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Brief Communications

Oncogenic Signaling Is Dominant to Cell of Origin and
Dictates Astrocytic or Oligodendroglial Tumor Development
from Oligodendrocyte Precursor Cells
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Stem cells, believed to be the cellular origin of glioma, are able to generate gliomas, according to experimental studies. Here we investi-
gated the potential and circumstances of more differentiated cells to generate glioma development. We and others have shown that
oligodendrocyte precursor cells (OPCs) can also be the cell of origin for experimental oligodendroglial tumors. However, the question of
whether OPCs have the capacity to initiate astrocytic gliomas remains unanswered. Astrocytic and oligodendroglial tumors represent the
two most common groups of glioma and have been considered as distinct disease groups with putatively different origins. Here we show
that mouse OPCs can give rise to both types of glioma given the right circumstances. We analyzed tumors induced by K-RAS and AKT and
compared them to oligodendroglial platelet-derived growth factor B-induced tumors in Ctv-a mice with targeted deletions of Cdkn2a
(p16™*42~/~, p194~/~ Cdkn2a ~/ ™). Our results showed that glioma can originate from OPCs through overexpression of K-RAS and AKT
when combined with p19+loss, and these tumors displayed an astrocytic histology and high expression of astrocytic markers. We argue that
OPCs have the potential to develop both astrocytic and oligodendroglial tumors given loss of p19™, and that oncogenic signaling is dominant to
cell of origin in determining glioma phenotype. Our mouse data are supported by the fact that human astrocytoma and oligodendroglioma

display a high degree of overlap in global gene expression with no clear distinctions between the two diagnoses.
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Introduction

Glioma is a collective term for astrocytoma, oligodendroglioma,
and ependymoma of malignancy grades I-IV. The majority of
gliomas are astrocytic or oligodendroglial tumors of grades II-IV
that primarily affect adults (Ostrom et al., 2013), and these two
groups of diffuse glioma are considered as separate diagnoses
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with different prognosis and biology (Louis et al., 2007). Muta-
tions of IDH1/2 is the most common genetic aberration in both
astrocytoma (grade II) and oligodendroglioma (grade II; Yan et
al., 2009). Patients diagnosed with oligodendroglioma (grade II)
have a better prognosis than patients with astrocytoma (grade I;
Smith etal., 2008; Bauman et al., 2009). This is associated with the
frequent loss of 1p/19q in oligodendroglial tumors connected
with better response to chemotherapy (Sanai et al., 2011). In
astrocytoma, IDH1/2 mutations are instead commonly com-
bined with TP53 mutations, which is a significant prognostic
marker for shorter survival (Kim et al., 2010). However, glioma
patients with IDH1/2 wild-type tumors of all types and grades
have significantly shorter survival than those with IDH1/2 muta-
tions (Nobusawa et al., 2009; Sanson et al., 2009).

The cell of origin for astroglial and oligodendroglial tumors
are proposed to be different (Louis et al., 2007), but these as-
sumptions are circumstantial and based on the morphological
similarities of tumor cells to the corresponding normal cells. The
cell of origin for these tumors have not been proven but the
most common beliefis that gliomas arise from a common stem
cell origin. The current understanding that oligodendroglioma
(grade II) and anaplastic oligodendroglioma (grade III) cannot
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progress into glioblastoma (grade IV) while astrocytoma (grade
I1) and anaplastic astrocytoma (grade III) are considered highly
prone to progress into secondary glioblastoma (grade IV) argues
for distinctly different biology of astrocytic and oligodendroglial
tumors inferred by their assumed different origins. An alternative
hypothesis is that these two histopathologically distinct types of
glioma could be the result of different evolutionary paths that
started in the same cell of origin.

Previously we showed that platelet-derived growth factor B
(PDGF-B) could induce development of oligodendroglial tu-
mors (grades II and IIT) from oligodendrocyte precursor cells
(OPCs; Lindberg et al., 2009). Several subsequent reports have
corroborated that glioma can arise from OPCs (Persson et al.,
2010; Hambardzumyan et al., 2011; Liu et al., 2011), and tumors
were described as showing typical oligodendroglial histology.
Further, for two of the OPC-derived glioma models, global gene
expression analysis showed an enrichment for OPC markers
(Persson et al., 2010; Liu et al., 2011). In vitro, oligodendrocyte/
type-2 astrocyte progenitor cells (O-2A/OPC) progenitor cells
and glial restricted precursor cells (GRPs) can be transformed
using combinations of epidermal growth factor receptor variant
III and dominant-negative p53. Transformed O-2A cells formed
oligodendroglial tumors upon in vivo transplantation while
GRPs formed astrocytomas (Wang et al., 2013). Here we show
that OPCs can be a common origin for both astrocytic and
oligodendroglial tumors given that the accurate oncogenic
signaling is provided. This argues for the possibility that oli-
godendroglial versus astroglial fate is dependent on the onco-
genic mutations used while the originating cell type seems to
be important for the susceptibility of a particular oncogene to
cause tumor development.

Materials and Methods

Animal experiments. Ctv-a transgenic mice (Lindberg et al., 2009) were
crossed with p16™4*_deficient (Sharpless et al., 2001), p19*™-deficient
(Kamijo et al., 1997), or pl6I“k4a/pl9Arf-deﬁcient (Serrano et al., 1996)
mice. Tumors were induced in neonatal (postnatal day 1) mice of either sex
by intracerebral injection of DF-1 chicken fibroblasts producing RCAS
(replication-competent leukosis virus splice acceptor)-PDGF-B-ires-eGFP
(Dai et al., 2001) or RCAS-AKT (Aoki et al., 1998) and RCAS-K-RAS (Hol-
land et al., 2000). Mice were killed upon sign of illness or at 12 weeks of age
and formalin-fixed paraffin-embedded (FFPE) processed.

In situ characterization of infected cells. Neonatal Ctv-a mice of either
sex were injected intracerebrally using DF-1 cells expressing RCAS-
EGFP, killed 5 or 7 d postinjection and brains FFPE processed for
immunofluorescent stainings (mouse anti-GFAP, rabbit anti-OLIG2,
and rabbit anti-NG2 from Millipore; mouse anti-nestin from BD
Biosciences; rabbit anti-Musashil and chicken anti-GFP from Ab-
cam; Alexa Fluor anti-chicken 488 and anti-rabbit or anti-mouse 555
from Invitrogen). Slides were mounted in ImmuMount (Shandon)
containing DAPI and pictures were taken using a Leica DMI 400B
microscope.

Immunohistochemical analysis of tumors. Following deparaffinization,
antigen retrieval was done by pressure boiling in antigen unmasking
solution, pH 4.0 (Vector Labs), pH 6.0 (DAKO), or 1 mm EDTA, pH
8.0, followed by immunohistochemical staining using Ultra Vision LP
system (Lab Vision) or ABC Elite system and antibodies described
previously (Lindberg et al., 2009). Slides were mounted in Immu-
Mount and pictures taken using a Leica bright-field microscope.
CD44 (Abcam) and YKL40 (Bioss) stainings were done using an au-
tomated Ventana system. Images were taken using a Nikon E400
bright-field microscope.

Statistical analysis. Statistical analysis was done using GraphPad Soft-
ware Prism 4.0. For group comparisons of incidence, Fisher’s exact test
was used. Log-rank test was used for survival curves and ? test was used
for malignancy distribution.
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The Cancer Genome Atlas low-grade glioma data analysis. We down-
loaded human glioma data from The Cancer Genome Atlas (TCGA)
Data Portal [https://tcga-data.ncinih.gov; number of samples: astrocy-
toma gliomas, 78; oligodendrogliomas, 100; oligoastrocytomas, 71; clas-
sical glioblastoma multiformes (GBMs), 148; mesenchymal GBMs, 155;
proneural GBMs, 74; neural GBMs, 68; CpG island methylator pheno-
type GBMs, 21] and mapped common gene names between GBM and
low-grade glioma samples. We then calculated the expression-level Pear-
son correlation for the common genes between all sample pairs and
defined intersample distance as follows: 1 — correlation(samplel,sample2).
The resulting distance matrix was passed to the R “cmdscale” (classical
multidimensional scaling) function to generate a two-dimensional pro-
jection of expression similarity among the samples. Boxplots for individ-
ual gene expression levels were plotted using the R package “ggplot2”
(http://ggplot2.org/).

Results

Combined loss of Cdkn2a and oncogenic K-RAS+AKT
enabled high-grade astrocytoma development from OPCs

We have developed a mouse model, Ctv-g, to study the role of
OPCs in glioma development (Lindberg et al., 2009) and here
we have used it further to investigate the biological conse-
quences of an OPC origin for experimental glioma develop-
ment. Previously we showed that PDGF-B could induce
oligodendroglial tumors (grades I and I1I) from OPCs. Thus,
it is evident that OPCs can be the origin of oligodendroglial-
like tumors in mice. Could they also hold the potential of
developing astrocytomas? Could their tumorigenic potential
be triggered by loss of Cdkn2a, which is one of the most com-
monly lost tumor suppressors and one of the earliest events in
glioma (Ozawa et al., 2014)?

In the Ctv-a mouse 2', 3'-cyclic nucleotide 3’-phospho-
diesterase (CNP)-expressing OPCs can be specifically infected by
RCAS retroviruses to induce glioma development. To further
define the target cell in Ctv-a mice, neonatal mice were intracra-
nially injected with RCAS-eGFP and infected cells detected and
analyzed by immunohistochemistry for coexpression of GFP and
neural/glial markers. RCAS-infected cells were found to be NG2
and OLIG2 positive (Fig. 1A,B) while negative for nestin,
musashil, SOX2, GFAP, and S1008 (data not shown), establish-
ing selective infection of OPCs.

To investigate whether OPCs could be susceptible to
K-RAS+AKT-induced gliomagenesis through loss of the Cdkn2a
locus, we injected neonatal Ctv-a mice deficient for Ink4a, Arf, or
Ink4a-Arf and analyzed tumor incidence and malignancy grade
after 12 weeks (Fig. 1C,D). Like Ctv-a wild-type mice, Ink4a /"~ mice
were not susceptible to K-RAS+AKT-induced tumor development
(Fig. 1C). Loss of Arf, however, allowed glioma development from
OPCs and resulted in an incidence of 30 and 19%, respectively, in
Arf~'" and Ink4a-Arf '~ mice (Fig. 1C). Tumor grade and his-
topathology were determined by a neuropathologist (T.O.) to be
a World Health Organization grade III or IV malignancy (Fig.
1D) and Arf-deficient mice suffered from significantly shorter
survival compared with wild-type and Ink4a™"~ mice (Fig. 1E).
Loss of Arf was previously shown to allow tumor development
from other differentiated GFAP-positive cells (Gtv-a mice) but
was not required in less mature nestin-positive NSCs (Ntv-a
mice; Uhrbom et al., 2002, 2005). Interestingly, and in accor-
dance with previous K-RAS+AKT-induced gliomas from NSCs
or astrocytic cells, all tumors displayed an astrocytoma-like
histopathology (Fig. 1 F, G) composed of a heterogenous mixture
of glial and sarcomatous compartments resembling gliosarcomas
(Fig. 1F). Many tumors also had ample areas of giant cells com-
monly found in giant cell glioblastoma (Fig. 1G). Studies in Ntv-a
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Figure1. A, B, Target cells of RCAS infection in Ctv-a mice. Arrows denote RCAS-EGFP-infected mouse cells (adjacent to injected RCAS-producing DF-1 cells) double-positive for GFP and (4) NG2
or (B) OLIG2. Scale bars: A, B, top left, 100 m; A, top right, 50 wm; B, top right, 25 pem. (I, K-RAS+ AKT-induced astrocytic gliomas from OPCs. Loss of Arf or Ink4a-Arf resulted in () increased
incidence [wild type (wt) vs Inkda-Arf ~/~, p = 0.0172; wtvs Af ~/~, p = 0.0024; Inkda '~ vs Inkda-Arf ~/~, p = 0.0511; Inkda ~/~ vs Af ~/~, p = 0.0096; Arf ~/~ vs Inkda-Arf '~ p
not significant], (D) high-grade tumors, and (E) decreased survival (Kaplan-Meier: wt vs Arf’/’,p =0.002; wtvs Ink4a—Arf’/’,p =0.0124; Inkda /" vs Arf”’,p =0.0064; Inkda '~ vs
Inkda-Arf =/, p = 0.0271). F, G, H&E stained tumors. H, I, Immunostainings for HA.
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PDGF-B-induced gliomas in Ctv-a mice. A=C, Loss of Arf or Ink4a-Arf caused (A) increased tumor incidence [wild type (wt) vs Inkda-Arf ~/~, p = 0.0071; wtvs Arf ~/~, p = 0.0249],

(B) increased malignancy, and (€) decreased survival compared with wt mice (wt vs Arf ~/~, p = 0.002; wt vs Inkda-Arf ~/~, p = 0.0124). D, E, H&E stained tumors.

and Gtv-a mice have shown that K-RAS alone can induce tu-
mors (Uhrbom et al., 2005). We therefore analyzed the Ctv-a/
K-RAS+AKT tumors for expression of HA tagging the virally
transduced AKT. All K-RAS+AKT tumors were positive for
HA throughout the tumor tissue, strongly indicating that AKT
was required to induce these tumors (Fig. 1 H,I).

Combined loss of Cdkn2a and overexpression of PDGF-B
caused high-grade oligodendroglioma development

Next we asked whether Cdkn2a loss was responsible for the
astrocytic histopathology of the OPC-derived K-RAS+AKT
tumors. To address this, Ctv-a wild-type, Arf/_, or Ink4a-
Arf~’~ mice were injected with RCAS-PDGEF-B. Loss of Arfor
Ink4a-Arf also accelerated PDGF-B tumor development, in-
creased tumor incidence (Fig. 2A) and malignancy (Fig. 2B),
and decreased survival (Fig. 2C). The histopathology of these
tumors was, however, clearly different and in concordance
with PDGF-B-induced tumors in Ctv-a wild-type mice analo-
gous to human oligodendroglioma of grades II and III (Fig.
2D, E). Thus, OPCs could generate both astrocytic and oligo-
dendroglial tumors, depending on the activated oncogenes
and loss of tumor suppressor Cdkn2a.

Astrocytic and oligodendroglial tumors displayed differential
protein expression

To analyze whether the difference in histopathology of KRAS+AKT
and PDGF-B tumors was reflected in the tumor phenotype, we com-
pared expression of various glial proteins (Fig. 3). Nestin and
GFAP showed homogenous expression in all K-RAS+AKT
tumors while confined to vessels and, for GFAP also in reactive
astrocytes, in PDGF-B tumors (Fig. 3A,B). K-RAS+AKT tu-
mors were strongly positive for vimentin, indicating astrocytic
differentiation, while PDGF-B tumors were completely nega-

tive (Fig. 3C). The astrocyte precursor cell marker CD44 (Liu
et al., 2004) was found throughout all tumors induced by
K-RAS+AKT while restricted to perivascular areas of higher-grade
PDGF-B tumors and absent in lower-grade PDGF-B tumors (Fig.
3D). K-RAS+AKT tumors also showed a higher expression of
YKL40 (CHI3L1), a secreted glycoprotein that can differentiate
between astrocytic and oligodendrocytic gliomas (Nutt et al.,
2005; Fig. 3E).

Analysis of OPC markers showed that PDGFRa was ex-
pressed in all tumors (Fig. 3F), reflecting the inherent feature
of the cell of origin (Barres et al., 1992). OLIG2, on the other
hand, displayed an interesting difference (Fig. 3G). In K-RAS+AKT
tumors, the overall expression of OLIG2 was highly variable. A
subset of cells was clearly positive and many showed, in addition to
a nuclear staining, a diffuse cytoplasmic staining. However, the ma-
jority of tumor cells were negative. In contrast, PDGF-B tumors had
a high, homogenous, and defined nuclear OLIG2 expression in all
tumor cells.

Transcriptome analysis of human astrocytoma and
oligodendroglioma revealed indistinct molecular separation
To investigate the relevance of our findings in human glioma,
we used publicly available transcriptome data from low-grade
astrocytoma (grade II) and oligodendroglioma (grade II) in
the TCGA database. First we investigated the overall gene ex-
pression similarities and differences between the two groups
in RNA sequencing data from 100 cases of oligodendroglioma
(grade II) and 78 cases of astrocytoma (grade IT). Multidimen-
sional scaling analysis showed that oligodendrogliomas and
astrocytomas were only partially separated and that there was
a clear overlap between the groups (Fig. 4A). In contrast, all
grade II tumors were well separated from the 466 cases of
grade IV glioblastoma (Fig. 4B).
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Figure 3.  Glial marker expression in OPC-derived KRAS+AKT and PDGF-B tumors. A-G, Representative pictures of immunostainings for (4) nestin, (B) GFAP, (C) vimentin (insets show expression in ependymal and
Bergmann glial cellsin the normal surrounding tissues, respectively), (D) (D44, () YKL40, (F) PDGFRcy, and (G) OLIG2 in tumors from Ctv-aArf /™ and Ctv-aInkda-Arf ~'~ miceinduced by K-RAS-+AKT or PDGF-B.
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Figure4.

Comparative molecular analyses of human astrocytoma and oligodendroglioma from the TCGA database. 4, B, PCA analysis of global gene expression in human (4) astrocytoma (grade

1) and oligodendroglioma (grade II) and in (B) astrocytoma, oligodendroglioma, and glioblastoma (grade IV). C~G, Gene expression in astrocytomas (AS) and oligodendrogliomas (0D) of (€)

vimentin, (D) (D44, (E) CHI3L1, (F) OLIG2, and (G) PDGFRcx.

The human dataset was analyzed for expression of genes
that were differentially expressed on the protein level in the
OPC-derived astrocytic and oligodendroglial mouse gliomas
(Fig. 3). We found a significant difference in gene expression

of vimentin, CD44, CHI3L1, and OLIG2 between human as-
trocytoma and oligodendroglioma (Fig. 4C-F) and, as for the
mouse tumors, no difference in PDGFRa (Fig. 4G), support-
ing the relevance of the Ctv-a mouse to model human glioma.
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Discussion

Astrocytoma and oligodendroglioma are by pathology consid-
ered as separate diagnoses with putatively different origins. Here
we show that OPCs can be the origin of both astrocytic and oli-
godendrocytic gliomas and that these tumors mimic their human
counterparts with regard to histology and phenotype. In support
we also show that human astrocytoma and oligodendroglioma
on the molecular level display a continuum with no clear separa-
tion, which argues for the possibility that some of these tumors
could have a common origin. This is opposite to what has been
found for human glioblastoma where tumors, inseparable by his-
tology, can be divided into different molecular subtypes (Bren-
nan et al., 2013).

The astrocytic and oligodendroglial mouse tumors could be
distinguished by histopathology and differences in intratumoral
distribution and expression of several proteins. In line with what
has been found for human astrocytic tumors compared with hu-
man oligodendroglial tumors, the mouse astrocytic tumors dis-
played stronger tumor cell-bound GFAP expression (Mokhtari et
al., 2005). In human glioma there is an inverse correlation be-
tween nuclear OLIG2 expression and expression of both nestin
and GFAP (Kinjo et al., 2008), which agrees well with our find-
ings. OLIG2 is a transcription factor important for maturation
and differentiation of the oligodendrocyte lineage (Zhou et al.,
2001), and is also expressed by SVZ type C progenitor cells that
develop into oligodendrocytes and early OPCs (Menn et al,
2006). The higher OLIG2 expression in PDGF-B tumors could be
due to a PDGF-induced expression of OLIG2 that has been
shown to be dependent on Erk activation (Hu et al., 2008). On the
contrary, AKT can induce nuclear export of OLIG2 in NSCs and
has been shown to promote astrocytic differentiation (Setoguchi
and Kondo, 2004).

The high and differential protein expression of vimentin,
CD44, and YKL40 in K-RAS+AKT tumors further corroborated
the astrocytic differentiation of these tumors. In the CNS, vimen-
tin is mainly expressed in astrocyte precursor cells but also by
some adult glial cell types, such as astrocytes and ependymal cells
(Schnitzer et al., 1981). Moreover, in human oligoastrocytomas,
expression of vimentin is coupled to the astroglial parts of the
tumors (Louis et al., 2007). The mechanism by which vimentin is
upregulated in KRAS+AKT gliomas remains to be investigated,
but in sarcoma cells AKT has been shown to bind to and phos-
phorylate vimentin on Ser39, protecting it from caspase-induced
proteolytic degradation (Zhu et al,, 2011). In the KRAS+AKT
gliomas, both vimentin and viral-transduced AKT was expressed in
all parts of the tumors, which could indicate a similar mechanism.

In all, our data show that KRAS+AKT can induce high-grade
astrocytic gliomas from late OPCs, while PDGF-B induces
oligondendroglioma-like tumors from the same cell of origin.
This implies that human astrocytic and oligodendroglial tumors
also may have an OPC origin, and that the cell of origin is inferior
to genetic aberrations in determining tumor histopathology. Cel-
lular differentiation is a continuum rather than distinct stages
separated by expression of specific proteins. Although all studies
of CNPase expression in the CNS (Scherer et al., 1994; Yuan et al.,
2002) thus far have shown CNPase to be expressed solely in late
OPCs and oligodendrocytes, we cannot exclude the possibility
that CNPase may also be expressed transiently or at low levels in
other cell types. Nevertheless, the fact that one and the same cell
of origin can give rise to different types of glioma offers one
explanation as to why molecular separation of human astrocy-
toma and oligodendroglioma is imprecise. It also shows that on-
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cogenic mutations can produce expression of various neural/glial
markers whose expression is uncoupled from that of the originat-
ing cell type. Recent large-scale analyses of human gliomas have
revealed several different subtypes of tumors that differ in molec-
ular profiles and response to treatment. Therefore, understand-
ing the role of cellular origin for glioma biology in relation to
their molecular subtypes is imperative to further increase the
resolution of clinically relevant glioma subtypes and thus to bet-
ter identify them.
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