The Journal of Neuroscience, September 3, 2014 - 34(36):11913-11918 = 11913

Systems/Circuits

Music Enrichment Programs Improve the Neural Encoding
of Speech in At-Risk Children
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Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is
thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory
processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of popula-
tions across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide
auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological
changes following participation in existing, successful music education programs. We used a randomized control design to investigate
whether community music participation induces a tangible change in auditory processing. The community music training was a long-
standing and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk
for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop
consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous
system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural
processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in

at-risk children, suggesting that active and repeated engagement with sound changes neural function.
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Introduction

Community music programs provide an exciting model to
offer widespread music training, especially to underserved
children. Whereas private music lessons are prohibitively ex-
pensive, community programs bring together groups of chil-
dren, channeling their creativity and energy away from
damaging alternatives. Reports of programs such as El Sistema
(Caracas, Venezuela) suggest these programs accomplish
more than providing children with an enjoyable activity—
participants stay in school, do well in school, and pursue post-
secondary education more frequently than their peers (Majno,
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2012). To date, however, few studies have asked whether these
community music programs have a biological impact on the
developing nervous system.

Myriad cross-sectional studies have reported behavioral and
neurophysiological differences between musicians and non-
musicians (Bidelman et al., 2011; Parbery-Clark et al., 2012; Sep-
pénen et al., 2012; for review see Strait and Kraus, 2014); these
“musician effects” are predominantly attributed to training-
related plasticity. This interpretation is supported by evidence
from humans and animals that the nervous system has profound
potential for functional reorganization following auditory train-
ing, imparting a positive impact on everyday communication
(Recanzone et al., 1993; Blake et al., 2006; Kilgard, 2012; Ander-
son et al., 2013; Anguera et al., 2013; Heim et al., 2013; Engineer
etal,, 2014). Itis thought that music training can effect structural
and functional neural changes (i.e., experience-dependent plas-
ticity; Kraus and Chandrasekaran, 2010; Patel, 2011; Herholz and
Zatorre, 2012; Zatorre, 2013) because music engages widely dis-
tributed sensory, cognitive, and reward networks in the brain—
the very networks whose integration drives neuroplasticity.
However, only a small number of longitudinal studies have de-
scribed a direct effect of music training (Fujioka et al., 20065
Moreno et al., 2009; Johnson et al., 2013; Tierney et al., 2013;
Chobert et al., 2014) and debates persist concerning innate dif-
ferences between musicians and non-musicians versus a causal role
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for music training (Corrigall et al., 2013; Zatorre, 2013); although
there is encouraging longitudinal evidence for the potential of music
training to engender improvements in automatic sound processing
in children in this age range (Putkinen et al., 2014).

These music enhancements do not only manifest neurophysi-
ologically: musicianship is associated with a host of cognitive
benefits for listening and learning. These include auditory mem-
ory and attention (Koelsch et al., 1999; Strait et al., 2010; Kraus et
al., 2012), general intelligence and executive functions (Schellen-
berg, 2004; Moreno et al., 2011), understanding speech in noisy
environments (Parbery-Clark et al., 2009b; Zendel and Alain,
2012), language processing (Milovanov et al., 2008), and literacy
skills (reviewed in Tierney and Kraus, 2013). Therefore, large-
scale community interventions have the potential to instill salient
behavioral benefits in children that can set them up for better
learning in and out of the classroom.

Motivated by cross-sectional studies of music training (Elbert
etal,, 1995; Gaser and Schlaug, 2003; Bidelman et al., 2011), and
the overlap of biological mechanisms of speech and music (Patel,
2011, 2010), here we asked whether participation in an estab-
lished community music program changes auditory neurophys-
iology. We hypothesized that participation improves the neural
processing of speech syllables. To test this hypothesis, we used a
randomized control design in collaboration with Harmony Proj-
ect (Los Angeles, CA), a longstanding and successful community
music program that has provided free music instruction to
>1000 children from Los Angeles gang-reduction zones. We
measured neural responses to contrastive speech sounds before
and after training, and in light of cross-sectional studies of child-
hood musical training (Strait et al., 2014), we predicted that mu-
sic training improves the neural differentiation of speech.

Materials and Methods

Subjects. Forty-four children, aged 80-112 months (mean 99 months;
8.25 years; 25 girls) at Year 1, participated in a hybrid randomized control
design. All were public-school pupils living in Los Angeles gang-
reduction zones. Subjects were randomly assigned either to defer their
participation in music lessons for 1 year and then undergo training
(“Group 1,” N = 18, 1 year of total music) or begin music lessons imme-
diately (“Group 2,” N = 26, 2 years of total music), all following Har-
mony Project’s curriculum (see below). Targeted group assignment was
conducted for the last few subjects to ensure that the two groups were
age- and sex-balanced. Thus at Year 2, Group 2 had 1 year of music
training; at Year 3, Group 2 had 2 years of music training and Group 1
had 1 year. At Year 1, groups were matched on age (t,,, = 1.196, p =
0.239), hearing thresholds (t( 42 = 0.289,p = 0.774), maternal education
(ta0) = 0.799, p = 0.429),1Q (¢4, = 0.419, p = 0.677), and proportion
of females and males (p > 0.1). All subjects came from Harmony Proj-
ect’s waitlist, meaning the groups were equally motivated to pursue mu-
sic training.

Intervention. The musical training followed Harmony Project’s standard
curriculum. All children first attend group introductory musicianship
classes (1 h per session, 2 sessions per week) consisting of instruction in
fundamental skills such as pitch and rhythm identification, performance,
notation, and basic recorder playing. Subjects generally progress to group
instrumental instruction after 6 months or when instruments are available,
depending on instructor judgment of their proficiency in musicianship class
and access to instruments (provided at no cost to subjects). Instrumental and
ensemble training differ as a function of instructor/seat availability program-
matically, but comprise =4 h/week of group instruction. Instruments in-
clude strings, woodwinds, and brass winds.

Neurophysiological protocol. At each test session (annually in July of
2011, 2012, and 2013) all subjects received a neurophysiological test
battery consisting of click and speech-evoked auditory brainstem re-
sponses administered using Intelligent Hearing System’s SmartEP plat-
form (Intelligent Hearing Systems). The click-evoked response was
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conventionally administered (Hall, 2006) and all children were within
normal limits for response latency. The speech-evoked responses com-
bine neural responses to transients and sustained (frequency following)
features in speech that, together, offer insight into the precision of auto-
matic auditory processing (Skoe and Kraus, 2010). Despite their subcor-
tical origin, these responses reflect short- and long-term influences from
auditory cortical and nonauditory regions, because the brainstem is an
integrative “hub” of auditory processing (Kraus and Nicol, 2014). Two
synthesized, voiced consonant—vowel syllables, [ba] and [ga], differing
only in the onset frequency of the second formant, were delivered to the
right ear via insert earphones at 80 dB SPL. See (Hornickel et al., 2009) for
a complete acoustic description of the syllables. Six thousand presenta-
tions of each syllable were presented in alternating polarity at a rate of
4.35/s. Responses were recorded from vertex (Cz) referenced to right
earlobe, digitized at 13.333 kHz, and filtered on-line from 0.05 to 3 kHz.
Responses to the two presentation polarities were averaged separately
and subtracted to enhance the spectral component of the response (Ai-
ken and Picton, 2008).

Cross-phaseogram procedure. A time-frequency cross-phaseogram ap-
proach, first described by Skoe et al. (2011), was used to quantify the
difference in response timing between the two evoking consonants. This
technique comprises computing a short-term cross-phase spectrum re-
sulting in a time-frequency matrix of phase differences. With this pair of
stimuli, the response to [ga] phase leads the response to [ba] in a typically
operating auditory system. This is because [ga] has higher frequency
content in the first 50 ms of the syllable; higher frequencies activate more
basal regions of the cochlea initiating an earlier neural volley. When
depicted in graphical form as in Figure 1, the phaseogram’s abscissa is
time, in milliseconds (0 = stimulus onset), the ordinate is frequency, in
Hertz, and the phase difference in radians is depicted in color. Green
represents no phase difference; warm colors indicate the response to [ga]
leading the response to [ba] and cool colors indicate [ba] leading [ga].

Statistical analysis. The dependent variable was an arithmetic mean of
phase differences in a time-frequency “region of interest” (ROI) defined
as 15—45 ms poststimulus onset and 0.9—1.5 kHz (Strait et al., 2014). This
ROI corresponds to the second format frequency over the time of max-
imal difference between the stimuli. Outlying data (>2 SDs from the
group mean) were adjusted to exactly 2 SDs before analysis (Group 2,
N = 4; Group 1, N = 2). Repeated-measures analyses of covariance
(RMANCOVA) were computed, with age in months as a covariate. The
repeated factor was test time (Year 1, Year 2, and Year 3) and the
between-groups factor was participant group (Group 2, music training
between all test times; Group 1, music training only between Test 2 and
Test 3). Follow-up RMANCOVAs were conducted for each study group.
Sphericity was confirmed for all within-subjects comparisons (Mauch-
ly’s ps > 0.750) and post hoc tests were Bonferroni corrected.

Results

We observed a progressive enhancement of neurophysiological
function with community music training when controlling for
age (i.e., development). Children with 2 years of training (Group
2) showed a marked improvement in the neural differentia-
tion of the syllables [ba] and [ga]. Across both groups, more
music training was associated with larger enhancements in
neural function.

We found an improvement in the neurophysiological distinc-
tion of contrastive speech sounds in children who participated in
2 years of music lessons, but not those who participated in only 1
year (Group X Year interaction, F, g4, = 3.709, p = 0.029).
Neurophysiological distinction of the syllables [ba] and [ga] is
displayed in Figure 1 for each group, at each session, in a cross-
phaseogram format. These figures provide an objective illustra-
tion of the timing differences between responses to the two
speech syllables. Both groups evinced a moderate distinction of
the syllables at Year 1, illustrated by the red swatch in a time-
frequency bin corresponding to acoustic differences between the
syllables (i.e., in their consonant—vowel transitions in a frequency
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speech sounds. This is the first demon-
stration of biological changes in auditory
processing following participation in com-
munity music programs using a random-
ized longitudinal design. These changes
were in the neurophysiological distinction
of contrastive speech syllables during pas-
sive listening, after active music training
had stopped. This suggests that music
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training transferred to non-music lis-
tening settings to influence automatic
auditory processing. Importantly, these
improvements were in processes that are
important for everyday communication:
previous investigations have revealed
that, as groups, children who are better
readers and children who hear better in
noise show stronger neural distinctions of
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these same syllables (Hornickel et al., 2009;
L Skoe et al, 2011; White-Schwoch and
Kraus, 2013). These findings therefore pro-
vide support for the efficacy of community
and co-curricular music programs to en-
gender improvements in nervous system
function. These children are from under-
served backgrounds and stand at high risk
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Figure 1.

region corresponding to the second format; see Materials and
Methods). This distinction is strengthened after 2 years of train-
ing, illustrated by larger and deeper red contrast at Year 3 in
Group 2 (within group main effect of year, F, 45, = 6.670, p =
0.003). This strengthening occurred following the second year of
music training (Year 2 vs Year 3, p = 0.010) with overall stronger
distinction after 2 years (Year 1 vs Year 3, p = 0.025).

In Group 1 there was no change in neurophysiological distinc-
tion across the 3 years (within group main effect of year, F, 5,, =
1.634, p = 0.211). While there was no overall group difference
(main effect of group, F(; 4y = 0.559, p = 0.459), there was a
trending difference present at the third assessment (F(, 40, =
3.688, p = 0.062), with Group 2 having better neural differenti-
ation than Group 1.

The group analysis suggested that more music training led to
greater enhancements in neurophysiological function. We there-
fore asked whether there was a direct relationship between extent
of music training (i.e., total hours of instrumental music practice
over the 2 years) and extent of neurophysiological improvement.
Indeed, we found that increasing hours of instrumental training
predicted larger improvements in neural differentiation (r =
0.481, p = 0.001; Fig. 2). Together, these results suggest that
community musical training improves neural differentiation of
speech syllables and that more training leads to larger gains in
neurophysiological function.

Discussion

We show that 2 years of participation in a community music
program improves the neurophysiological distinction of similar

Two years of music training improves the neurophysiological distinction of consonants. Right, Cross-phaseogram
difference plots for children in Group 2. After 2 years of training (bottom) these children show a stronger neural distinction of
speech, illustrated by the large red swatch. Children who first undergo a control year (left) do not show any year-to-year changes
in neurophysiological distinction. Black boxes represent the region of interest for statistical analysis (see Materials and Methods).

100 for academic and social problems; this im-
poverishment carries concomitant bio-
logical insults (Bradley and Corwyn, 2002;
Skoe et al., 2013). Our finding reveals the
potential for neuroplasticity in the impov-
erished human brain (Neville et al., 2013),
paralleling an effect shown in a rat model
(Zhu et al., 2014). Moreover, our finding
has a clear pragmatic implication by
showing that community music programs may stave off certain
language-based challenges.

What mechanisms drive these changes? We propose that the im-
provements observed in neurophysiological distinction of speech
sounds were driven by top-down modifications to automatic
auditory processing, with music training directing children’s at-
tention to meaningful sounds of their environment. This inter-
pretation is consistent with Patel’s OPERA hypothesis (overlap,
precision, emotion, repetition, and attention; Patel, 2011), which
stresses the importance of attentional involvement during train-
ing. Patel also identifies the importance of repetition during
training; we see a strong role for the prolonged repetition of
music practice, because 1 year of training was insufficient to affect
nervous system function. In addition to OPERA, our view is
broadly consistent with other theories of learning that impute a
major role for directed attention to modulate future automatic
sensory processing (Ahissar and Hochstein, 2004; Kraus and
Chandrasekaran, 2010; Green and Bavelier, 2012).

The neural responses we measured are generated predominantly
by auditory midbrain (Warrier et al., 2011). Midbrain plasticity is
mediated by a large network of descending corticofugal fibers (Bajo
etal., 2010) and other projections that cross-innervate midbrain and
brainstem nuclei with motor (Molinari et al., 2007), reward (Bajo
and King, 2012), and prefrontal cortices (Raizada and Poldrack,
2007)—the very centers that are actively engaged by music (Kraus
and Chandrasekaran, 2010; Chanda and Levitin, 2013; Salimpoor et
al., 2013). These influences converge to make auditory midbrain a
hub of cognitive, motor, and sensory processing. We speculate that
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top-down attentional and cognitive modu-
lations caused an activity-driven enhance-
ment in midbrain function, which
progressively (ie., with more training) 15
drove the changes we observed (Polley et
al., 2006; Hornickel et al., 2009; Bajo et al.,
2010; Kraus and Chandrasekaran, 2010;
Bajo and King, 2012). Uniquely, making
music engages these systems in a positive,
reinforcing, and active manner that offers
neuroplastic potential beyond everyday
listening experiences.

Since music integrates the perception
and production of meaningful soundsina
communicative context, music training
has the potential to generalize to language
and speech, as has been argued previously
(Kraus and Chandrasekaran, 2010; Patel,
2011). By directing children’s attention to
meaningful acoustic cues in their environ-
ments, music training may have facili-

Change in Neural Distinction (rad)
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tated the sound-meaning connections ®
that drive neural plasticity, observed here
as an improvement in the neural distinc-
tion of speech syllables. Converging evi-
dence from animals and humans suggests
that attention to past sounds influences
automatic processing of sounds during
future listening experiences (Krishnan et
al.,, 2005; Zhou and Merzenich, 2008;
Threlkeld et al., 2009; Ortiz-Mantilla et
al., 2010; Sarro and Sanes, 2011; Krizman et al., 2012; White-
Schwoch et al., 2013), such as the neurophysiological improve-
ment observed here.

A previous cross-sectional study, using the same neurophysi-
ological methods, showed that school-aged children with at least
3 years of music training had stronger distinctions of these speech
syllables than non-musician children—a finding paralleled in
preschool age children and adults (Parbery-Clark et al., 2012; Zuk
et al., 2013; Kraus and Nicol, 2014; Strait et al., 2014). Here we
show this enhancement with 2 years of training longitudinally,
suggesting that the musician enhancement established through
cross-sectional differences is indeed, at least in part, due to music
training, and not innate differences between musicians and non-
musicians. Children who underwent only 1 year of music training
did not have stronger neural processing of these speech sound
differences. Neural changes from music training may take longer
to emerge than those from other forms of auditory training, such
as computerized training programs. However, previous investi-
gations suggest that these neural enhancements from music train-
ing persist for decades after training stops (Skoe and Kraus, 2012;
White-Schwoch et al., 2013). Therefore, even if these enhancements
take relatively long to emerge, they may be long lasting.

Our finding is also evocative of research on training atten-
tional systems using action video games: an interpretation of
this line of research is that video games allow individuals to
“learn how to learn,” and functional enhancements follow this
prerequisite (Bavelier et al., 2011; Green and Bavelier, 2012).
Here, the first year of music training may have facilitated more
active engagement with sound in a meaningful context to pro-
mote efficient auditory processing (Strait et al., 2009; Parbery-
Clark et al., 2009a). During the second year this new mode of
active listening may have been brought to bear, allowing the

Figure 2.

75 150
Total Hours of Instrumental Training

A correlation is observed between hours of music training over the course of the study and change in neurophysio-
logical distinction, with children undergoing more training having a larger improvement in this distinction when controlling for
their age. Children from Group 1 (circles) with zero hours of instrumental training did not move beyond group music skills classes
due to programmatic constraints and student readiness (see Materials and Methods). The zero line across the y-axis represents no
change in neural distinction after training.

children to make sound-meaning connections that modulated
neural function (Fritz et al., 2003; Kraus and Chandrasekaran,
2010).

A number of longitudinal studies have used scientifically devel-
oped training materials based on the principles of perceptual learn-
ing elucidated in decades of animal and human studies (Tallal et al.,
1996; Temple et al., 2003; Moore et al., 2005; Moreno et al., 2009;
Anderson et al., 2013). These training regimens are carefully de-
signed to be delivered in a short time span in the laboratory or on a
computer, and are associated with improvements in perceptual and
neurophysiological functions after only a few short weeks of train-
ing; yet training benefits often do not generalize far beyond the train-
ing material (Hayes et al., 2003; Song et al., 2012; Anderson et al.,
2013; Anderson et al., 2014). However, there have been studies that
have found biological enhancements in auditory processing follow-
ing participation in informal music activities during early childhood
(Putkinen et al., 2013).

Here, we show an improvement in auditory processing that
emerges after a 2 year course of music. Neural enhancements that
generalize to automatic processing of stimuli that were not ex-
plicitly trained, such as we show here, may take longer to emerge
than those from focused computer training. We still find merit in
music training as a mechanism to improve neural function. After
all, music is an inherently fun activity for most people, likely
providing children emotional satisfaction throughout their train-
ing (Dube and Le Bel, 2003), even if that training continues over
several years. That said, it remains an open question whether and
how scientifically inspired training regimens may be combined
with ecologically valid music programs to provide the most effec-
tive improvements in communicative skills. An additional ques-
tion is what would be seen with other types of enrichment. We
did not have an active control group in this study, meaning some
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or all of the training-related enhancements we observed might be
attributed to providing these children with any kind of enrich-
ment as opposed to a per se music effect (Moreno et al., 2009; but
see Anderson etal., 2013). It also bears mentioning that, although
significant, our training effects were relatively small. It will be
important to replicate these findings to strengthen the argument
of the potential for these sorts of community-based interven-
tions. There are also several factors that may contribute to the
amount of music instruction a child received (Fig. 2), including
availability of instruments, if they missed classes (due to illness,
home trouble, etc.), and Harmony faculty’s judgments of their prog-
ress in the curriculum. And since Group 1 students started ~1 year
later, we cannot rule out interactions with development that may
have biased training benefits toward Group 2 (Bailey and Penhune,
2013). Future work will have to evaluate the intersections of age and
training that dictate final outcomes. However, in cross-sectional
studies of musicianship Strait et al. (2009, 2013) have found that
musician enhancements for timing aspects of neural processing, in-
cluding the distinction of contrastive speech syllables, are linked to
the extent of music training and not age of onset.

Cross-sectional studies of musicians, on the one hand, and
longitudinal studies of computerized or private music training on
the other hand, offer little concrete evidence for policymakers
and community organizers interested in enacting broad-based
youth programs. By providing objective biological evidence that
music programs improve the neurophysiological processing of
speech sound contrasts, our findings support efforts to expand
community and co-curricular opportunities for at-risk children
during critical developmental years. Future work should follow
children in similar programs to ascertain whether these neuro-
physiological changes eventually lead to salient behavioral out-
comes for learning, listening, and literacy skills, and whether
music training can counteract learning and auditory processing
difficulties in clinical populations. These efforts are especially
important for children from underserved populations, such as
those who participated in the current study. Our findings support
efforts to reintegrate music into public schooling as an important
complement to science, technology, math, and reading instruc-
tion (Rabkin and Hedberg, 2011; President’s Committee on the
Arts and the Humanities, 2011). In addition to providing chil-
dren with a personally satisfying afterschool activity, community
music programs offer the potential to engender biological changes in
neural processes important for everyday communication.
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