, D, given the model M. We approxi-
mated P(D|M) in log-space using the Bayesian Information Criterion:

1
—log P(D|M) = — log P(D|M, ©,,,) + §|®\log|D|

where D is the set of all participants’ choices in the group, |D| is the
number of choices for the whole group and |@| is the number of group
parameters. ©,,; is obtained using maximum likelihood as follows:

0, = arg max P(D|M, ©)
)

Because ®,,; determines an a priori distribution for individual parame-
ters, we can obtain P(D|M, ©,,;) using the Laplace approximation as
follows:

— log P(DIM, @) ~ — z log P(Di|M, Oy, O34p)

) 1 ) 1
- 2 log P(034p|Opi1) — §2|0‘|log 27 + Ezlog |H||

where D is the set of ith subject’s choices, |#'| is the number of free
parameters in the model for ith subject, |H| is the determinant of the
Hessian matrix for ith subject at 6}, ,, and 6}, is the maximum a pos-
teriori of parameters for the ith subject as follows:

0yap = arg max P(Di|M, @, 0) P(0]0,,)
0

Model selection using cross-validation

We also performed a cross-validation analysis as a control analysis for
model selection. Parameters of the models were fitted based on a subset
of choices and generalization of models were assessed by quantifying the
prediction probability of the models on a different subset of choices that
was not used for fitting (see Daw (2011) for shortcomings of this method
inlearning studies). Similar to Camerer and Ho (1999), the parameters of
models were estimated based on the first two-thirds of trials using the
hierarchical Bayesian fitting procedure. Next, the negative log-likelihood
of the prediction probability of choices on the remaining one-third of
trials was computed and reported.

Statistical analyses

Due to non-Gaussian statistics (because some parameters are expected to
lie in the unit range), we used the nonparametric Wilcoxon test for
parameter comparison between groups. To ensure that between-group
differences were not dependent on parameter regularization used in the
hierarchical Bayesian procedure (Wunderlich et al., 2012), we used a
permutation test approach as a control analysis. For each significant
between-group difference, the labels of the groups were randomly per-
muted 200 times across the participants of both groups. The parameters
for these two pseudorandom groups were then found using the hierar-
chical Bayesian procedure. We then tested whether the effect size in the
real data (assessed by the difference in the median of two groups’ param-
eters) was more than the effect size for the pseudorandom groups.

We also examined between-group differences in stimulus values for
both reward and punishment trials. Each subject’s fitted parameter val-
ues were used to estimate the value of stimuli. The nonparametric Wil-
coxon test was used to test between-group differences. A similar control
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Figure3.  Performance of the four groups on the probabilistic learning task. Shown is mean
performance in reward trials (4) and punishment trials (B). For reward trials, the PD-ON group
performed better than the PD-OFF group, but worse than the PD-ON-ICD group. The opposite
pattern of performance was observed in punishment trials. Error bars reflect SE.

analysis was also conducted to ensure that the results were not dependent
on parameter regularization. Because it is not possible to test between-
group differences in stimulus values using the permutation test (due to
the dependency of stimulus values in the last presentation of each stim-
ulus on both fitted parameters and sequence of outcomes received), we
refitted the dual-a AC model to participants’ choices using the hierar-
chical Bayesian procedure but with only one a priori distribution defined
across all participants. Because individual parameters were obtained us-
ing the same a priori, the between-group differences cannot be attributed
to parameter regularization.

Results

Behavioral data

The probability of optimal responses made by participants was
analyzed using an ANOVA with group (four levels: PD-OFF,
PD-ON, PD-ON-ICD, and healthy controls) as a between-
subject factor and valence (reward or punishment) as a within-
subject factor (Fig. 3). This analysis revealed a highly significant
interaction between group and valence (F; 7,0, = 15.81, p <
0.001), as well as a significant main effect of group (F(; 47,0, =
3.79, p < 0.05), but no significant main effects of valence
(F1.072.0) = 2.23, p = 0.14). Further analyses with the additional
factor block (two levels: the first half and the second half of the
160 trials) were conducted to assess learning effects. This analysis
revealed a significant main effect of block (F, 7,0, = 14.25,p <
0.001), but no interaction between block and other factors (refer
to Fig. 4 for learning curve).

Next, we broke down the significant group by valence inter-
action into simple main effects of group for the reward and pun-
ishment trials separately. All p-values are from two-tailed ¢ test.
Therefore, reward learning was impaired in the PD-OFF group
relative to the other three groups (healthy controls, PD-ON and
PD-ON-ICD groups: p < 0.001, p < 0.01, and p < 0.001, respec-
tively). Conversely, the PD-ON-ICD group showed better reward
learning than the other three groups (with healthy controls: p =
0.015; with PD-ON: p = 0.016).

The opposite pattern of performance was observed for pun-
ishment learning. The PD-OFF group exhibited better punish-
ment learning than the PD-ON-ICD (p = 0.003) and PD-ON
(p = 0.046) groups, although there was no significant difference
in punishment learning between PD-OFF and healthy partici-
pants (p = 0.43). Moreover, punishment learning was impaired
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in the PD-ON-ICD group relative to the healthy control group
(p = 0.028), although not relative to the PD-ON group (p =
0.41).

Model-independent evaluation of learning strategy

Two different strategies could be used to compute the learning
signal in the probabilistic learning task. First, the PE could be
computed based on the outcome received regardless of which
action was taken. This strategy is used by the AC framework. The
second strategy is to compute the PE based on the value of
the action taken. This strategy is used by the QL framework. The
probabilistic learning task allowed us to distinguish between
these two learning strategies. For example, if the percentage of
optimal responses is 70%, then the critic’s stimulus value is af-
fected by the outcomes of both actions and its value (after suffi-
cient trials) is in the middle of two actions’ values estimated by
the QL framework. For a rewarding stimulus such as S1, the QL
value of action A (optimal action), the QL value of action B and
AC stimulus values are ~20, 5, and 15.5, respectively. Therefore,
if taking an action results in a positive feedback (an outcome of 25
points), then the PE computed by AC is 9.5, but the PE by QL is
either 5 or 20 depending on which action is taken. In addition, if
taking an action results in a negative feedback (an outcome of 0
points), then the PE computed by the AC is —15.5, but the PE
computed by QL is either —20 or —5 depending on the action
selected. Therefore, two key events may influence learning signal
in this task: whether feedback was positive or negative and
whether the action taken was optimal or nonoptimal. Figure 5, A
and B, illustrate the simulated learning signal predicted by the QL
and AC frameworks, respectively. As these figures show, whereas
both strategies predict a main effect of the feedback, the predic-
tions of the two frameworks are different in terms of the action.
Although the AC framework predicts no main effect of action, the
QL framework predicts the opposite.

To assess learning strategies used by participants in a relatively
theory-neutral manner, we assessed directly the effects of feed-
back and action on the model-independent estimated PEs across
participants (see Materials and Methods), a quantity that is
purely based on the sequence of choices for each stimulus. We
analyzed the model-independent estimated PEs using an
ANOVA with feedback and action as within-subject factors and
with group as a between-subject factor. This analysis revealed a
highly significant main effect of feedback (F(, o700y = 38.5, p <
0.001), consistent with the prediction of both QL and AC frame-
works. However, there was no main effect of action (F(; ¢ 70.0) =
0.37, p = 0.55), suggesting that the learning strategy used by
participants is consistent with the AC learning strategy, but not
with that of the QL. As predicted by both learning strategies, no
interaction between feedback and action was observed (F(; o 7.0
= 1.29, p = 0.26). In addition, no main effect of group and no
two- or three-way interactions between group and the other fac-
tors were observed (p > 0.5), suggesting that all groups used the
same learning strategy. Therefore, we plotted the model-
independent estimated learning signal across participants in all
groups in Figure 5C.

We further studied the effects of feedback and action sepa-
rately for each group using an ANOVA with feedback and action
as within-subject factors. Consistent with the previous analysis,
there was a main effect of feedback in all four groups (all p <
0.02). No main effect of action and no interaction were observed
for any of the groups (all p > 0.16). Together, these findings
suggest that that the learning strategy in all groups is consistent
with the predictions by the AC framework.



7820 - J. Neurosci., June 4, 2014 - 34(23):7814-7824

Note that this analysis holds for the
different variants of QL and AC frame-
works. Specifically, whereas the dual-a
AC model predicts no main effect of ac-
tion on the learning signal, the dual-a QL
model predicts a main effect of action. In
addition, both models predict a main ef-
fect of feedback and neither predicts an
interaction between these factors. There-
fore, the results of the analysis of model-
independent estimated PEs are consistent
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Model comparison

Motivated by these results, we examined
the full fit of the models to participants’
choices. First, we verified that the models
fit significantly better than chance; they did so at p < 0.001 for all
four groups (likelihood ratio tests). Then, Bayesian model com-
parison was conducted to identify the best model in each group
(Table 2). As Table 2 shows, the negative log-model evidence is
lower (with log-Bayes factor of atleast 9.5) for the dual-a AC than
for the other models for all groups, providing compelling support
that the dual-a AC model best captures participants’ choices. In
the Bayesian model comparison literature, a log-Bayes factor of
>3 is taken as strong evidence (cf. the p < 0.05 criterion often
used in classical statistics; Kass and Raftery, 1995; Daw, 2011). As
Table 2 shows, the smallest difference in log-evidence between
the best (dual-a AC) and the second best model (dual-a QL) is
the one for the PD-ON-ICD group. Because this group is the
critical group in this study, we also used a cross-validation ap-
proach as a control analysis to compare the plausibility of these
two models for this group. Therefore, parameters were fitted
based on the first two-thirds of trials and performance of the
models quantified on the remaining unseen one-third of trials
(Camerer and Ho, 1999). The negative log-likelihood for the
dual-a AC and the dual-a QL on the testing dataset were 478.4
and 536.6, respectively. Therefore, the results of cross-validation
model selection are consistent with those of the Bayesian model
selection, demonstrating strong evidence in favor of the dual-«
AC model.

Subsequently, we simulated choices by the best model, the
dual-a AC model, using the fitted parameters to verify that the
dual-a AC model simulates a similar pattern of between-group
differences in optimal responses as observed in the behavioral
data (plotted in Fig. 3). These simulated choices were then subject
to the same two-tailed ¢ test comparisons used in the analyses of
between-group differences in behavioral performance. Overall,
this simulation analysis replicated similar between-group differ-
ences as those observed in the empirical data. The performance of
the PD-ON-ICD group in reward trials was significantly better
than the other groups (p < 0.01). In punishment trials, the PD-
OFF group performed significantly better than the PD-ON-ICD
group (p = 0.025), but not when compared with the other two
groups (p > 0.5). In addition, consistent with the behavioral
results, no difference was found between the PD-ON-ICD and
the PD-OFF groups in punishment trials (p = 0.24). The simu-
lated choices failed to replicate the findings of significant lower
performance by PD-OFF compared with healthy controls and
PD-ON in reward trials (p > 0.05), although the mean perfor-
mance of PD-OFF was lower than these groups in reward trials.

Figure 4.

Learning curve for reward trials (4) and punishment trials (B). The 160 trials are divided in four blocks. Each block
contains 20 reward and 20 punishment trials. Error bars indicate SE.

Between-group differences in the critic and actor

Next, we assessed between-group differences in parameter values
of the best model, dual-a AC. Figure 6 shows the learning rates in
the critic and the actor. As this figure shows, the actor’s learning
rates are generally lower than the critic’s learning rates. This
learning rate profile ensures that the critic has sufficient time to
evaluate the current policy exploited by the actor (Grondman et
al., 2012).

First, we studied between-group differences in the critic’s pa-
rameters. According to our hypothesis, we expected an associa-
tion between ICD and the critic’s learning rates. Although there
was no significant difference in « between PD-ON-ICD and
other groups (p > 0.1 for all three tests; Fig. 6A), we found a
significantly lower learning rate from negative PEs in PD-ON-
ICD. Indeed, as Figure 6B shows, . in PD-ON-ICD was less
than healthy participants (p = 0.002), PD-OFF (p < 0.001) and
PD-ON (p = 0.017). No other group differences in «, were
found.

We also investigated between-group differences in the actor’s
learning rates. Based on the previous data (Frank et al., 2004) and
our hypothesis that PD is associated with action valuation defi-
cits, we expected a relatively lower learning rate for the positive
PE in PD-OFF and a relatively lower learning rate for the negative
PE in PD-ON. As Figure 6C shows, a; was significantly lower
in PD-OFF than PD-ON (p = 0.050). Conversely, o, was higher
in PD-OFF than PD-ON, despite showing only a trend toward
significance (p = 0.058; Fig. 6D). Consistent with our hypothesis,
there was no significant difference between PD-ON-ICD and
PD-ON in terms of the actor’s parameters (no difference between
PD-ON and PD-ON-ICD for either o (p = 0.35) or @, (p =
0.77)).

Using the AC framework, it is possible to also evaluate stimu-
lus values. Therefore, we derived the value of every stimulus at the
end of the task (the last presentation of the stimulus) for each
subject using the subject’s choices and the fitted parameters in the
dual-a AC model (Fig. 7). We then tested between-group differ-
ences in stimulus value separately in reward and punishment
trials. Note that two stimuli were only presented in reward trials
and two other stimuli were only presented in punishment trials.
The stimulus value in punishment trials for the PD-ON-ICD
group was significantly less negative than those for the PD-OFF
(p =0.003), PD-ON (p = 0.038), and healthy control (p = 0.02)
groups, suggesting that PD patients with ICD underestimate the
adverse consequences of stimuli associated with punishment. No
significant difference in the stimulus value in reward trials be-
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Factorial analysis of model-independent estimates of the learning signal. A, QL framework computes the learning signal based on action values and predicts that this signal depends on

whether optimal action or nonoptimal action is taken. B, AC framework computes the learning signal based on the stimulus value regardless of which action is taken. €, Model-independent
estimated learning signal based on the data, averaged across participants, is consistent with the prediction of the AC framework. Both models were simulated with learning rates, ¢, 0f 0.05and 8
inverse temperature of 0.1. The learning signal for both models, &,, was defined as Bac8,, where &, is the PE computed by the model at trial . See Materials and Methods for the definition of the

model-independent estimates of learning signal. Error bars indicate SE.
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tween PD-ON-ICD and PD-ON was found (p = 0.35). Consis-
tent with our hypothesis, the two groups of PD patients without
ICD showed a similar pattern of stimulus values in both reward
and punishment trials (no difference between PD-OFF and
PD-ON for either reward trials, p = 0.74, or punishment trials,
p = 0.60), which supports the idea that PD is not associated with
stimulus valuation deficits.

We should note that our main results are independent of the
parameter regularization: the learning rate for the negative PE,
a, , was significantly lower in the PD-ON-ICD group than in
other three groups even when using the permutation test (p <

[Healthy
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Stimulus value
n
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Figure 7.  Stimulus value in reward and punishment trials. The stimulus values were ob-
tained using the fitted parameters in the dual-ce AC model for the last presentation of each
stimulus and averaged across participants. PD-ON-ICD patients exhibited significantly less
negative stimulus value in punishment trials compared with the other groups. Error bars
indicate SE.

0.05, two-tailed test). The control analysis for between-group
differences in stimulus values also revealed the same significant
between-group differences as in our original analysis.

Although the dual-ae AC model outperformed the dual-a QL
model in all four groups, we also present the results of the
between-group difference tests in learning rates for the positive
and negative PEs in the dual-a QL model to highlight the benefits
of AC modeling for ICD. The learning rate for positive PEs, a *,
was significantly higher in PD-ON compared with healthy con-
trols (p = 0.002) and marginally higher in PD-ON compared
with PD-OFF (p = 0.07). This parameter was also significantly
higher in PD-ON-ICD compared with healthy controls (p <
0.001). However, there was no difference in o * between PD-ON-
ICD and PD-ON (p = 0.51). There was also no difference be-
tween PD-ON-ICD and PD-OFF (p = 0.15). No significant
between-group differences found in the learning rate for negative
PEs, a™ (all p > 0.6). Therefore, as these analyses revealed, no
difference was found in parameter values of the dual-a QL be-
tween on-medication patients with ICD and those without ICD.

Between-group differences in the perseveration

A recent RL study of PD patients reported that the perseveration
parameter is dopamine dependent. Therefore, off-medication
PD patients exhibited higher perseveration than on-medication
patients (Rutledge et al., 2009). Although it is not the main focus
of this study, we also examined the effects of the perseveration
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Figure 8.  Perseveration parameter. This parameter determines the effect of perseveration
on choice. The perseveration parameter depended on dopaminergic medications. In addition,
PD-ON-ICD patients exhibited lower perseveration than the other three groups. *Significant
difference, p < 0.05. Error bars indicate SE.

parameter on model fits and between-group differences in ¢, the
parameter determining the degree that perseveration affects
choice. To show that including ¢ in the dual-a AC model is
statistically justified, we first tested whether the model with the
perseveration parameter fitted significantly better than the same
model without the perseveration parameter; it did so for all
groups (p < 0.001, likelihood ratio test). Note that the persevera-
tion parameter encodes the probability of repeating an action on
the subsequent presentation of a stimulus. An alternative way to
define perseveration could be to compute the probability of re-
peating an action on the subsequent trial regardless of the stim-
ulus presented. Therefore, we also fitted a dual-ae AC model with
the stimulus-independent perseveration and used model selec-
tion to test whether the original model outperforms this model; it
did so for all groups (with log-Bayes factor of > 6.3).

As Figure 8 shows, consistent with Rutledge et al. (2009), we
found significantly higher perseveration values in the PD-OFF
group compared with healthy controls (p = 0.03). Interestingly,
we also found significantly lower perseveration in the PD-ON-
ICD group than in the PD-OFF, PD-ON, and healthy control
groups (p < 0.01 for all three tests). No significant difference was
found between the PD-OFF and the PD-ON groups (p = 0.08).

Discussion

Dopaminergic medications trigger ICD in a subset of PD pa-
tients. In this study, we used a reward and punishment probabi-
listic learning task and fitted RL models to participants’ choices to
investigate the mechanistic differences in stimulus valuation and
action selection in PD patients with and without ICD. The prob-
abilistic learning task allowed us to distinguish between different
learning strategies used by QL and AC frameworks through their
different claims about the effects of actions taken on learning. We
found that model-independent estimates of the learning signal
are consistent with the hallmark of the AC learning strategy. The
full fit of models and Bayesian model comparison revealed that
an AC model (with different learning rates for positive and neg-
ative PEs in both the critic and the actor) best matches partici-
pants’ choices.

We found that PD patients with ICD (on medication) are
more sensitive to rewarding outcomes. Computational modeling
revealed that these patients also underestimate adverse conse-
quences of stimuli associated with punishment. We also found
computational evidence that patients with ICD exhibit reduced
ability in updating stimulus values by negative PEs. Therefore,
our findings suggest that distorted stimulus valuation could re-
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sult in aberrant PE signals, which subsequently affects action
values.

There is a great deal of evidence that the ventral striatum
contributes to decision making in a manner consistent with the
role of the critic in stimulus valuation and PE computations
(Cardinal et al., 2002; Dayan and Balleine, 2002; Packard and
Knowlton, 2002; O’Doherty et al., 2004). Therefore, our findings
are consistent with previous studies that found dopamine-
dependent ventral striatal dysfunction in PD patients with ICD
symptoms (Cools et al., 2007; Dagher and Robbins, 2009; Steeves
etal., 2009; Voon et al., 2010). For example, in a [ ''C] raclopride
positron emission tomography study of PD patients with and
without pathological gambling, Steeves et al. (2009) found
greater decreases in binding potential in the ventral striatum in
on medication PD patients with pathological gambling. In addi-
tion, Voon et al. (2010) reported impaired PE signaling in the
ventral striatum of PD patients with ICD.

We also found that PD (without ICD) is associated with pa-
rameters related to action valuation, but not with stimulus valu-
ation. Therefore, although PD patients without ICD exhibited no
deficit in learning stimulus value used for calculating PEs, they
showed abnormalities in updating action values with the infor-
mation signaled by the critic. Therefore, our findings suggest that
PD patients without ICD have relatively intact PE computations
(in their relatively intact ventral striatum), but the effects of PEs
on action values are distorted (in their severely depleted dorsal
striatum). These findings are consistent with the hypothesis that
the dorsal striatum, the most affected striatal region in PD, is
responsible for action valuation and selection. In addition, we
also found that the action valuation abnormalities in PD patients
without ICD interact with dopaminergic medications. Therefore,
consistent with previous data (Frank et al., 2004; Moustafa et al.,
2008, 2013; Bodi et al., 2009), we found that whereas off-
medication PD patients were better at learning from punishment,
on-medication PD patients were better at learning from reward.
Mechanistically, we found that off-medication patients, com-
pared with on-medication patients, showed lower action value
learning from positive PEs and marginally higher action value
learning from negative PEs. Notably, almost all patients in this
study received D2 agonist medications, which stimulate D2 do-
pamine receptors. Therefore, this finding is consistent with the
hypothesis of Frank et al. (2004) that different types of dopamine
receptors within the striatum, especially those in more dorsal
regions, mediate the ability to learn from positive and negative
PEs via modulation of dopamine activity in the direct and indi-
rect basal ganglia pathways, respectively (Frank et al., 2004, 2007;
O’Reilly et al., 2007). According to this hypothesis, the positive
PE increases phasic dopamine release, which facilitates learning
by acting on D1 receptors. Conversely, the negative PE results in
a dopamine dip below baseline, which facilitates learning by act-
ing on D2 receptors.

Although the role of D1 and D2 receptors in the ventral striatal
region, especially the nucleus accumbens shell, is less clear than in
the dorsal striatum (Ikemoto et al., 1997; Hopfetal., 2003), there
is increasing evidence that the ventral striatal D2 receptors are
also involved in learning from negative PEs. Indeed, the negative
PE results in dopamine dips below baseline (Bayer and Glimcher,
2005; Hart et al., 2014), which can stimulate high-affinity D2
receptors, but not D1 receptors (Frank et al., 2004). It has also
been suggested that D2, but not D1, receptors are stimulated with
tonic dopamine release (Grace, 1991). Therefore, as noted by
Frank et al. (2004), D2 agonist drugs might fill the dips and re-
duce the ability to learn from negative PEs. In rats, nucleus ac-
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cumbens D2 stimulation with a dopamine agonist reduced the
ability to learn from negative feedback (Goto and Grace, 2005).
In addition, Al carriers of the TAQ-1A polymorphism, which is
associated with a lower density of striatal D2 receptors, showed
impaired learning from negative feedbacks and aberrant reward-
related responses in the ventral striatum (Klein et al., 2007). This
hypothesis is consistent with data reporting that ICDs are ob-
served more often in patients on D2 agonist medications (Wein-
traub et al., 2006; Voon et al., 2007).

Animportant open question is which individual differences in
PD patients with ICD interact with D2 agonist medications and
induce compulsive behaviors. One possible answer is that pa-
tients vulnerable to ICD have a lower ventral striatal D2 receptor
density even before the onset of PD (Dagher and Robbins, 2009).
There is limited but important evidence from animal models of
cocaine addiction that rats with lower nucleus accumbens D2
receptor density are more impulsive, even before cocaine expo-
sure (Dalley et al., 2007), and are more likely to develop compul-
sive drug seeking (Belin et al., 2008). In addition, Weintraub et al.
(2006) investigated ICD in a large sample of PD patients and
reported that those with ICDs were more likely to have had ICDs
before the onset of PD. Moreover, animal model studies of ad-
diction have reported that drug exposure further reduces striatal
D2 receptors (Nader et al., 2002; Porrino et al., 2004). Similarly,
the overstimulation of the ventral striatum in PD patients by D2
agonist medications may further reduce the density of ventral
striatal D2, making them more susceptible to develop ICD. Con-
sistent with these ideas, it has been reported that PD patients with
ICD showed lower density of D2 receptors in the ventral striatum
(Steeves et al., 2009), although it is not clear from this particular
study that the reduced level of D2 receptors in the ventral stria-
tum is a predisposing neurobiological trait and/or a consequence
of medication.

In summary, we found that whereas PD is associated with
parameters related to action valuation and selection, ICDs in PD
are mechanistically associated with parameters related to stimu-
lus valuation and PE computations. Specifically, we found com-
putational evidence that ICDs in PD are associated with lower
learning rates from negative feedbacks in the critic. These find-
ings offer a computational interpretation of ICDs in PD and
highlight the value of computational modeling in understanding
cognitive deficits associated with psychiatric disorders (Redish et
al., 2008; Huys et al., 2011b; Maia and Frank, 2011; Montague et
al., 2012; Monterosso et al., 2012).
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