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Previous magnetoencephalography/electroencephalography (M/EEG) studies have suggested that face processing is extremely rapid,
indeed faster than any other object category. Most studies, however, have been performed using centered, cropped stimuli presented on
a blank background resulting in artificially low interstimulus variability. In contrast, the aim of the present study was to assess the
underlying temporal dynamics of face detection presented in complex natural scenes.

We recorded EEG activity while participants performed a rapid go/no-go categorization task in which they had to detect the presence
of a human face. Subjects performed at ceiling (94.8% accuracy), and traditional event-related potential analyses revealed only modest
modulations of the two main components classically associated with face processing (P100 and N170). A multivariate pattern analysis
conducted across all EEG channels revealed that face category could, however, be readout very early, under 100 ms poststimulus onset.
Decoding was linked to reaction time as early as 125 ms. Decoding accuracy did not increase monotonically; we report an increase during
an initial 95–140 ms period followed by a plateau �140 –185 ms–perhaps reflecting a transitory stabilization of the face information
available–and a strong increase afterward. Further analyses conducted on individual images confirmed these phases, further suggesting
that decoding accuracy may be initially driven by low-level stimulus properties. Such latencies appear to be surprisingly short given the
complexity of the natural scenes and the large intraclass variability of the face stimuli used, suggesting that the visual system is highly
optimized for the processing of natural scenes.

Introduction
How much time do we need to detect a face in a natural environ-
ment? It is likely that very little time would be needed considering
how crucial faces may have been to our ancestors, since they
signaled either a danger or an opportunity. Human observers can
robustly recognize faces presented in complex natural scenes very
rapidly (�260 –290 ms poststimulus onset) even when there are
large changes in appearance (Fabre-Thorpe, 2011). Human par-
ticipants can initiate a saccade to a face as early as �100 –110 ms
poststimulus onset; this is faster than toward any other object
category (Crouzet et al., 2010). Such results highlight the formi-
dable robustness and efficacy of the primate visual system to
detect faces in natural scenes. However, our understanding of the

precise timing and corresponding neural dynamics underlying
this process remains relatively coarse.

Magnetoencephalography/electroencephalography (M/EEG)
studies have sometimes reported an event related potential (ERP)
differential (face vs no-face) signal over occipitotemporal sites
during the P1 component �80 –120 ms poststimulus onset (Hal-
gren et al., 2000; Eimer and Holmes, 2002; Liu et al., 2002; Itier
and Taylor, 2004; Thierry et al., 2007a; Dering et al., 2009, 2011;
Rossion and Caharel, 2011). However, a subsequent N170 com-
ponent (�140 –200 ms) has been identified as a more reliable
correlate of face perception (Jeffreys, 1989; Bentin et al., 1996;
Rossion et al., 1999). One important caveat, however, is that these
studies have relied on the use of isolated and cropped faces with
limited interstimulus variability (Dering et al., 2011). Whether
highly variable faces presented in complex natural scenes would
elicit or not elicit a distinct pattern of neural activity at such early
latencies remains to be investigated (Rousselet et al., 2004, 2005,
2007a; Dering et al., 2011).

The aim of the present study was thus to assess the timing and
characterize the neural stages underlying face processing using
complex, cluttered, and natural scenes.

Participants performed a go/no-go task during which they
had to detect human faces. We first focused our analyses on a
classical (ERP) univariate analysis on the P1 and N170 compo-
nents. Only modest modulations were found on classic electrodes
associated with face processing. Given that our scene stimuli
(compared with cropped stimuli) could potentially modify the
classic topography of neural activity evoked by faces (Rousselet
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and Pernet, 2011), we subsequently considered a (whole-brain)
multivariate pattern analysis (MVPA) technique to investigate
the dynamics of face processing. MVPA techniques, along with
other approaches attempting to perform multivariate ERP anal-
yses (Parra et al., 2005; Philiastides and Sajda, 2006), have be-
come increasingly popular in the imaging literature because they
enable the detection of subtle effects otherwise undetectable with
classical analyses (Kamitani and Tong, 2005). By pooling infor-
mation across electrodes, whole-brain MVPA may thus increase
the statistical power and enable the detection of category infor-
mation earlier than predicted from single or subsets of EEG elec-
trodes (Cauchoix et al., 2012). This method also allows for an
image-based decoding analysis whereby decoding accuracy can
be correlated with image properties and/or subject behavioral
measures to relate EEG to behavior.

Materials and Methods
Participants. Fifteen females and 13 males (n � 28, median age: 24 years,
range: 19 –37, 25 right-handed) signed informed consent to participate in
the experiment. All subjects reported that they had normal or corrected-
to-normal visual acuity.

Stimulus set. Target images consisted of grayscale photographs of hu-
man faces (270 images) presented in their natural contexts (i.e., the im-
ages included some background clutter and no face was artificially
pasted). We selected face exemplars that exhibited significant intraclass
variations such as viewpoint, gender and race, eccentricity, and size.
Sample faces are shown in Figures 1A (top row) and 5. Distractor stimuli
consisted of (nonhuman) animal faces (270 images), which included
different species (mammals, birds, reptiles, etc). The stimulus set was
previously used by Rousselet et al. (2004), (Fig. 1A, bottom row). Images
were 320 � 480 pixels in size. Confidence intervals (CIs; 95%) were
computed and are reported in square brackets throughout the paper. The
global luminance and root-mean-square contrast were similar between
the two groups (mean luminance: 105.8 [102.5 109.1] vs 104.3 [100.1
107.6] for animal and human images, respectively; t(538) � 0.77, p � 0.44;
mean contrast: 53.4 [52.0 54.8] and 54.8 [53.4 55.2] for animal and
human images, respectively; t(538) � 1.60, p � 0.1).

To characterize this intraclass variability, for each image we computed
and compared size (approximated by the diameter of a circle containing
the same number of pixels as the cropped face) and eccentricity (mea-
sured as the distance between the fixation cross and the center of a square
manually drawn on the face) for human and animal faces (Fig. 1B).

To further verify that the set of target and distractor images did not
differ in low-level visual differences, we used a computer vision approach
similar to the “tiny images” approach by Torralba (2009). The approach
consists of downsampling stimuli to very low-resolution (32 � 48 pixels)
grayscale images. A linear Support Vector Machine (SVM) classifier is
then fed the corresponding pixel intensities using a classification procedure
identical to the one used for neural decoding (see below). Classification was
not significantly different from chance level (mean: 52%, p � 0.24). Overall,
this analysis suggests that low-level visual cues provide insufficient informa-
tion to perform the task.

Experimental setup. Participants sat in a dimly lit room �90 cm away
from a 19 inch CRT computer screen (resolution: 1024 � 768; vertical
refresh rate: 100 Hz) controlled by a PC computer. Photographs were
displayed on a black background and subtended a visual angle of �7 �
11° using the E-prime software. The experiment consisted of a go/no-go
paradigm, which was divided in three blocks of 180 photographs each (90
targets and 90 distractors). Participants were familiarized with the exper-
iment using a small set of stimuli (30 targets, 30 distractors) not used for
the actual experiment.

Participants were instructed to respond as quickly and accurately as
possible by raising their finger from an infrared response pad when a
target stimulus was presented (human face target/go response). They
were asked to keep their finger on the response pad if a distractor stim-
ulus (animal face) was presented (no-go response). At the beginning of
each trial, a fixation cross appeared for a random time interval to prevent
anticipatory responses (300 – 600 ms). This was followed by the presen-
tation of the stimulus (100 ms) and a blank screen (1000 ms; Fig. 2A). The
order of the stimuli was randomized across blocks and participants.

EEG recording. EEG activity was recorded from 32 electrodes mounted
on an elastic cap based on the 10 –20 system (Oxford Instruments) with
the addition of extra occipital electrodes using a SynAmps amplifier sys-
tem (Neuroscan). The ground electrode was placed along the midline, in
front of Fz, and impedances were kept �5 k�. Signals were digitized at a

Figure 1. Stimuli used in the study. A, Representative stimuli used in the study and pixel-based sample mean average over the entire stimulus set computed for targets (human faces) and
distractors (animal faces). B, Size and eccentricity for targets (black) and distractors (gray).
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sampling rate of 1000 Hz and low-pass filtered at 100 Hz. Potentials were
referenced on-line to the Cz electrode and average referenced off-line.
EEG data analysis was performed using EEGLAB (Delorme and Makeig,
2004), a freely available open source toolbox (http://www.sccn.ucsd.
edu/eeglab) running under MATLAB (The Mathworks).

First, EEG data were downsampled to 256 Hz and then digitally filtered
using a bidirectional linear filter (EEGLAB FIR filter) that preserves the
phase information (pass-band 0.1– 40 Hz). For two of the participants,
one of the channels also had to be excluded from analysis because of the
presence of significant permanent artifacts. Continuous data were then
manually pruned from nonstereotypical artifacts such as high amplitude
and high-frequency noise (muscle) as well as from electrical artifacts
resulting from poor electrode contacts. All remaining data were then
submitted to Infomax Independent Component Analysis (Infomax ICA)
using the runica algorithm (Makeig et al., 1997) from the EEGLAB tool-
box. For each subject, we visually identified and rejected one to three well
characterized ICA components for eye blink and lateral eye movements
(Delorme et al., 2007). Scalp maps, power spectrum, and raw activity of
each component were visually inspected to select and reject these artifac-
tual ICA components.

A total of 540 epochs for each individual participant (15,120 epochs)
were extracted (�100 –700 ms) and baseline corrected (�100 – 0 ms).
Only correct trials were considered for EEG analyses (14,101 epochs) and
further inspected visually. Epochs containing artifacts were excluded
from further analysis.

Following this entire procedure, the mean percentage of rejected ep-
ochs across all participants was 19.9% ([17.2 22.6]; range: 8.2–37.1%).
Thus, further analysis was performed on 11,087 epochs (mean per sub-
ject: 396; range: 264 – 456).

ERP analyses. ERPs were computed separately for correct human face
target trials and correct animal face nontarget trials. We report results for
the P100 at four bilateral occipital electrodes (O1, O2, PO3, and PO4)
and for the N170 at four right hemisphere occipitotemporal electrodes
(PO10, PO8, P8, and TP8), where amplitude was maximal or was classi-

cally associated with face processing. Amplitudes were quantified for
each condition as the mean voltage measured within 30 ms windows
centered on the grand average peak latencies of the component’s maxi-
mum amplitude. Peak latency was extracted automatically at the mini-
mum value between 60 and 140 ms for the P100 and 110 and 190 ms for
the N170 (Rossion and Caharel, 2011).

To estimate reliable differences in peak amplitude or latency while
limiting possible confounding issues due to multiple comparisons, we
ran a paired two-tailed permutation test based on the tmax statistic (Blair
and Karniski, 1993; Maris and Oostenveld, 2007) using a familywise
�-level of 0.05 (32 comparisons) for each component (P100 an N170).
All statistic analyses were performed using the Mass Univariate ERP
toolbox (Groppe et al., 2011) written in MATLAB.

To precisely track the time course of face information, the same statis-
tical analysis was used for comparing ERPs evoked by human versus
animal faces. For this analysis, we considered all time points between
�50 and 700 ms (192 time points) across all 32 electrodes (i.e., 6144
comparisons total).

Behavioral performance analysis. To estimate the minimal processing
time required to detect target images, we computed the shortest latency
(minimal reaction times; RT) at which correct go-responses started to
significantly outnumber incorrect go-responses (Rousselet et al., 2003).
Minimum RTs across trials were computed using 10 ms sliding time bins
(� 2 test, p � 0.01; Rousselet et al., 2003). Across participants, to allow for
lower statistical power than with across-trial data since there were fewer
trials, we used 30 ms time bins and a Fisher’s exact test ( p � 0.01;
Barragan-Jason et al., 2012, 2013; Besson et al., 2012). Minimum RTs
were estimated by considering the onset of the first significant bin fol-
lowed by at least 60 ms of significance (Barragan-Jason et al., 2012;
Besson et al., 2012).

MVPA. MVPA was conducted on single-trial ERPs. A linear classifier
was trained to decode the presence of a target versus distractor in single
trials from individual time bins of the EEG signal across all electrodes. We
derived an accuracy measure by averaging the performance of the classi-
fier over multiple random splits of the data (see below). Such decoding
analysis characterizes the temporal evolution of the category signal across
the whole brain. Each input feature (electrode potential) was normalized
(using a Z-score) across trials, and a linear SVM was used as classifier.

The classification procedure ran as follows: (1) For each subject, the
stimulus set was split equally into a training and a test set that contained
an equal proportion of target (correct go responses) and distractor im-
ages (correct no-go responses); (2) an optimal cost parameter C was
determined through line search optimization using eightfold cross-
validation on the training set; and (3) an SVM classifier was trained and
tested on each set. For each subject, this procedure was repeated over 100
times where different training and test sets were selected each time at
random. A single measure of accuracy was obtained by averaging the
classification performance over all repetitions. A measure of chance level
was obtained by performing the same analysis on permuted labels. This
allowed us to estimate the latency of category information across all
participants via a paired, two-tailed permutation test (accuracy mea-
sured on permuted vs nonpermuted labels; p � 0.01) based on the tmax

statistic (Blair and Karniski, 1993) using a familywise �-level of 0.05 (i.e.,
192 comparisons). Reported decoding latencies correspond to the earliest
significant bin. To characterize the contribution of individual electrodes to
the overall decoding accuracy, we computed the average weights obtained
for each electrode during the cross-validation procedure.

We further considered a classifier confidence for individual images
and each participant by averaging out the decoding accuracy for a specific
image over 100 cross-validations (imAcc). To evaluate the contribution
of various image properties (Weibull, face size) and subject behavior
(median RT for individual images calculated across participants) to the
neural signal, we fitted a regression model to z-scored variable values at
each time point: imAcc(t) � b0 � b1*Weibull � b2* size � b3*median
RT; using MATLAB glmfit function (Hauk et al., 2006; Clarke et al.,
2013). To estimate the contribution of each variable in time, we report
the time course of the slopes (b1, b2, and b3) and associated p values
(corrected for multiple comparisons using false discovery rate methods,
p � 0.01; Lage-Castellanos et al., 2010). Because each variable was nor-

Figure 2. Experimental design and RT distribution. A, After the presentation of a fixation
cross for a random time interval (300 – 600 ms), the stimulus was flashed (100 ms) followed by
a blank screen. Participants had 1 s to respond using an infrared pad if they perceived a human
face in the picture (go response). Otherwise, they had to withhold their response (no-go re-
sponse). B, Distribution of RTs for hits (black curve), false alarms (FAs; thin black gray curve), and
difference across subjects (Hits-FAs) with 95% CIs plotted in light gray. The vertical dashed line
indicates the minimal RT at which target and distractor start to be reliably classified (see Mate-
rials and Methods).

848 • J. Neurosci., January 15, 2014 • 34(3):846 – 854 Cauchoix, Barragan-Jason et al. • Neural Dynamic of Face Detection in the Wild

http://www.sccn.ucsd.edu/eeglab
http://www.sccn.ucsd.edu/eeglab


malized to zero mean and unit SD, the regression coefficients can be
interpreted as “microvolts per SD” of the corresponding variable.

To assess how similar the decoding was across all image stimuli, we ran
a clustering algorithm to identify possible image subgroups with similar
patterns of decoding accuracy. We ran k-means (k � 2–5) directly on the
temporal decoding curves obtained from individual images. The optimal
number of clusters k was selected by visual inspection of the cluster
centers.

Image feature computation. We obtained a low-level estimate of the
contrast of individual images by fitting a Weibull function for individual
images (Scholte et al., 2009). The analysis was done using both � and �
parameters estimated from the Weibull function. As both parameters
gave highly similar results, figures and statistics are only presented for the
� parameter. As an additional low-level image property we considered
the size of the face in individual images. The underlying assumption is
that as tolerance to position and scale increases along the visual hierarchy
(Riesenhuber and Poggio, 1999), one would expect the stimulus scale to
correlate with low-level processes and less so with higher level processes.

Results
Participants performed the categorization task (human vs an-
imal face) with a very high level of accuracy (mean: 94.8%
[93.6 96.0], range: 89.1%–99.6%) and fast RTs (mean RT: 445
ms [428.7 461.3]). The mean minimum RT across trials was
354 ms (Fig. 2B).

To study the face selectivity of the EEG signal, we first com-
puted standard ERPs for each condition and performed a peak
analysis on occipitotemporal electrodes. The classical P1-N1-P2
complex can be readily observed (Figs. 3C, 4A). At the same time,
the N170 component appears small compared with components
obtained in previous studies using cropped homogenous stimuli
(e.g., Rousselet et al., 2004; Thierry et al., 2007a, b; Dering et al.,
2011; Rossion and Caharel, 2011). The specific topography of
classical face components seems dramatically different compared
with what has been previously reported with most occipital elec-
trodes remaining mainly positive during the N170 time widows
(Fig. 4A).

The maximal P100 amplitude (mean � 5.6 �V [4.5 6.7]) on
human face stimuli was recorded on PO4 right temporal elec-
trode at 105 ms poststimuli onset (Fig. 3). Using a paired
two-tailed permutation test based on the tmax statistic, we
found just one electrode significantly modulated in amplitude
(O1: tmax � 3.17, torig � 3.56, df � 27, p � 0.02) and no
significant modulation in latency (tmax � 2.87, df � 27, p 	
0.05) for the P100 (Fig. 3A).

The maximal N170 amplitude (mean � �3.6 �V [�4.5
�2.7]) on human face stimuli was recorded on TP8 right tempo-
ral electrodes at 180 ms poststimuli onset (Fig. 3). ERPs averaged

Figure 3. Peak and time course ERP analysis. A, Peak analysis for the P100. Reported electrodes (O1, O2, PO3, and PO4) are indicated in orange overlaid on the scalp topography. Top line plots
show peak amplitude distributions, bottom line plots show amplitude distributions for the two conditions (human vs animal faces) using violin plots in gray (Allen et al., 2012) and box plots in black.
The small red horizontal bar indicates the mean; p values estimated from a permutation paired t test using the tmax method are shown at the bottom of each plot. Hum, human; Ani, animal. B, Same
as A for the P170. Reported electrodes (PO10, PO8, P8, and TP8) are indicated in orange overlaid on the scalp topography. C, ERPs for targets (black) and distractors (gray). Orange curves correspond
to the mean differential activity between the two conditions (
95% CI across participants shown as lighter orange shaded area). Time points for which a significant difference between the two
conditions was found (paired permutation t test using tmax method, p � 0.05) are indicated on the x-axis. Earliest significant time bin is shown with a vertical dotted line.
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over classically reported electrode locations from the right hemi-
sphere (equivalent to P8 and PO8; Rossion and Jacques, 2008)
showed an even smaller N170 amplitude (P8: mean: �2.7 �V
[�4.0 �1.4]; PO10: mean: �0.6 �V [�1.5 0.3]), peaking, respec-
tively, at 162 and 155 ms poststimulus onset (Fig. 3B). Using a
paired two-tailed permutation test, based on the tmax statistic, we
found no significant modulation in amplitude (tmax � 3.30, df �
27, p 	 0.05) and no significant modulation in latency (tmax �
2.77, df � 27, p 	 0.05) for the N170 (Fig. 3B).

We systematically tested an amplitude modulation (target vs
distractor) for individual time points, using a paired two-tailed
permutation test based on the tmax statistic (6144 comparisons;
Fig. 3C). P08 and P8 exhibited a significant early amplitude mod-
ulation, respectively, at 137 ms and from 125 to 145 ms post-
stimulus (tmax � 4.83, df � 27, p � 0.05), while other significant
modulations occur rather late (	230 ms). Thus, point-by-point
analysis reveals significant modulation happening only in be-
tween or after the P100 (105 ms) or the N170 (180 ms). Overall,
no or weak modulation of the early ERP components (P100 and
N170) was found. Given that the use of faces in natural scenes
may have disrupted the classic topography of the electrodes
traditionally associated with face processing, we complement
this analysis using MVPA, which, by pooling information
across all electrodes, may more easily capture the dynamics of
face processing.

Figure 4B shows the temporal decoding accuracy resulting
from the MVPA averaged across all participants. This analysis
reveals that significant (192 comparisons, tmax � 3.54, df � 27,
p � 0.05) face category information can be readout at very short
latencies, as early as 94 ms poststimulus onset. Interestingly, the
EEG decoding accuracy does not seem to increase monotonically.
Instead, the amount of face information available seems to fluc-
tuate in time, suggesting the possible existence of discrete pro-
cessing time windows.

To further characterize these time windows, we estimated a
temporal derivative of the accuracy curve shown in Figure 4B.
During an initial phase (�95–140 ms), the decoding accuracy
increases monotonically (derivative constantly positive) until a
plateau (derivative oscillates between positive and negative val-
ues) is reached (�60% accuracy around 140 ms after stimuli
onset). During a third time window (�200 –350 ms), a mono-
tonic increase can be observed again (reaching �80% of decod-
ing accuracy around 350 ms), possibly reflecting the accrual of
further face or motor information. After �350 ms, decoding ac-
curacy stabilizes and decreases slowly until 700 ms.

Decoding weight topographies (Fig. 4B) suggests that during
the first 200 ms of visual processing, most of the information
originates from occipitolateral electrodes, while for longer laten-
cies, parietal electrodes seem to contribute more to the overall
decoding. It is possible that these discrete time windows may
reflect different levels of visual processing.

We thus fitted our classifier confidence for individual stimuli
with a number of experimental variables. Here we consider low-
level image statistics obtained by fitting the distribution of pixel
intensities to a Weibull function as done by Scholte et al. (2009).
Such low-level image statistics was shown to account for a signif-
icant fraction of the variance across single-image evoked poten-
tials. We also considered face size as an additional low-level image
property. Building up tolerance to 2D transformations is a
hallmark of object processing in the ventral stream (Riesen-
huber and Poggio, 1999). It is thus expected that face size
should modulate low-level visual processing and less so higher
level processes. Last, we considered median reaction times

Figure 4. Neural timing of face detection in natural scene. A, Top, Potential topographies (�v)
averaged during the four periods defined in B using shaded areas. Bottom, Average ERP (n�28) for
each of the k � 32 electrodes for target (black) versus distractor (gray) stimuli. B, Top, Topographies
of (normalized) decoding weights for face stimuli averaged during the four periods defined below by
shaded areas. Bottom, Average temporal decoding accuracy (
95% CI) across all participants. The
decoding accuracy estimated from permuted labels was used to assess chance level (shown in gray on
the x-axis). The vertical dotted line indicates the latency of the first significant decoded bin (estimated
using an aired permutation t test based on tmax method, p � 0.05). Based on the latency of this first
bin and changes in the sign of the derivative of the temporal decoding curve, we isolated four distinct
temporal widows (shown in shades of orange: 94 –141 ms; 141–184 ms; 184 –344 ms; 	344 ms).
ThesefourwindowsarealsoshownonAandC for improvedreadability.C,Coefficientderivedfromthe
regression analysis on single image decoding (see Materials and Methods) with Weibull � (green),
face size (blue), and subject median RTs (red) (
95% bootstrapped CIs). Latency of significance
(corrected for multiple comparison using FDR, p � 0.01) is indicated by a vertical dotted bar of the
corresponding color. The y-axis corresponds to the change in accuracy for one SD change of the con-
sidered variable. D, Temporal decoding (
95% CI) of the two clusters computed using the k-means
algorithm on the entire temporal decoding curve computed for individual images.

850 • J. Neurosci., January 15, 2014 • 34(3):846 – 854 Cauchoix, Barragan-Jason et al. • Neural Dynamic of Face Detection in the Wild



across participants (RT ) for individual stimuli as a marker of
higher level decision processes.

Figure 4C shows the estimated regression coefficients over
time between the classifier confidence derived from single-
images (see Materials and Methods) and the three variables
described above (Weibull, size, and RT ). The analysis suggests
a significant contribution ( p � 0.01, uncorrected for multiple
comparison) of the Weibull starting very early, �70 – 80 ms
poststimulus onset, followed by face size at �105 ms and RT at
�125 ms.

We found these three variables (Weibull, size, and RT) to be
only weakly correlated with one another (Weibull vs size: r 2 �
0.01, p � 0.032; Weibull vs RT: r 2 � 0.01, p � 0.022; size vs RT:
r 2 � 0.02, p � 0.002). It is thus unlikely that correlation between
these three variables would explain the observed correlations
with the classifier confidence.

Two coefficient peaks can be observed—approximately cor-
responding to the processing windows described above. Before
200 ms, Weibull, size, and RT contribute to decoding accuracy
peaking at �140 ms. Beyond 200 ms, the contribution of the
Weibull disappears and the contribution of the face size, although
significant, is largely reduced. We conducted a clustering analysis
directly on the decoding curve obtained for individual stimuli
(see Materials and Methods). As shown on Figure 4D, one cluster
accounting for 62% of the stimulus set seems to reflect a rapid
decoding while a second cluster (38% of the stimuli) seems to
reflect later decoding.

The 10 easiest and most difficult images to decode for each
time window are shown in Figure 5. From these images, it seems

that the complexity of the surrounding background clutter may in-
fluence the decoding accuracy. Shown on the right are composite
averages computed over the top 50 easiest and most difficult images
to decode. Stimuli that are well decoded during earlier phases appear
more stereotypical and less variable than those that are difficult to
decode. This trend seems less pronounced for later phases.

Discussion
The current study investigated the neural dynamics of face pro-
cessing in natural scenes using EEG recordings. The underlying
neural activity was correlated with both image properties and
participants’ RTs.

Consistent with previous studies on face processing, we ob-
served two ERP components, namely the P1 and N170. However,
differential activity for ERPs associated with go and no-go trials
was modest and, contrary to numerous studies (Jeffreys, 1989;
Bötzel et al., 1995; Bentin et al., 1996; George et al., 1996; Joyce
and Rossion, 2005), no amplitude modulation on the N170 com-
ponent was found. This could be due to the set of distractor
stimuli used in the present study (animal faces) or to the fact that
participants performed a go/no-go task rather than a yes/no task
as in previous studies. Notwithstanding, these results are consis-
tent with previous go/no-go studies that have shown no signifi-
cant amplitude modulation (Thierry et al., 2007a, b; Dering et al.,
2009, 2011) and small but significant latency effect of the N170
using human and animal faces embedded in natural scenes
(Rousselet et al., 2004). The presence of background clutter in
natural scenes could also have disrupted the classic topography of
electrodes associated with face processing, while reducing the

Figure 5. Easiest and most difficult stimuli to decode organized by time periods indicated into square brackets (ms). In each group, the top/bottom 10 images with the highest/lowest decoding
accuracy (ordered left to right) are shown. The average decoding accuracy by stimulus is printed below each image. The 11th images correspond to the average image of the 50 best/worst
(top/bottom) stimuli.
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ERP amplitudes (Rousselet et al., 2007b; Thierry et al., 2007a, b;
Dering et al., 2009, 2011). This is consistent with both monkey
electrophysiology (Desimone and Duncan, 1995; Zhang et al.,
2011) and human imaging studies (Reddy and Kanwisher, 2007)
that have shown that patterns of brain activity associated with
object categories are disrupted by clutter. This would also be
consistent with behavioral studies that have shown that back-
ground clutter hinders detection (Serre et al., 2007). In addition,
the high variability of the face stimuli used in the present study
compared with previous studies might have increased the inter-
trial jitter in the latency of the component, artificially decreasing
its average amplitude (Rousselet et al., 2005; Thierry et al., 2007a,
b; Dering et al., 2009, 2011). This hypothesis could be tested in
future studies by looking at phase coherence and realigning
single-trial ERPs (Navajas et al., 2013).

We therefore ran complementary analyses based on MVPA.
In the context of the present EEG analysis, this procedure has the
great advantage to summarize and quantify the neural informa-
tion available for the task at hand (here, human face detection)
across all electrodes for each time point.

The first important result provided by MVPA is that face cat-
egory information could be readout very early, starting �95 ms
following stimulus onset. This latency is comparable to onsets of
�90 –100 ms obtained by contrasting faces to noise patches (Bi-
eniek et al., 2012; Rousselet, 2012) and is thus remarkable given
the complexity and variable nature of the stimuli used in the
present study. This very fast category-selective activity supports
the claim that the visual system is highly optimized for the pro-
cessing of natural scenes (Vinje and Gallant, 2000; Simoncelli and
Olshausen, 2001). Our estimate is also consistent with previous
studies that have reported that categorization information (faces
vs objects) can be detected in �100 ms in humans (Liu et al.,
2009; Dering et al., 2011).

Additionally, the EEG decoding accuracy did not seem to in-
crease monotonically as would be expected from a pure decision
process. We found three distinct phases, which overlap with the
ERP component latencies described above: an initial phase start-
ing �95–140 ms poststimulus onset (P1 time window) followed
by a plateau �140 –195 (N170 time window) and a later phase
�185–350 ms poststimulus onset.

Our analyses suggest that the earliest phase reflects low-level
processes possibly implemented via an initial feedforward sweep
of activity from V1 to occipitotemporal areas (Riesenhuber and
Poggio, 1999). Consistent with this idea, we found that the
decoding activity correlated well with low-level visual proper-
ties of the images (Weibull statistics �75 ms followed by face
size �115 ms).

This result is consistent with psychophysics studies that have
demonstrated a role played by low-level image statistics such as
contrast (Scholte et al., 2009), power spectrum (Rossion and Ca-
harel, 2011) or phase (Bieniek et al., 2012) during rapid object
detection tasks. Our estimated latency of decoding is also consis-
tent with the earliest behavioral responses observed in the sacca-
dic choice paradigm, during which participants are asked to
saccade toward faces (Kirchner and Thorpe, 2006; Crouzet et al.,
2010). This early visual activity seems to be somehow linked to
behavioral responses, since we observe a correlation with median
RTs as early as �125 ms poststimulus onset.

The second phase is characterized by a plateau in decoding
activity, perhaps reflecting a transitory stabilization of the face
information available. It is well established that the occipital face
area (OFA) and the fusiform face area (FFA) are involved in
face processing (Haxby et al., 2000, 2001; Gobbini and Haxby,

2006). Based on lesion studies, it has been proposed that these
regions do not rely on feedforward processing (from posterior
occipital areas to the OFA to the FFA), but on re-entrant signals
from posterior areas to OFA via the FFA (Rossion, 2008). It is
during that period that a high-level individual representation of
the face is built (Rossion and Caharel, 2011). Hence, the plateau
observed during the second phase could be due to the time
needed for this re-entrant processing to take place and switch
from a purely externally to an internally driven information pro-
cessing stage as suggested by the decrease of correlation with
low-level statistics and behavior. Numerous studies have re-
ported a similar category-selective activity between 140 and 180
ms leading to the hypothesis that this activity could reflect the
build-up of an internal representation of the stimulus indepen-
dent of low-level visual properties (Schyns et al., 2007; van Rijs-
bergen and Schyns, 2009). This phase would be necessary to drive
behavioral go/no-go responses (VanRullen and Thorpe, 2001)
and decision making (Philiastides and Sajda, 2006), as shown by
the second phase of correlation with behavioral responses.

The third phase, starting at �185 ms, is associated with a
very significant increase in decoding accuracy. Using a mem-
ory task in epileptic patients, it has been previously shown that
the coherence of face-selective activity increases in a wide-
spread network of regions including the temporal, parietal,
and frontal lobes during a similar time window (from �160 to
230 ms poststimulus onset; Klopp et al., 2000). Similarly, a
period of massively parallel processing has been identified in
the entire visual ventral stream starting at �180 ms and peak-
ing at 240 ms during a face recognition task using intracerebral
recordings (Barbeau et al., 2008). Hence, this third phase
could reflect the involvement of a distributed network of brain
areas in contrast with previous stages related to the activation
of relatively posterior visual areas (first stage) or a local net-
work involving posterior areas as well as the OFA and FFA
(second stage). This third phase could be associated with con-
scious access to the face representation (“I know that it is a
face”; Sergent et al., 2005; Railo et al., 2011).

Overall, the current study shows a promising application of
MVPA techniques to surface electrophysiological signals with an
unknown topography and a focus on the temporal dynamics of
processing. While MVPA has been extensively used in the context
of functional magnetic resonance imaging studies, the use of de-
coding techniques for M/EEG analysis has been mainly limited to
the field of brain computer interface (P300 speller; Farwell and
Donchin, 1988). Very few studies have investigated the possibility
to read out visual category information from noninvasive human
electrophysiological signals. Among them, an MEG study has
demonstrated the possible readout of basic object category but
with late latencies (incompatible with behavioral results such as
those reported in saccadic choice tasks; Crouzet et al., 2010) de-
spite the fact that isolated and cropped stimuli of faces, houses,
and other textures were used (Carlson et al., 2011). Another EEG
study reached higher decoding accuracy for line drawings of an-
imals versus tools (Simanova et al., 2010). However, the study
used a small number of stimuli with many repetitions and evident
low-level visual differences between categories. Here, instead, we
used a large database of variable natural scenes without any rep-
etition. In any case, future work will be needed to compare more
directly and formally the usefulness of MVPA to other recent
univariate or multivariate EEG analyses.

In conclusion, we extend previous results and verify that the
dynamics of face processing identified using ERPs also applies to
faces seen in complex, naturalistic scenes.
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