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Integration of Multiple Determinants in the Neuronal
Computation of Economic Values
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Economic goods may vary on multiple dimensions (determinants). A central conjecture in decision neuroscience is that choices between
goods are made by comparing subjective values computed through the integration of all relevant determinants. Previous work identified
three groups of neurons in the orbitofrontal cortex (OFC) of monkeys engaged in economic choices: (1) offer value cells, which encode the
value of individual offers; (2) chosen value cells, which encode the value of the chosen good; and (3) chosen juice cells, which encode the
identity of the chosen good. In principle, these populations could be sufficient to generate a decision. Critically, previous work did not
assess whether offer value cells (the putative input to the decision) indeed encode subjective values as opposed to physical properties of
the goods, and/or whether offer value cells integrate multiple determinants. To address these issues, we recorded from the OFC while
monkeys chose between risky outcomes. Confirming previous observations, three populations of neurons encoded the value of individual
offers, the value of the chosen option, and the value-independent choice outcome. The activity of both offer value cells and chosen value
cells encoded values defined by the integration of juice quantity and probability. Furthermore, both populations reflected the subjective
risk attitude of the animals. We also found additional groups of neurons encoding the risk associated with a particular option, the risky
nature of the chosen option, and whether the trial outcome was positive or negative. These results provide substantial support for the

conjecture described above and for the involvement of OFC in good-based decisions.
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Introduction

The first evidence for neurons integrating multiple determinants
and encoding subjective values came from studies in which mon-
keys chose between two different juices offered in variable
amounts. Distinct groups of cells were found to encode the value
of individual offers (offer value), the value of the chosen offer
(chosen value) and the identity of the chosen good (chosen juice).
Importantly, the activity of chosen value cells was not determined
by the juice type or the juice amount alone, but rather integrated
these two determinants in a way that reflected the subjective na-
ture of value (Padoa-Schioppa and Assad, 2006). With the
amygdala, orbitofrontal cortex (OFC) is the only region where
lesions selectively impair economic decisions (Gallagher et al.,
1999; Rudebeck and Murray, 2011; Rudebeck et al., 2013). More-
over, OFC receives direct anatomical input from all sensory mo-
dalities and limbic structures (Ongiir and Price, 2000) and thus
seems ideally placed to integrate across dimensions. Based on
these features, it was suggested that economic decisions between
goods might take place within the OFC (Padoa-Schioppa, 2011).
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However, previous work left open at least two important ques-
tions. First and most important, early experiments did not dis-
ambiguate between offer value cells encoding subjective values
and offer value cells encoding physical properties of the offers
(e.g., juice quantity). This is a critical issue because offer value
cells might provide the primary input to the decision process.
Second, it was not clear whether chosen value cells would also
integrate determinants besides juice type and juice quantity.
Imaging work in humans sought to address these issues. Sev-
eral studies examined choices involving trade-offs between
money amount and time delay, money amount and probability,
money amount and ambiguity, probability and time delay, etc.
(Kable and Glimcher, 2007; FitzGerald et al., 2009; Peters and
Biichel, 2009; Levy et al., 2010). This extensive body of work
provided evidence consistent with integration, as the blood oxy-
gen level-dependent signal recorded in OFC or ventromedial pre-
frontal cortex (vmPFC) generally covaried with both dimensions
manipulated in each study. In addition, experiments using the
reinforcer devaluation procedure confirmed the existence of sub-
jective value signals (Valentin et al., 2007). However, most imag-
ing studies failed to disambiguate between neural signals
encoding offer value or chosen value (Bartra et al., 2013; Clithero
and Rangel, 2013). In a notable exception, Barron et al. (2013)
recently found that the effect size of repetition suppression was
correlated with the subjective value of a novel food (measured
post hoc in a second-price auction). Repetition suppression im-
plies that neurons were associated with individual goods. Thus
Barron’s results might seem to imply that individual-good neu-
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Figure 1.  Task design and behavioral analysis. a, Task design. Each row represents the time course of a single trial. Each offer

was represented by a number of colored symbols. The color specified the juice type, the number of symbols specified the juice
amount, and the shape of the symbols specified the probability. In the top trial, the animal chose between one drop of grape juice
delivered with probability p = 0.25 and three drops of apple juice delivered with probability p = 1. In the bottom trial, the animal
chose between one drop of grape juice delivered with probability p = 1and four drops of apple juice delivered with probability p =
0.5.The animal indicated its choice with an eye movement. After an additional delay (0.7555), the animal learned the trial outcome.
In good luck trials, the juice was delivered; in poor luck trials, a brief sound was played instead. Good/poor luck was determined
randomly according to the probability associated with the chosen good. b, Choice patterns, one session. The percentage of B
choicesis plotted against the ratio #B:#A, where #A and #B are quantities of juice A and B, respectively. Each color represents a good

rons encoded subjective values. However,
alternative interpretations are also possi-
ble. First and foremost, since the subjec-
tive value of individual goods did not vary
across sessions, one cannot exclude the
possibility that individual-good neurons
encoded a physical quantity of the goods
(e.g., the expected sugar content; O’Doherty,
2014). Moreover, it is possible that a larger
number of individual-good neurons were
associated with more preferred goods,
while each of these neurons simply en-
coded a physical property of a particular
good. For example, individual-good neu-
rons could have encoded the mere pres-
ence of a particular good in the trial
(similar to chosen juice cells, but not sim-
ilar to offer value cells).

In conclusion, the issues described in the
first paragraph remain open. To address
them, we examined the activity of neurons
in the OFC while monkeys chose between
goods that varied on three dimensions—
juice type, quantity, and probability. The ac-
tivity of both offer value cells and chosen
value cells encoded values defined by the in-
tegration of juice quantity and probability.
Furthermore, both groups of cells reflected
the subjective risk attitude of the animals.

Materials and Methods
All experimental procedures conformed to the
National Institutes of Health Guide for the Care
and Use of Laboratory Animals and with the
regulations at Washington University School
of Medicine.

Behavioral task. Two rhesus monkeys (L, fe-
male, 6.5 kg; V, male, 8.3 kg) participated in the

<«

pair. In the legend (top left), X, X', and X” indicate juice X and
probability of 1, 0.5, and 0.25, respectively. Each choice pat-
tern was fitted with a normal sigmoid in log space (Padoa-
Schioppa and Assad, 2008). The flex point provided the
indifference point. ¢, Summary of choice patterns, one session.
The indifference points obtained from b are plotted against
the corresponding probability ratio p(A)/p(B). The gray line is
the result of a linear regression. The y-axis value of regression
line at p(A)/p(B) = 1 (the intercept) provided a measure for
the relative value two juices (p). The slope of the regression
line () provided a measure of the risk attitude. The dashed
line is the line with slope = 1 passing through the origin. In
this session, ac << 1 (the slope of the gray line i less than that
of the dotted line). In other words, the animal presented risk-
seeking preferences. Note that all three data points (and thus
all the trials in the session) contributed to the estimate of both
pand . d, Risk attitude across sessions. The histograms show
the distribution for c across sessions for monkey L (201 ses-
sions, mean o« = 0.80 = 0.14) and monkey V (208 sessions,
mean « = 0.72 = 0.10). e, Comparing behavioral analyses.
For both p (left) and « (right), the measures obtained with
logistic analyses ( y-axes) were very similar to those obtained
with our standard analyses (x-axes) (see Material and Meth-
ods). The correlation between the two measures was r = 0.99
and r = 0.98, respectively for p and cv.
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experiments. The animals sat in an electrically insulated enclosure with
their head restrained. In each session, the animal chose between different
juices delivered in variable amounts and with variable probability. Figure
la illustrates the experimental design. At the beginning of each trial, the
animal fixated on a spot at the center of a computer monitor. After 1.5s,
two offers appeared, one on each side of the fixation point. Each offer was
represented by a number of colored symbols. The color specified the juice
type, the number of symbols specified the juice amount, and the shape of
the symbols specified the probability. For example, in the first trial de-
picted in Figure 1a, the monkey chose between one drop of grape juice
delivered with probability p = 0.25 and three drops of apple juice deliv-
ered with probability p = 1. After a randomly variable delay (1-2 s), the
center fixation was extinguished and two saccade targets appeared by the
two offers (go signal). The animal indicated its choice with an eye move-
ment and maintained peripheral fixation of the saccade target for an
additional 0.75 s. At that point, the animal learned the trial outcome. In
“good luck” trials, the juice was delivered immediately. In “poor luck”
trials, no juice was delivered and a brief sound was played instead. Good/
poor luck was determined randomly on a trial-by-trial basis according to
the probability associated with the chosen good.

Offers were represented by sets of colored symbols, with the shape of
the symbols indicating the probability (square for p = 1, circle for p =
0.5, and cross for p = 0.25). Saccade targets were placed at the center of
the corresponding offer, on the horizontal line at 7° of visual angle from
the center fixation point. Center (target) fixation was usually imposed
within 2° (3°) of visual angle. Juice “quantum” was set at 65 and 70 ul for
monkeys L and V, respectively. When the chosen probability was <1, the
trial outcome (poor luck, good luck) was determined randomly on a
trial-by-trial basis. In any given trial, this determination was made inde-
pendently of that made in previous trials, with two exceptions. Specifi-
cally, we avoided long sequences of either poor luck or good luck trials by
setting probability thresholds of 0.1 and 0.05, respectively. When the
sequence of trials with continuous good/poor luck was statistically more
unlikely than the corresponding threshold, we forced the trial outcome
to interrupt that sequence. For example, if in a sequence of eight trials in
which the animal chose p = 0.25, the juice was never delivered (a se-
quence of outcomes that occurs with probability 0.75% = 0.1001), we
imposed that in the next trial in which the animal chose an offer with p <
1 the juice be delivered. Across 409 sessions, goods associated with prob-
ability p = 0.5 and p = 0.25 were delivered, respectively, with a mean
frequency of 0.51 = 0.06 and 0.25 * 0.05. The behavioral task was con-
trolled through a custom software (http://www.monkeylogic.net/) and
the eye position was monitored by an infrared video camera (Eyelink, SR
Research).

In each session, the monkey chose between two juices labeled A and B,
with A preferred. Throughout the experiments, we used three levels of
probability: p = 1, 0.5, and 0.25. In this study, a “good” was defined by a
juice type and a probability. To simplify the notation, we indicate with A,
A’, and A” the goods defined by juice A and p = 1, 0.5, and 0.25, respec-
tively (similarly for B, B’, and B”). An “offer type” was defined by two
offers (e.g., 1A”:3B), a “choice type” by an offer type and a choice (e.g.,
1A”:3B, A), and a “trial type” by a choice type and an outcome (e.g.,
1A”:3B, A, 0, where the last character was 1 or 0 depending on whether
the juice was delivered or not, respectively). A “good pair” was defined by
two goods (e.g., A:B”). Each session in the experiment included trials
with 3-5 good pairs (most often, 3), and all sessions included trials in
which both juices were offered with p = 1 (trials A:B). In each trial, at
least one of the two juices was offered with p = 1. For example, the session
in Figure la included trials with good pairs A”:B, A:B, and A:B’. In each
session, offer types varied pseudorandomly and their left/right spatial
locations were counterbalanced within each trial block (100180 trials).
Trials with different good pairs, juice amounts, and spatial left/right
configurations were pseudorandomly interleaved. Sessions typically
lasted 300—-600 trials. Across sessions, we used a variety of different
juices, resulting in many combinations of juice pairs. The same color was
associated with any given juice throughout the experiments.

Analysis of behavioral data. Choice patterns were analyzed in two ways.
In our “standard” analysis, the choice pattern measured for each good
pair was fitted with a normal sigmoid (Fig. 1b), from which we obtained

J. Neurosci., August 27, 2014 - 34(35):11583-11603 « 11585

~A32

2mm
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the indifference point. In each session, we thus measured 3-5 indiffer-
ence points, one for each good pair. To obtain robust measures for the
relative value of the two juices and the risk attitude of the animal, we
plotted the indifference point obtained for each good pair against the
corresponding probability ratio p(A)/p(B) in log-log space (Fig. 1c). A
preliminary inspection of these plots revealed that the relationship be-
tween log(relative value) and log(probability ratio) was generally linear.
We then performed a linear regression. The value of the best-fit line
where p(A)/p(B) = 1 (the intercept) defined the relative value (p) of the
two juices. The slope of the best-fit line («) provided a measure for the
risk attitude of the monkey in that session. Specifically, « < 1, « = 1, and
a > 1 corresponded, respectively, to risk-seeking, risk-neutral, and risk-
averse behavior. To intuit this point, consider the fact that a very shallow
slope (a << 1) means that the animal ignores probabilities while com-
puting relative values, which is a very risk-seeking attitude.

We also analyzed choice patterns using a logistic analysis in which we
obtained relative value (p) and the risk attitude (a) from a single logistic
regression. For each session, we built the following logistic model:

choice B=1/(1 + e7¥)
X =a, + a; log (#B/#A) + a, log (pp/pa)

Variable choice B was equal to 1 if the animal chose juice B and 0 other-
wise. #A and #B were the quantities of juices A and B offered to the animal
in any given trial, respectively; p, and py were the probabilities associated
to juice A and juice B in any given trial, respectively. In this formulation,
the two behavioral parameters are derived as follows: p = exp(—ay/a,)
and a = a,/a,. The results of this study did not depend on the procedure
used for behavioral analysis. The measures of p and « obtained with the
two procedures (standard and logistic) were highly correlated (Fig. le).
Most importantly, the neuronal results obtained with the two procedures
were essentially identical. In particular, all the variable selection analyses,
including the post hoc analyses (see below), lead to the same conclusions.
The results presented in the rest of the study are based on the standard
procedure.

Surgery and recordings. In each animal, we implanted a head-
restraining device and an oval recording chamber under general anesthe-
sia. The chamber (main axes, 50 X 30 mm) was centered on stereotaxic
coordinates (A30, L0), with the longer axis parallel to a coronal plane.
Recordings were obtained from individual neurons in the central orbital
gyrus (Fig. 2). Data were collected from both hemispheres of monkey L
and from the right hemisphere of monkey V. In each hemisphere, record-
ings extended 5-6 mm in the anterior—posterior direction (A32-A37,
monkey L, right hemisphere; A31-A36, monkey L, left hemisphere; A30—
A35, monkey V, right hemisphere), with the corpus callosum extending
anteriorly to A31 and A30 in monkeys L and V, respectively.

Tungsten electrodes (125 wm shank diameter; Frederick Haer) were
advanced with a custom-made system driven remotely. We typically used
four electrodes each day. Electrodes were typically advanced in pairs (one
motor for two electrodes), with the two electrodes placed at 1 mm from
each other. Electric signals were amplified (gain, 10,000), filtered (high-
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pass cutoff, 300 Hz; low-pass cutoff, 6 kHz; Lynx 8, Neuralynx) and
recorded (Power 1401, Cambridge Electronic Design). Action potentials
were detected online, and waveforms (25 kHz sampling rate) were saved
to disk for offline clustering (Spike 2, Cambridge Electronic Design).
Only cells that appeared well isolated and stable throughout the session
were included in the analysis.

Variable selection analysis. To identify the variables encoded in the
OFC, we undertook the same approach as in earlier work (Padoa-
Schioppa and Assad, 2006). Neuronal activity was analyzed in seven time
windows: preoffer (0.5 s before the offer), postoffer (0.5 s after the offer),
late delay (0.5-1.0 s after the offer), prego (0.5 s before the “go” cue),
reaction time (from “go” to saccade), preoutcome (0.5 s before the trial
outcome), and postoutcome (0.2-1.0 s after the trial outcome). The last
time window (postoutcome) was defined starting 0.2 s after the trial
outcome to allow for transient activity adjustments. Unless otherwise
specified, we always refer to a “neuronal response” as the activity of one
cell in one time window as a function of the trial type.

As in previous studies, our goal was not to establish whether OFC
included neurons whose activity correlated with a particular variable, but
rather to identify, out of a large number of variables conceivably encoded
in the OFC, a small subset of variables that best explained the whole
population of neuronal responses. Previous work (Padoa-Schioppa and
Assad, 2006, 2008) had already ruled out several possible variables (e.g.,
other value, value difference, total value, etc.) and found that variables offer
value, chosen value, and chosen juice explained the vast majority of task-
related neural responses. Thus the present study focused on variables that
were not disambiguated in previous experiments. All the variables exam-
ined here are defined in Table 1. In essence, we defined variables related
to the individual ofters (offer max value, offer value, offer risk, etc.), to the
chosen good (chosen max value, chosen value, chosen risk, etc.), to the
chosen option (binary choice, etc.), and to the trial outcome (got juice,
received value, etc.). Variables were defined based on the values of pand «
measured in the same session and risk was defined as the standard
deviation of the probability distribution. Variables were defined for in-
dividual juices. However, we also defined “collapsed” variables (Padoa-
Schioppa and Assad, 2006). For example, the variable offer value was
assigned the higher R? between those obtained for variables offer value A
and offer value B.

The analysis proceeded in four steps. First, we identified task-related
responses. Second, we assumed that each response encoded at most one
variable in a linear way. Third, based on this assumption, we used statis-
tical procedures of variable selection to identify a subset of variables that
best explained our data. Fourth, we verified the validity of our initial
assumption.

Throughout the analysis, we only considered trial types with =2 trials.
To identify task-related responses, we submitted the data to a series of
ANOVAs. In all the ANOVAs, the significance threshold was set at p <
10~ (as in previous studies). Only responses that passed this criterion in
the one-way ANOVA with factor trial type were identified as “task-
related” and included in subsequent analyses. For each task-related re-
sponse, we performed a linear regression onto each variable. A variable
was said to explain a response if the regression slope differed significantly
from zero (p < 0.05). From each regression, we also obtained the R2. Ifa
variable did not explain a response, we set R? = 0. The variable with the
largest R* was said to provide the best fit for any given response.

Unless otherwise specified, the procedures for variable selection used
here were identical to those described previously. We refer to previous
publications for details (Padoa-Schioppa and Assad, 2006). In essence,
the challenge in identifying a small subset of variables that explain the
entire dataset resides in the fact that the variables of interest were in some
cases highly correlated with one another (see Fig. 5). Our situation had
much in common with the textbook problem of multilinear regressions
in the presence of multicollinearity (Dunn and Clark, 1987; Glantz and
Slinker, 2001). However, there were also critical differences. First, differ-
ent neuronal responses in the OFC clearly encoded different variables.
Thus the equivalent of one textbook dataset was one neuronal response.
In other words, we could not pool data from different responses and each
dataset included relatively few data points (typically 20 or 25 in total, one
for each trial type, and potentially fewer than the number of defined
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Table 1. Variables defined in this study”

Variable name Definition
Variables described in
main text

1 offer max value A Q,

2 offer value A [pa]ra*Q,

3 offer risk A sqri[p, * (1 —p,)]*Q,

4 offer max value B N

5 offer value B [pe]r ™ Qg

6 offer risk B sqri[pg * (1 — pg)1* Qp

7 binary choice 1if A chosen, 0 if B chosen

8 weighted choice A pyif A chosen, 0if B chosen

9 weighted choice B 0if A chosen, py if B chosen

10 risky choice 1if p of chosen offeris <<1, 0 otherwise

n chosen max value offer max value of chosen offer

12 chosen value p* offer value A if A chosen, offer value B
if B chosen

13 chosen risk risk of chosen offer

14 got juice 1ifjuice delivered, 0 if poor luck trial

15 taste A 1if A chosen and delivered, 0 otherwise

16 taste B 1if B chosen and delivered, 0 otherwise

17 received value chosen max value * got juice

18 received value A Q,if A chosen and delivered, 0 otherwise

19 received value B Qg if B chosen and delivered, 0 otherwise

20 win bet risky choice * got juice

2 risk outcome chosen risk * got juice

Other variables®

22 offer value A (EV) pa¥Q,

3 offer value A (MA) [pa]Amean(c) * Q,

24 offer value A (dU) a0 N/ )

25 offer value B (FV) pg* Qg

26 offer value B (MA) [pg]Amean(a) * @,

27 offer value B (dU) ps *[Qs1N (/)

28 chosen value (EV) p *offer value A (EV) if A chosen, offer
value B (EV) if B chosen

29 chosen value (MA) p *offer value A (MA) if A chosen, offer
value B (MA) if B chosen

30 chosen value (dU) pN(1/ ) * offer value A (dU) if A chosen,

offer value B (dU) if B chosen

“In any given trial, 0, and p, indicate the quantity and probability associated with juice A, respectively. Qg and pg
indicate the quantity and probability associated with juice B, respectively. The two parameters p and « are derived
from the behavioral analysis and represent, respectively, the relative value of the two juices and the risk attitude of
the animal in that session. The variable selection analysis described in the main text included variables 1-21.
®Variables 22-30 were considered the analyses performed to establish whether value-encoding responses reflected
the subjective risk attitude (see Material and Methods). In those analyses, variables offer value A, offer value B and
chosen value are referred to as offer value A (dP), offer value B (dP) and chosen value (dP), respectively.

variables). Consequently, a multilinear regression of each neuronal re-
sponse on all the variables was not feasible. On the other hand, compared
with the classic textbook situation, we had a very large number of datasets
(>1000 task-related responses in our current study). Furthermore, pre-
liminary observations suggested (and post facto analyses confirmed; see
below) that neuronal responses in OFC typically encoded at most one
variable. This allowed us to adapt two textbook procedures for variable
selection—stepwise and best-subset—to our case in ways that preserved
their strength and, at the same time, capitalized on the structure of our
dataset.

In the stepwise method (an iterative procedure), we selected at each
step the variable with the highest number of best fits within any time
window. We removed from the dataset all the responses explained by this
variable (across time windows), and we repeated the procedure on the
residual dataset. We defined the “marginal explanatory power” of a vari-
able as the percentage of responses explained by that variable and not
explained by any other selected variable. At each step, we required that
each selected variable (including those selected in earlier iterations) have
a marginal explanatory power of =1%. Selected variables that failed this
criterion were excluded. In previous studies, we had used a threshold
criterion of 5%. However, in this dataset, we found that the 1% criterion
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provided more stable results. This criterion had two consequences. On
the one hand, more variables were eventually selected. On the other
hand, the percentage of responses accounted for was very high (99% of all
task-related responses explained by at least one of the 21 variables). Im-
portantly, the stepwise method did not guarantee that the subset of vari-
ables eventually identified provided the optimal account for the dataset.
In contrast, with the best-subset method, an exhaustive procedure, we
examined for n = 1, 2, ... all the subsets of n variables and identified the
one that explained the maximum number of responses (i.e., provided the
highest explanatory power). We also identified the second-best subset of
variables. For each case examined in this study, the second-best subset
did not vary from the best subset by >1 variable and was thus examined
in the post hoc analysis (see below).

Although the best-subset method identified the subset with highest
explanatory power, it did not provide a statistical measure of whether the
explanatory power of the selected variables was significantly higher than
that of other possible sets of variables. To this end, we performed a post
hoc analysis in which we compared the marginal explanatory power of
each selected variable with that of the challenging variables. We consid-
ered each pair of variables X and Y, where X was a selected variable and Y
was a discarded variable that was highly correlated with X (correlation
coefficient >0.8). We then quantified the marginal explanatory power
(nX) of variable X as the number of responses that were explained by X
and that were not explained by Y or by any other selected variable. Sim-
ilarly, we quantified the marginal explanatory power (nY) of variable Yas
the number of responses that were explained by Y and that were not
explained by X or by any other selected variable. The best-subset proce-
dures guaranteed that nX = nY. To establish whether this inequality was
statistically significant, we performed a binomial test.

Analysis of second-order encoding. The variable selection analysis de-
scribed above is based on two assumptions: (1) that each neuronal re-
sponse in OFC encodes at most one variable and (2) that the encoding is
linear. The following analyses tested the validity of these assumptions
(Neter et al., 1990).

Consider a response encoding at the first order the variable X with
R? = R} (i.e., aresponse explained by X better than by any other selected
variable). To establish whether adding a second variable Y to the regres-
sion provided a significantly better account, we computed the following
F statistic:

Fyx = (n—3) * (Ryy — RY)/(1 — R%y)

In this equation, R} was obtained from the linear regression on X only,
R}y was obtained from the bilinear regression on X and Y, and n was the
number of trial types (data points in the regression). We computed Fyx
for each variable Y potentially encoded at the second order, and we
focused on the variable providing the maximum F = max {Fyx}.

The degrees of freedom of F were 1 for the numerator and n — 3 for the
denominator. We then set a threshold F* corresponding to a desired
threshold p < 10 > (we set this threshold because each response was
tested with 25 potential second-order variables). If F passed the criterion,
this procedure identified the second-order variable encoded by the re-
sponse. If F did not pass the criterion, we concluded that the response did
not encode any second-order variable.

Testing whether neuronal responses reflect the risk attitude. The analyses
described so far identified a small subset of variables encoded by neurons
in the OFC. In particular, we found that the explanatory power of inte-
grated variables offer value and chosen value was significantly higher than
that of probability-blind variables offer max value and chosen max value,
respectively (see Figs. 6, 7). However, these analyses did not establish
whether neuronal responses in OFC reflected the subjective risk attitude
of the animal. Indeed, to address this question, it is necessary to distin-
guish between different integrated variables that depend or do not de-
pend on the behavioral parameter o, which quantifies the risk attitude
(Fig. 1c). We thus conducted a series of dedicated analyses as follows.

For any juice X offered with probability p, we defined three different
offer value variables:
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offer value (EV) = p X
offer value (MA) = pren@x
offer value (dP) = p*X

Each of these variables integrated the juice amount and the probability
and was, by experimental design, easily distinguishable from the variable
offer max value. However, the three variables differed for how they re-
flected the risk attitude. Offer value (EV) did not depend on « and thus
expressed the expected value of each offer independent of the risk atti-
tude of the animal. Offer value (MA) depended on mean(a) and thus
reflected the overall risk attitude measured across sessions, but it did not
capture session-by-session fluctuations in c. Finally, offer value (dP) de-
pended on a and thus reflected session-by-session fluctuations in risk
attitude. Similarly, we defined variables chosen value (EV), chosen value
(MA) and chosen value (dP). Note that variables offer value and chosen
value examined in all other analyses are equal to offer value (dP) and
chosen value (dP), respectively.

In preliminary analyses, we also examined the variable offer value
(dU) = p X" * and the corresponding variable chosen value (dU). These
are the variables typically defined in economic textbooks (expected util-
ity theory). Offer value (dU) and chosen value (dP) were nearly identical to
offer value (dP) and chosen value (dP), respectively, and none of our
analyses disambiguated between them. More specifically, we observed
that the explanatory power of dP variables was marginally higher than,
but statistically indistinguishable from that of dU variables. Thus we
report in detail only the results obtained for dP variables.

To disambiguate between OFC neurons encoding EV, MA, or dP vari-
ables, we first attempted a variable selection analysis including all three
sets of variables. To increase the statistical power, we included only data
recorded in sessions with a = 0.85 and we conducted the analysis on
responses defined on choice types. In general, the explanatory power of
dP variables was higher than that of EV and MA variables, but this in-
equality reached significance level only when we compared dP variables
with EV variables. Thus, to address the questions of interest with higher
statistical power, we took an approach similar to that previously used to
show that chosen value cells reflect the subjective nature of value (Padoa-
Schioppa and Assad, 2006). In essence, we derived a measure for the risk
attitude directly from each neuronal response, and we then compared
this measure with that obtained from the analysis of behavior (see Re-
sults).

Comparing classifications across time windows using the odds ratio. We
conducted a series of analyses to assess whether the encoding of different
variables was categorical using the same approach as in a previous study
(Padoa-Schioppa, 2013). For each pair of variables, we considered the
two R? obtained from the linear regressions, we computed the difference
AR?, and we examined the distribution of AR? across the population. A
bimodal distribution indicated that the encoding was categorical. For
example, this analysis was conducted on variables offer value and chosen
value. Notably, offer value was defined as a collapsed variable and re-
sponses could encode either offer value A or offer value B. Thus for each
response classified as encoding one of these two variables, we considered
each of the R?* obtained from the linear regressions onto offer value A,
offer value B, and chosen value. The difference AR? = Rzaﬂfer value —
R2 yocen vaiue Was computed as follows. For offer value responses, R Zoﬁer value
was the higher of the two R?* provided by offer value A and offer value B.
For chosen value responses, R 2affer +alue Was one of the two R? provided by
offer value A and offer value B randomly selected. Analogous procedures
were used to compare the other pairs of variables.

In principle, each neuron could encode the same variable in different
time windows. Alternatively, the same neuron could encode different
variables in different time windows. To test whether the encoding was
generally consistent across time windows, we used statistics based on
odds ratio (Freeman, 1987). The basic idea is illustrated in Figure 13b.
Consider a situation in which we have two time windows (Window 1 and
Window 2) and four possible variables in each time window (variables I,
2, 3,0r4in Window 1 and variables 5, 6, 7, or 8in Window 2). In the large
matrix, called contingency table, X;; is the number of cells classified as
encoding variable i in Window 1 and variable j in Window 2. For each
element of the matrix, we wished to establish whether the measured
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number differs significantly from chance level. For each element (3, j) of
the large matrix, we computed a reduced 2 X 2 contingency table. In this
matrix, the two rows indicate, respectively, the number of cells classified
as encoding variable i or another variable in Window 1. The two columns
indicate the number of cells classified as encoding variable j or another
variable in Window 2. In formulas, the four elements of the reduced
contingency table are as follows:

n+j Xi,n

m=*i,n¥j m,n

The odds ratio for element (3, j) is defined as follows: (odds ratio); ; =
(ay,/a,,)/(a,,/a,,). Note that the odds ratio ~ 1 when a,, ~ a,, a,,/a,,
which is true if the likelihood that the cell is assigned to column j is
independent of the likelihood that it is assigned to row i. Thus the chance
level for the odds ratio is 1. In contrast, odds ratio >1 (or <1) indicates
that the X; ; is above (or below) chance level, meaning that the likelihood
that the cell was assigned to column j was higher (or lower) once the cell
was assigned to row i. In practice, it is useful to reason in terms of
log(odds ratio), which ranges from —Inf to +Inf with a chance level of
zero. The confidence interval used to establish whether a particular mea-
sure obtained for the log(odds ratio) differs significantly from zero is
obtained from an estimate of the variance of log(odds ratio) assuming a
normal distribution (Freeman, 1987; Matlab function odds available at
http://www.mathworks.com/matlabcentral/fileexchange/15347). Note
that this is a directional test (unlike the x? test). The null hypothesis may
be rejected due to a positive (odds ratio, >1) or negative (odds ratio, <1)
association between variables.

Results

Behavioral results

Our dataset included 409 sessions (201 from monkey L, 208 from
monkey V). For both animals, choices reflected the probabilities
with which juices were delivered, with an overall tendency toward
risk-seeking behavior. In our standard analysis, we derived a
measure of relative value for each session and each good pair (Fig.
1b). We then regressed the relative value obtained for each good
pair against the probability ratio (Fig. 1¢). The slope of the regres-
sion («) provided a measure for the risk attitude of the animal,
with @ < 1 corresponding to risk-seeking choices (see Materials
and Methods). Notably, « varied substantially from session to
session (Fig. 1d), suggesting that the risk attitude was not fixed.
Averaging across sessions, we obtained mean («) = 0.80 = 0.14
for monkey L and mean («) = 0.72 = 0.10 for monkey V. This
result confirmed previous observations of risk-seeking behavior
in rhesus monkeys (but see Yamada et al., 2013; for review, see
Heilbronner and Hayden, 2013).

Asa control, we also conducted a behavioral analysis based on
logistic regressions (see Material and Methods), which provided
very similar results (Fig. 1e). Thus the results presented in the rest
of the paper were all based on our standard behavioral analysis.
Unless otherwise stated, neuronal data were always analyzed in
relation to the measures of p and « obtained in the same session.

Task-related neuronal responses

We recorded the activity of 1508 neurons (810 cells from monkey
L; 698 cells from monkey V) in the central orbital gyrus (Fig. 2).
Our analysis proceeded in steps. Initially, we examined the neu-
ronal data with a series of ANOVAs, always imposing a threshold
p < 10 > (Table 2). First, each cell was submitted to a three-way
ANOVA with factors offer type X offer position X movement
direction. Confirming previous observations, many neurons
were modulated by the offer type (54%), while few cells were
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Table 2. Results of ANOVAs®

Factor

Three-way Two-way One-way
Time Offer  Offer Move Choice  Got  Choice One-way
window type  position  direction  type juice  type Trial type
Preoffer 0 0 1 2 6 4 3
Postoffer 380 12 24 328 6 37 353
Late delay 320 1 14 282 7 38 301
Prego 224 3 22 189 5 207 204
React time 132 2 12 107 8 135 126
Preoutcome 518 5 52 452 12 547 506
Postoutcome 506 5 19 497 456 518 666
=1 808 23 13 746 487 824 875

“Atotal of 1508 cells were included in these analyses. The table reports the results of several ANOVAs. Each column
represents one factor and each row represents one time window. Numbers indicate the number of cells significantly
modulated (p << 10 ~3). The bottom row indicates, for each given factor, the number of neurons that passed the
criterion in =1 of the seven time windows.

modulated by the offer position (2%) or the movement direction
(7%). Second, each cell was submitted to a two-way ANOVA with
factors choice type X got juice. The variable got juice was equal to
1 if the monkey received some juice at the end of the trial and 0
otherwise. A substantial percentage of neurons was modulated by
either factor in =1 time window (49% for choice type, 32% for
gotjuice). As expected, very few cells (3%) were modulated by got
juice before the trial outcome. Third, we submitted each cell to a
one-way ANOVA with factor trial type (which combines factors
choice type and got juice). We found that 58% of the cells were
modulated in =1 time window. Only neuronal responses that
passed the one-way ANOVA were identified as task-related and
included in subsequent analyses.

Next, we examined what variables were encoded by the neu-
ronal population. As expected, preliminary assessments revealed
that neuronal responses recorded in the postoutcome time win-
dow, after the uncertainty due to p < 1 was resolved, were qual-
itatively different from those recorded in earlier time windows.
Since our primary interest was in the activity related to the deci-
sion process, we present in the next four sections the results ob-
tained for early time windows (time windows that preceded the
trial outcome). The neuronal activity recorded after the trial out-
come is described later in the paper.

Neuronal responses integrate multiple determinants of value

As a population, neurons in OFC encoded multiple variables. In
early time windows, many cells encoded the offer value of one of
the two juices, discounted by its probability. One representative
example is illustrated in Figure 3a. The behavioral analysis indi-
cated that in this session p = 1.68 and a = 0.97 (Fig. 3a, left). The
firing rate of this neuron increased for larger quantities of juice A
offered but also depended on the probability associated with juice
A. Specifically, the cell activity was lower when juice A was offered
with probability p = 0.25 (Fig. 34, center, blue symbols) com-
pared with when the same juice was offered with probability p =
1 (black and red symbols). In contrast, the firing rate was not
modulated by the quantity or probability of juice B. A linear
regression of the response onto the variable offer value A provided
avery good fit (R* = 0.73; Fig. 3a, right). Similarly, Fig. 3b illus-
trates the activity of a neuron encoding the offer value B. In this
case, the cell activity increased for larger quantities of juice B.
However, it was lower when juice B was offered with probability
p = 0.25 (Fig. 3b, center, red symbols) compared with when the
same juice was offered with probability p = 1 (black and blue
symbols). In some cases, the activity decreased linearly for higher
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arisky/safe option (p << 1). It did not depend on the type and quantity of the chosen juice.

offer values (negative encoding; Fig. 3c). We also found a popu-
lation of cells whose activity seemed to encode the risk associated
with a particular offer. For example, the activity of the cell illus-
trated in Figure 3d increased with the risk associated with juice A
and was low when juice A was offered with probability p = 1 (Fig.

3d, center, black and red symbols). A linear regression of this
neuronal response on the variable offer risk A provided a good fit.

Other groups of neurons reflected various aspects of the
choice outcome. In particular, many cells encoded the value of
the chosen option, discounted by its probability. For example, the
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Intrinsic correlation between variables. The 30 variables defined in Table 1 were often correlated with each other. To estimate the typical correlation between any two

variables X and ¥, we computed for each session the correlation coefficient P (X,Y) =% - }7/&2 - ¥, where X and y are vectors of values taken by variables X and ¥ for different
session
trial types. The correlation coefficient varied between —1 and +1. Most informative for our purposes was the absolute value, which we computed and average across sessions:

session

P (X,Y) >

p(X,Y) = <

sessions

. Repeating for all pairs of variables, we obtained a symmetric matrix p of elements p(X, ¥) that varied between 0 and 1. The figure depictsin gray scale the

correlation coefficient between each pair of variables. Pairs for which the correlation was >0.8 are indicated with an X. The scale is indicated on the bottom right.

activity of the cell in Figure 4a was higher when the animal chose
higher values, independently of whether the chosen juice was A or
B. Critically, the firing rate was discounted by the probability
associated with the chosen good. For trials in which the animal
chose juice A (Fig. 4a, center, circles), the activity was lower when
juice A was offered with probability p = 0.25 (blue symbols)
compared with when juice A was offered with probability p = 1
(black and red symbols). Similarly, for trials in which the animal
chose juice B (Fig. 4a, center, diamonds), the activity was lower
when juice B was offered with probability p = 0.25 (red symbols)
compared with when juice B was offered with probability p = 1
(black and blue symbols). A linear regression of the neuronal
response onto the variable chosen value provided a very good fit
(R* = 0.75; Fig. 4a, right). Another chosen value response is illus-
trated in Figure 4b. In this case, the firing rate of the neuron
decreased with increasing value of the chosen offer (negative en-
coding). Other cells appeared to encode the choice outcome as a
level variable, independently of the chosen value. One example is
illustrated in Fig. 4c. In this case, the activity of the cell was low
when the animal chose juice A (Fig. 4c, center, circles) and high

when the animal chose juice B (Fig. 4¢, center, diamonds). Inter-
estingly, the activity also depended on the probability with which
juice B was delivered. Specifically, the activity was lower when
juice B was offered with probability p = 0.25 (red symbols) com-
pared with when juice B was offered with probability p = 1 (black
and blue symbols). A linear regression onto the variable weighted
choice B provided a very good fit (R* = 0.73). Finally, we found a
sizable population of neurons that encoded in a binary way
whether the choice made by the animal bore some risk. For ex-
ample, the activity of the cell in Figure 4d was elevated only when
the animal made a risky choice and did not depend on the value
associated with the choice. Notably, the firing rate of this cell was
equally high when the risky choice was for juice A (Fig. 4d, center,
blue circles) or for juice B (red diamonds).

Variable selection analysis

For a quantitative assessment, we considered a large number of
variables (Table 1) that were, in some cases, highly correlated
with one another (Fig. 5). We thus performed a series of analyses
to identify a small subset of variables that best explained our



11592 - J. Neurosci., August 27, 2014 - 34(35):11583-11603

a

Raghuraman and Padoa-Schioppa e Decision Values in Orbitofrontal Cortex

\\)e O p\%
i N 2 e @ o° Wooe AW
Exp I ains 6*“3 \\)G Y o+ \"()\\) (\%\(\ \\0\0 (S\Cve S é\la 00((\ NGy
(W O o e I T FE B e 0P o
O S SIS SN SR RS S R A S ClR ) B
post-offer 160 175 138 102 122 170 57 133 55 90 68 | 151
late delay 179 156 144 165 46 147 113 59 67 68 66 94 87
pre go 120 124 113 98 114 374 112 72 42 45 45 51 61 71
reac time| 84 65 76 68 52 70 21 62 39 23 29 32 20 41 43
pre-outcome 153
post-outcome 175
b ®
N . DA\
_fi N W e @ ov W e 8
Best-fit \pya O . oF oV e \(\o\c’ o® c,\\‘ o c\lfa\ o RN
< «e < NG < N L0 e PN ¢ 3 [N 0;(\\.8 \.\\)\0 e . \oe-\ G\\‘e 0\)\' e\\\e
KK K 07 O 00T e @ (8 (B @ T (@ (b (e©
post-offer 30 . 20 3 4 0 0 1 5
late delay| 21 34 30 4 2 6 3 3 8
pre go| 21 19 19 25 30 27 4 25 8 1 3 0 2 0 9
reac time| 15 8 12 17 20 10 2 16 6 1 0 1 0 2 1
pre-outcome| 25 19 31
post-outcome| 9 10 24

Figure 6.

Population summary of linear regressions (all time windows). a, Explained responses. Rows and columns represent, respectively, time windows and variables. In each location, the

number indicates the number of responses explained by the corresponding variable in that time window. For example, offer value explained 274 responses in the postoffer time window. The same
numbersare alsorepresented in gray scale. Note that each response could be explained by > 1 variable and thus could contribute to multiple binsin this panel. b, Best fit. In each location, the number
indicates the number of responses for which the corresponding variable provided the best fit (highest R2) in that time window. For example, offer value provided the best it for 62 responses in the
postoffer time window. The numerical values are also represented in gray scale. In this plot, each response contributes to at most one bin. Qualitatively, offer value and chosen value were the
dominant variables in the postoffer time window, while risky choice and weighted choice were most prominent in the preoutcome time window. The six variables at the right end of the table (got
juice, taste, etc.), which all depended on the trial outcome, explained few responses in early time windows.

dataset. For each response, we performed a linear regression onto
each variable. A variable was said to explain a response if the
regression slope differed significantly from zero (p < 0.05). The
variable with the largest R* was said to provide the best fit. Figure
6 illustrates the results obtained from the linear regressions across
the neuronal population. The top panel depicts the number of
responses explained by each variable in each time window. Note
that each response could be explained by >1 variable and could
thus contribute to multiple bins in this panel. Figure 6b illustrates
a complementary account. In this case, each response was as-
signed to the variable that provided the best fit (and thus appears
in at most one bin). Qualitatively, it can be observed that vari-
ables offer value, chosen value, risky choice, and weighted choice
frequently provided the best fit in all time windows before the
trial outcome. Also, variables defined by the trial outcome (e.g.,

got juice, taste, win bet) rarely provide the best fit in early time
windows.

To identify the variables encoded by this population, we used
two methods of variable selection: stepwise and best-subset (see
Materials and Methods). In the stepwise method, we selected at
each step the variable that had the maximum number of best fits
within any of the time windows. We then removed from the
dataset all the responses explained by this variable and we re-
peated the procedure on the residual data. Figure 7a illustrates
the results of this analysis. In the first five iterations, the proce-
dure selected variables risky choice, chosen value, binary choice,
offer value, and offer risk. In the sixth iteration, the procedure
selected the variable weighted choice. However, once this variable
was included in the selected subset, the marginal explanatory
power of the variable binary choice fell to <1%. This variable was
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Figure7. Variable selection analysis. a, Stepwise selection. The top panel is as in Figure 6b (restricted to early time windows).

At each iteration, the variable providing the maximum number of best fits in a time window was selected and indicated with an
asterisk in the figure. All the responses explained by the selected variable were removed from the pool and the procedure was
repeated on the residual dataset. Selected variables whose marginal explanatory power was <<1% were eliminated (see Materials
and Methods) and indicated with a black dot in the figure. In the first five iterations, the procedure selected variables risky choice,
chosen value, binary choice, offer value, and offer risk. In the sixth iteration, the procedure selected weighted choice and eliminated
binary choice. No other variables were selected in subsequent iterations. The scale is indicated on the bottom right. b, Stepwise
selection, percentage of explained responses. The y-axis represents the percentage of responses explained at the end of each
iteration. The total number of task-related responses (1490) corresponds to 100%. The number of responses explained by =1 of
the variables included in the analysis (1423 of 1490, 96%) is indicated with a dotted line. The five selected variables collectively
explained 1410 responses, corresponding to 95% of task-related responses and to 99% of responses explained by =1 variable. ¢,
Best-subset selection, percentage of explained responses. Same format as in b. d, Selected variables. e, Post hoc analysis. Each of
the selected variables (variable X) competes with challenging variables (variable ¥). The column denoted #X indicates the number
of responses explained by variable X, not explained by any of the other selected variables, and not explained by variable . Similarly,
#Y is the number of responses explained by variable Y, not explained by other selected variables, and not explained by variable X.
The last column indicates the p value obtained from a binomial test. For each comparison, the explanatory power of the selected
variable was significantly higher than that of the competing variable (all p << 0.005).
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thus excluded (see Materials and Meth-
ods), and no other variable was selected in
subsequent iterations. Thus the stepwise
method selected the following variables:
offer value, offer risk, chosen value, weighted
choice, and risky choice. Collectively, these
variables explained 1410 responses, cor-
responding to 95% of all task-related re-
sponses and to 99% of responses
explained by =1 of the 21 variables exam-
ined in this analysis (Fig. 7b).

While intuitive, the stepwise method
did not guarantee optimality, since we
could not exclude the possibility that a
subset of variables different from those se-
lected would provide a more powerful ac-
count of the data. To achieve optimality,
we used the best-subset method, which
identified the subset of n variables with
the highest explanatory power, where
n =1, 2, 3, ... The results confirmed
those obtained with the stepwise
method. In other words, the explana-
tory power of variables offer value, offer
risk, chosen value, weighted choice, and
risky choice was higher than that of any
other subset of five variables. A series of
controls indicated that this result was ro-
bust. In particular, both procedures se-
lected the same five variables for each of
the two animals individually.

The best-subset procedure ensured
that the explanatory power of the selected
variables was higher than that of any other
subset of variables. To test whether this
inequality was statistically significant, we
performed a post hoc analysis in which we
tested the marginal explanatory power of
each selected variable against that of other
variables (see Materials and Methods; Fig.
7e). For each of these comparisons, the
explanatory power of the selected variable
was significantly higher than that of the
other variable (all p < 0.005, binomial
test). In particular, the explanatory power
of offer value, which integrated quantity
and probability, was much higher than
that of the probability-blind offer max
value (p < 10 ~* binomial test). Similarly,
the explanatory power of chosen value,
which integrated juice type, juice quan-
tity, and probability, was much higher
than that of the probability-blind chosen
max value (p < 10 ~°, binomial test).

Analysis of second-order encoding

The variable selection analysis described
in the previous section was based on two
assumptions: (1) that each neuronal re-
sponse in OFC encoded at most one vari-
able and (2) that the encoding was linear.
To test the validity of these assumptions,
we examined whether adding a second
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Figure8.  Analysis of second-order encoding. The top (bottom) panel shows for each encoded variable and for each second-order variable the number (percentage) of responses for which the fit

was significantly improved by the second-order variable.

variable to the linear regression significantly improved the fit. For
the second-order encoding, we tested the same variables tested
for the first-order encoding. In addition, we tested responses en-
coding offer value, offer risk, and chosen value with quadratic
terms. Figure 8 summarizes the results. The top panel shows for
each encoded variable (rows) and for each second-order variable
(columns) the number of responses for which the fit was signifi-
cantly improved by the second-order variable. The two rightmost
columns indicate the number of responses for which =1 (any)
second-order variable improved the fit and the number of those
for which none (none) of the second-order variables improved
the fit. The bottom panel shows the same results expressed in
percentages. Here, each row was considered separately and the
two rightmost columns add to 100. In general, it can be observed
that the majority of responses (1038 of 1410; 74%) did not en-
code second-order variables independently of the variable en-
coded at the first order. Furthermore, none of the second-order
variables stood out as a particularly strong candidate for second-
order encoding, with the possible exception of chosen max value.
In conclusion, neuronal responses in OFC typically encoded a
single variable in a linear way.

Value-encoding responses reflect the risk attitude

The analyses described so far showed that neurons in OFC en-
coded integrated value variables offer value and chosen value as
opposed to probability blind variables offer max value and chosen
max value, respectively. However, it remained unclear whether
neuronal responses in OFC reflected the subjective risk attitude
of the animal. To address this question, one must examine the
relation between neuronal firing rates and the behavioral pa-
rameter a. The fact that monkeys were overall risk seeking and
the fact that their risk attitude varied across sessions provided

the opportunity to examine this important question. We spe-
cifically focused on two issues. First, we examined whether the
population of value-encoding responses reflected the overall
risk attitude of the animal measured across sessions. Second,
we examined whether session-by-session fluctuations in the
risk attitude were matched by fluctuations in neuronal
activity.

We first attempted a variable selection analysis including all
the EV, MA, and dP variables (see Materials and Methods). How-
ever, the three sets of variables were very highly correlated (Fig.
5), and the variable selection analysis lacked the statistical power
to disambiguate between them. More specifically, the explana-
tory power of dP variables was significantly higher than that of EV/
variables (all p = 0.02, binomial test), and higher than, but sta-
tistically indistinguishable from, that of MA variables (all p >
0.05, binomial test; data not shown). Thus to address the ques-
tions of interest with higher statistical power, we took an ap-
proach conceptually similar to the one previously used to show
that chosen value cells reflect the subjective nature of value
(Padoa-Schioppa and Assad, 2006). In essence, we derived a mea-
sure for the risk attitude directly from each neuronal response,
and we then compared this measure (&, ;ona) With that obtained
from the analysis of behavior (o pavioral)-

The procedure used to derive o, ., ona 18 illustrated in Figure
9a for one response encoding the offer value B. Consider the
rightmost panel. In this session, juice B was offered with proba-
bility p1 = 1 or with probability p2 = 0.25. Thus we plotted the
firing rate of the cell against the number of B offered (variable
offer B max value) separately for pl and p2. We performed a linear
regression separately for the two types of trials and we obtained
the two slopes 01 and 62. If the cell activity integrated quantity
and probability, the two slopes should differ, with 62 < 61. Fur-
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thermore, if the cell activity encoded the variable offer value B, ~ were able to derive o, ., ona fOr €ach response encoding offer value
each slope 0k should be proportional to (pk) “ with k = 1,2. The A, offer value B, or chosen value (Fig. 9b).

neuronal measure for the risk attitude was thus derived as fol- For the response shown in Figure 94, it can be noted that
lows: o, curonal = 10g(02/61)/log(p2/p1). With this approach, we  indeed 62 < 61 (i.e., the cell activity integrated juice quantity and
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probability). It can also be noted that the neuronal measure
Opeuronat = 0.86 was very close to the behavioral measure
Opehavioral = 0.90 (Fig. 9a, left, inset). For a statistical analysis
across the population, we considered separately offer value cells
and chosen value cells. Consistent with neurons reflecting the risk
attitude of the animals, for both groups of cells the center of the
distribution for o ona Was significantly <1 (Fig. 9¢). To appre-
ciate the significance of this result, consider the procedure used to
identify neuronal responses encoding the offer value or the chosen
value. Normally, we assign each response to one of the variables
identified in the variable selection analysis, and in particular to
the variable that provides the highest R*. When we did so and
examined the distribution of @, ona across the population, we
found that mean (@, cyrona) <1 for both offer value and chosen
value responses. One concern was that this procedure had some
degree of circularity because offer value and chosen value re-
sponses were identified for high correlation with variables offer
value (dP) and chosen value (dP), which depended on oy, qp,vioral-
To address this issue, we reclassified responses using variables
offer value (EV) and chosen value (EV). Importantly, these vari-
ables did not depend on o, ,viorar- Thus this procedure was very
conservative, for we effectively biased the measure of @, .y onal
toward 1. Yet, even with this procedure, we obtained
mean(a,.yrona) < 1 for both offer value and chosen value re-
sponses (in both cases, p < 10 10t test).

We also examined whether session-by-session fluctuations in
O euronal COITelated with the analogous fluctuations in @ p,yioral-
For both offer value and chosen value responses, we found that the
two measures (@ eqronal AN Wpenavioral) Were positively correlated.
The statistical significance of this correlation depended on how
exactly we identified neuronal responses encoding the offer value
or the chosen value. When we assigned neuronal responses with
our normal procedure, the correlation between o ., ona and
O ehavioral Was statistically significant (p < 0.01 for both offer value
and chosen value responses; Fig. 9d,e). Again, one concern was
that this procedure had some degree of circularity. To address it,
we reclassified responses using variables offer value (MA) and
chosen value (MA), which do not depend on session-by-session
fluctuations in o cpaviora- This procedure was very conservative
because we effectively biased the measure of o . ona toward
mean(epaviorar)- 10 this case, the correlation between o, q onar
and a,chavioral Was significant for chosen value cells (p < 0.01) but
only a trend for offer value cells (p = 0.074).

In summary, value-encoding responses in the OFC integrate
multiple determinants of value. Our results further indicate that
both offer value and chosen value responses reflect the subjective
risk attitude of the animal.

Neuronal activity after the trial outcome

We next examined responses in the postoutcome time window. A
qualitative assessment revealed that neurons in this time window
encoded multiple variables. First, a sizable number of cells en-
coded the value of individual juices. For some cells, the activity
depended on whether the juice was chosen and received by the
animal (variable received value A; Fig. 10a). The activity of this cell
was equally low when the chosen juice was not delivered (Fig.
104, center, empty symbols) and when the animal chose and
received juice B (filled diamonds). The activity was higher when
the animal chose and received juice A and it increased with the
quantity of juice A received by the animal (filled circles). For
other cells, the activity depended only on the maximum possible
quantity of juice (variable offer max value A|B; data not shown).
Second, as in earlier time windows, many cells encoded the chosen
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value. Other neurons encoded the weighted choice or the taste
associated with a particular juice. For example, the cell shown in
Figure 10b had an elevated firing rate whenever the animal chose
and obtained juice B, regardless of quantity and probability (Fig.
100, center, filled diamonds). The activity of this cell was equally
low when the animal chose juice A (circles) and when the animal
chose juice B but the chosen juice was not delivered (empty dia-
monds). Third, a large number of cells encoded in a binary way
whether the animal received or did not receive the chosen juice
(variable got juice). For example, the activity of the cell in Figure
10c was high when the chosen juice was not delivered (poor luck
trials; Fig. 10¢, center, empty symbols) and low when the chosen
juice was delivered (filled symbols), independently of all other
aspects of the trial, including the type, quantity, and probability
of the chosen juice. Finally, many neuronal responses were best
explained by the variable win bet (Fig. 10d). For these responses,
the firing rate was modulated only when the animal chose a risky
offer and subsequently obtained the juice, independent of the
juice type and amount. For example, the firing rate of the cell in
Figure 10d was equally high when the animal chose and received
A” (Fig. 10d, center, filled blue circles) and when it chose and
received B” (filled red diamonds). The firing rate was equally low
when the animal chose a safe option (blue diamonds, red circles,
black symbols) and when the animal chose a risky option that was
eventually not delivered (empty symbols).

We then proceeded with a variable selection analysis. The
stepwise method (Fig. 11a,b) selected variables offer risk, chosen
value, weighted choice, win bet, and got juice. The results obtained
with the best-subset method (Fig. 11¢,d) were similar but not
identical: selected variables included offer max value, chosen
value, taste, win bet, and got juice. Confirming the partial discrep-
ancy between the results obtained with the two methods, the post
hoc analysis (Fig. 11e) indicated that in several cases the explana-
tory power of a variable included in the best subset was statisti-
cally indistinguishable from that of another candidate variable.
Specifically, offer max value was confounded with both offer risk
and received value A|B; taste was confounded with weighted choice;
and win bet was confounded with risk outcome. Nonetheless, the
results obtained for the postoutcome time window supported the
general conclusion that different groups of responses encoded
the value of individual goods (offer max value), the value of the
chosen good (chosen value), the categorical choice outcome
(taste), and the risky nature of the choice (win bet). In addition,
many cells in this time window encoded the binary variable got
juice. Interestingly the variable got juice was typically encoded
with a negative slope (higher activity in poor luck trials; Fig. 10c).
In the next section we present a direct contrast of the results
obtained in different time windows.

Classification of neuronal responses and encoding across

time windows

Based on the results of the variable selection analysis, each neu-
ronal response recorded in the early time windows (i.e., time
windows that preceded the trial outcome) was assigned to one of
the selected variables. Importantly, these results were based on
neuronal responses, defined as the activity of one neuron in one
time window. Thus it remained unclear whether different vari-
ables were encoded by different groups of neurons. To examine
this broad issue, we addressed three specific questions.

First, we tested whether the encoding of different variables was
categorical. For example, we sought to establish whether offer
value and offer risk were distinct classes of responses or, alterna-
tively, whether the two variables should be considered as poles of
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Figure 10.  Neuronal encoding in postoutcome time window. All conventions are as in Figure 3a, except that each data point in center panels represents one trial type. a, Neuronal response
encoding received value A. Inthis session, the animal was very risk-seeking (e = 0.63). The firing rate of this cell was elevated whenever the animal received juice A (filled circles). That rate increased
asafunction of the juice amountand it did not depend on the probability originally associated with juice A. b, Neuronal response encoding taste B. In this session we used four good pairs (see legend).
The response was approximately binary. It was elevated when the animal received juice B (filled diamonds); it was low when the animal chose juice B but did not receive it (empty diamonds) and
when the animal chose juice A (circles). ¢, Neuronal response encoding got juice. The firing rate was elevated only on poor luck trials (empty symbols). d, Neuronal response encoding win bet. The
firing rate was elevated only when the animal chose a risky option and the juice was eventually delivered (good luck trials). In all other cases, the firing rate was low.

a continuum. For each response encoding one of these two vari-
ables, we considered the two R” obtained from the two linear
regressions. We then computed AR* = Rzoﬁer value — Rzoﬁrer risk
and examined its distribution across the population (Fig. 12a).

Visual inspection and a statistical analysis revealed that the dis-
tribution of AR? was bimodal with a dip near zero (p < 0.02,
Hartigan’s dip test), suggesting that the encoding of these two
variables was categorical in nature. We repeated this analysis for
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ure 13¢,d illustrates the contingency table Figure 11.  Postoutcome time window, variable selection analysis. a, Stepwise selection. The top panel is as in Figure 6b (last

and odds ratio obtained for this compari-
son. Diagonal locations represent neu-
rons classified as encoding the same
variable in both time windows. For each
of these locations, we measured odds ratio
>1, and in four of five cases the departure
from chance level was statistically significant (all p < 10 ™, odds
ratio test). In other words, neurons encoding the same variable in
both time windows were much more frequent than expected by
chance. We repeated this analysis considering all other pairs of
time windows and generally obtained similar results. For exam-
ple, when we compared the first two time windows with the pre-
outcome time window, we found odds ratio >1 for each element
of the diagonal. Overall, these analyses indicated that neurons
typically encoded the same variable across the early time win-
dows—a result that confirmed previous observations (Padoa-
Schioppa, 2013). In this light, we assigned each neuron univocally
to one variable. This was done based on the sum of R* across time
windows, having set R* = 0 if a response was not task-related or
if a variable did not explain a particular response. Figure 13e
summarizes the results of this classification.

As a last step, we compared the classification in the early time
windows (Fig. 13e) with that obtained for the postoutcome time
window (Fig. 13f). In this case, since the variables differed across
the two classifications, we sought to establish whether specific
combinations of variables were more or less frequent than ex-
pected by chance. Figure 13g,h illustrates the contingency table
and odds ratios obtained for this comparison. Several aspects are
notable. First, neurons encoding the chosen value in early time
windows tended to encode the same variable after the trial out-
come (odds ratio, 3.49; p < 10>, odds ratio test). Second, neu-

row). The scale isindicated on the bottomright. b, Stepwise selection, percentage of explained responses. All conventions are as in
Figure 7. ¢, d, Best-subset selection. The best subset included variables offer max value, chosen value, taste, win bet, and got juice.
In ¢, the total number of task-related responses (666) corresponds to 100%. The dotted line indicates the number of responses
explained by =1 variable (659 of 666, 99%). Selected variables explained 656 responses, corresponding to 99% of task-related
responses. e, Post hoc analysis (see main text).

rons encoding the weighted choice in early time windows tended
to encode the taste after the trial outcome (odds ratio, 5.60; p <
1072, odds ratio test). Note that the two variables are closely
related and only differ because of the uncertainly due to p < 1,
which is resolved by the trial outcome. Third, neurons encoding
the risky choice in early time windows tended to encode the vari-
able win bet after the trial outcome (odds ratio, 2.21; p < 10 7,
odds ratio test). Again, these two variables are closely related as
win bet equals risky choice multiplied by got juice (the variable that
effectively “resolves” the uncertainty). Fourth, neurons encoding
the variable got juice after the trial outcome, were typically not
tuned earlier in the trial (odds ratio, 3.66; p < 10 >, odds ratio
test). Last, neurons encoding the offer risk in early time windows
were often not tuned after the trial outcome (odds ratio, 2.02; p <
1077, odds ratio test). Conversely, neurons encoding the offer
max value after the trial outcome often encoded either the offer
value (odds ratio, 1.11) or the offer risk (odds ratio, 2.48), al-
though this effect did not reach statistical significance. Again,
these variables are closely related as they all refer to individual
juices. In particular, offer value and offer max value only differ
because of the uncertainty resolved by the trial outcome.

In summary, these results indicate that different groups of
cells in the OFC encoded the value of individual goods, the offer
risk, the chosen value, the identity of the chosen good, the risky
nature of the choice and, at the end of the trial, whether or not the
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juice was received. On this basis, we performed a final classifica-
tion of neuronal responses across all time windows by collapsing
variables weighted choice and taste, and variables risky choice and
win bet (Fig. 14). Responses encoding offer value and chosen value

were most prevalent immediately after the offer and presented a
secondary peak before the trial outcome. Conversely responses
encoding weighted choice/taste presented an initial, modest peak
and were most prevalent immediately before and after the trial
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outcome. These time profiles closely resemble those previously
reported for riskless choices (Padoa-Schioppa and Assad, 2006)
and seem to reflect the computational stages of the decision pro-
cess. The encoding of offer risk was fairly stable throughout the
trial. In contrast, the encoding of risky choice/win bet was most
prevalent before and after the trial outcome, while the encoding
of got juice was confined to after the trial outcome.

Discussion

A central conjecture in decision neuroscience is that choices are
made by computing and comparing the subjective values of dif-
ferent goods. In terms of the neuronal populations found in the
OFC, this amounts to stating that economic decisions are ulti-
mately made by comparing the activity of different groups of
offer value cells (for a caveat, see Padoa-Schioppa and Rustichini,
2014). To support this proposal, it is necessary to show (1) that
values encoded by offer value cells integrate across all the dimen-
sions relevant to choice and (2) that the activity of offer value cells
reflects the subjective nature of value and cannot be reduced to
any physical property of the good. Previous results from neuro-
physiology and imaging studies demonstrated these two proper-
ties (dimensional integration and subjectivity) for chosen value
signals in OFC and/or vmPFC. However, previous work failed to
prove (or test) these two properties for neural signals encoding
the offer value. To address this fundamental issue, we examined
the activity of neurons in OFC during risky choices. Replicating
our previous findings, two groups of neurons encoded offer value
and chosen value. Both groups of cells integrated across dimen-
sions (probability and quantity for offer value cells; probability,
quantity, and juice type for chosen value cells). Importantly, both
offer value and chosen value cells reflected the subjective risk
attitude of the animal. These observations represent our primary
results and provide unprecedented evidence in support of the
conjecture described above. Importantly, the significance of the
present results does not depend on whether decisions take place
within OFC, as we previously proposed (Padoa-Schioppa, 2011), or
whether decisions take place elsewhere, possibly in an action-based
representation. Indeed, action-based accounts generally concur
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that offer values are initially computed in the OFC/vmPFC, al-
though they maintain that comparisons take place in motor re-
gions (Kable and Glimcher, 2009; Rangel and Hare, 2010).

Dimensional integration in OFC

Our conclusions differ from those of Wallis and colleagues, who
in a series of studies reported contrasting evidence on dimen-
sional integration in the OFC. In one experiment, juice amount,
probability, and action cost were varied separately (Kennerley et
al., 2009). In addition to neurons that integrated the three dimen-
sions, the authors reported cells that encoded individual dimen-
sions or dimension pairs. Importantly, their experiment did not
involve a trade-off. Since neuronal activity could not be tested
against an integrated value variable, the effect of each dimension
was tested separately. Furthermore, the statistical analysis was
designed to avoid type I errors, but did not rule out type Il errors.
In other words, neurons encoding fewer dimensions was essen-
tially the null hypothesis. Consequently, it is possible that some of
the cells classified by Kennerley as encoding only one or two
dimensions did in fact encode subjective value and failed the
criterion for integration because of type II errors. Thus the con-
clusion that OFC neurons encode individual dimensions must be
taken with caution.

In another study, Hosokawa et al. (2013) introduced a cost—
benefit trade-off. Similar to our statistical approach, they defined
a large number of variables including chosen value, other value,
total value (= chosen value + other value), etc. They performed
linear regressions of each response on each variable and assigned
each response to the variable that provided the best fit. They
found that the number of OFC neurons assigned to chosen value
was barely above chance. A comparison of their statistical proce-
dures with ours can explain this seemingly striking discrepancy.
In both studies, variables included in the analysis were often cor-
related. In particular, Hosokawa defined numerous variables
highly correlated with chosen value. Consider now a group of
bona fide chosen value cells. Due to neuronal noise, some of them
will be best fit by other variables correlated with chosen value (e.g.,
total value). In other words, testing many correlated variables
effectively introduces a competition that can potentially bias the
results of the analysis. Our analyses were designed to avoid this
problem. Indeed, at each iteration of the stepwise method, we
selected a variable based on the number of best fits, but we also
removed from the dataset all the responses explained by the se-
lected variable. For example (Fig. 7a), once the chosen value was
selected, nearly all the responses best explained by chosen max
value were also removed from the dataset (the same happened for
chosen value and total value in Padoa-Schioppa and Assad, 2006;
their Fig. S7). The same was true in the best-subset procedure. In
contrast, no such mechanism was in place in Hosokawa’s study,
which essentially reported the number of best fits but did not
perform a true variable selection. These considerations can also
explain why the contextual binary variable decision type was the
most explanatory in Hosokawa’s assessment—a somewhat sur-
prising result. Indeed, decision type was completely orthogonal to
all the other 44 variables included in their analysis and thus did
not suffer from any competition in the sense discussed here.

Generalizing reinforcer devaluation

Aside from integration, the strongest evidence that a neural signal
encodes subjective values as opposed to physical properties of the
goods comes from situations in which goods are fixed, while
preferences vary over time and neural signals covary with prefer-
ences. Indeed, here resides the power of reinforcer devaluation



11602 - J. Neurosci., August 27, 2014 - 34(35):11583-11603

procedures (O’Doherty, 2014). In previous work, we used a rein-
forcer devaluation argument to show that chosen value neurons
in OFC (Padoa-Schioppa and Assad, 2006) and anterior cingu-
late cortex (Cai and Padoa-Schioppa, 2012) indeed encode sub-
jective values. We derived a neural measure for the relative value
of two juices from each chosen value response and we showed
that—for given juice pair—the neuronal measure covaried with
the relative value obtained from behavioral choice patterns. In
the present context, it is important to recognize that the classical
reinforcer devaluation procedure cannot be used for offer value
cells due to the phenomenon of range adaptation (Padoa-
Schioppa, 2009; Kobayashi et al., 2010). This fact emerges from
our previous work. OFC neurons encode value linearly and in
such a way that the range of firing rates adapts to the range of
values available in any particular session. In our experiments, the
relative value of two juices typically varied from day to day, de-
pending on the thirst of the animal—a naturally occurring deval-
uation. A specific analysis (Padoa-Schioppa, 2009) tested
whether, ceteris paribus, the activity range of offer value cells de-
pended on the relative value (i.e., on the degree of devaluation of
the encoded juice). For the vast majority of cases (29 of 32) no
such dependence was found. Consequently, whether offer value
cells indeed reflect the subjective nature of value cannot be as-
sessed using classic reinforcer devaluation arguments. To obviate
this problem, in this study we extended the reinforcer devalua-
tion argument to risk attitudes measured through the parameter
a. Similar to the relative value, the risk attitude is subjective, it is
a component of value, and it can vary over time. The fact that
neuronal measures of risk attitude derived for offer value and
chosen value responses reflected the overall risk aversion of the
two animals and covaried with measures obtained behaviorally
across sessions provides a stringent test for our conclusions.

Other cell groups and open questions

Several other results of this study bear comment. In previous
work, we identified a third group of cells encoding the binary
outcome of the decision (chosen juice), and we proposed a model
in which these neurons provide the input to a good-to-action
transformation (Padoa-Schioppa, 2011). Weighted choice cells
seem to correspond to that group of cells, because weighted choice
reduces to chosen juice when p = 1. Under this interpretation,
however, it remains unclear why the activity of these neurons was
not simply binary but rather scaled with the probability. Interest-
ingly, several studies reported neural activity in the OFC modu-
lated by the decision confidence (Hsu et al., 2005; Kepecs et al.,
2008). Thus one possibility is that the probability scaling ob-
served in weighted choice neurons reflected the confidence with
which the animal expected the chosen juice. Future work shall
examine this issue more directly. Importantly, neurons encoding
the weighted choice could still provide the input to the good-to-
action transformation (Cai and Padoa-Schioppa, 2014), because
the activity of cells associated with the chosen juice, even if
weighted by the probability, is still higher than the activity of cells
associated with the other, nonchosen juice.

We also found three additional groups of neurons encoding
the risk associated with individual offers, the risky nature of the
chosen option, and, following the trial outcome, whether or not
the juice had been received. Notably, neurons encoding these
variables would have been unresponsive if goods had always been
delivered with p = 1. Neuronal activity related to risk was previ-
ously observed in the OFC (O’Neill and Schultz, 2010; Ogawa et
al., 2013) and in the anterodorsal septal region (Monosov and
Hikosaka, 2013). Thus OFC neurons encoding the offer risk are
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consistent with previous reports. As for their possible role in the
decision, integrated values can in principle be calculated based on
the moments of the probability distribution (D’Acremont and
Bossaerts, 2008; Glimcher, 2008). Thus one possibility is that
offer risk cells provide an input to offer value cells. This hypoth-
esis, however, remains to be tested. Inspection of Figure 13a in-
dicates that risky choice cells were most prominent immediately
before the trial outcome, suggesting that these neurons did not
contribute directly to the decision. Conversely, risky choice sig-
nals could potentially inform other brain regions, such as the
amygdala and medial prefrontal areas controlling emotional and
autonomic responses (Critchley, 2005; Ziegler et al., 2009). Inter-
estingly, neurons encoding in a binary way the risky nature of a
choice (risky choice) have also been observed in the supplemen-
tary eye fields (So and Stuphorn, 2012). With respect to got juice
cells, it seems clear that these neurons did not participate in the
decision. Interestingly, their activity was typically higher in poor
luck trials, when the juice was withdrawn. As for their functional
role, the variable got juice is computationally well suited to guide
a learning process. Thus one possibility is that these cells provide
an input to midbrain circuits controlling reinforcement learning.
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