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Linking Macroscale Graph Analytical Organization to
Microscale Neuroarchitectonics in the Macaque Connectome
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Macroscale connectivity of the mammalian brain has been shown to display several characteristics of an efficient communication
network architecture. In parallel, at the microscopic scale, histological studies have extensively revealed large interregional variation in
cortical neural architectonics. However, how these two “scales” of cerebrum organization are linked remains an open question. Collating
and combining data across multiple studies on the cortical cytoarchitecture of the macaque cortex with information on macroscale
anatomical wiring derived from tract tracing studies, this study focuses on examining the interplay between macroscale organization of
the macaque connectome and microscale cortical neuronal architecture. Our findings show that both macroscale degree as well as the
topological role in the overall network are related to the level of neuronal complexity of cortical regions at the microscale, showing (among
several effects) a positive overall association between macroscale degree and metrics of microscale pyramidal complexity. Macroscale
hub regions, together forming a densely interconnected “rich club,” are noted to display a high level of neuronal complexity, findings
supportive of a high level of integrative neuronal processes to occur in these regions. Together, we report on cross-scale observations that
jointly suggest that a region’s microscale neuronal architecture is tuned to its role in the global brain network.
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Introduction
A fundamental characteristic of the architecture of neural sys-
tems is their combined ability to process specialized information
and to efficiently integrate information across segregated do-
mains. Embracing network science as a theoretical framework to
examine the topological organization of neural systems, studies
have consistently shown features of an efficient communication
architecture of macroscale brain networks, showing high local
clustering of connections, pronounced community structure,
short communication pathways (Bullmore and Sporns, 2009),
and the formation of densely connected and centrally embedded
hub regions (Sporns et al., 2007; van den Heuvel and Sporns,
2011, 2013a).

For the mammalian brain, network organizational features
have mostly been studied at the macroscopic scale, describing
and examining neural systems in terms of large-scale brain re-
gions interconnected by bundles of long-distance white matter
axonal projections (Goldman-Rakic, 1988; Hagmann et al., 2008;
Iturria-Medina et al., 2008; van den Heuvel et al., 2012). In par-

allel, decades of pioneering histological studies have provided a
wealth of evidence about the neuroarchitectonic organization of
cortical regions at the microscopic scale, illustrating that cortical
regions can differ widely in variety of receptor binding sites, cell
types, neuronal count, synaptic connectivity, etc. (Brodmann,
1909; Schüz and Miller, 2002; Garey, 2006; Amunts and Zilles,
2012). However, how the macroscale network topological archi-
tecture of the brain network is linked to the neuroarchitectonic
organization of cortical regions at the microscale remains an
open question.

To start addressing this question, the present report focuses
on the relationship between network organizational features of
the large-scale anatomical wiring of the primate brain and cellu-
lar and neuronal properties of the interconnected cortical re-
gions. At the macroscale, a connectome map describing the
organization of corticocortical wiring of the macaque cortex was
reconstructed on the basis of metadata from anatomical tracer
studies (Stephan et al., 2001), which was combined with infor-
mation on the functional role of these edges as collated from
metadata of strychnine connectivity studies (Stephan et al.,
2000). At the microscale, information on the cytoarchitectonics
of cortical regions was collated from a series of studies examining
the neuronal architecture of cortical regions of the macaque ce-
rebral cortex, including information on cortical cell and neuronal
count (Collins et al., 2010), dendritic branching of cortical layer
III pyramidal neurons (Elston, 2000), and glucose metabolism
and neurotransmitter binding levels (Kötter et al., 2001), aspects
that have all been suggested to relate to the processing and inte-
gration capacity of neurons. Examining the neuroarchitectonic
embedding of macroscopic topological network attributes can
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provide new insights into the workings of the mammalian
connectome.

Materials and Methods
In what follows, we first describe the parcellation atlas and connectivity
matrices used in our analyses, followed by the methods used for the
macroscale graph analysis and collation of the microscale neuroarchitec-
tonic information.

Parcellation atlas
Connectivity and cytoarchitectonic data were analyzed using the com-
bined Walker-von Bonin and Bailey (WBB47) parcellation atlas, dividing
the macaque cortical surface into 39 nonoverlapping cortical regions, as
introduced by Stephan et al. (2000). The WBB47 atlas forms a conjunc-
tion of the cortical parcellation of the 1947 von Bonin and Bailey atlas
(von Bonin and Bailey, 1947) for parietal, occipital, and temporal regions
and the 1940 Walker atlas for prefrontal brain areas (areas 8A, 8B, 9, 10,
11, 12, 13, 14, 45, and 46) (Walker, 1940) (see Fig. 1 and Table 1 for
regions).

Macroscale structural connectivity (SC) data
Information on the presence (and absence) of macroscale corticocortical
white matter axonal projections between WBB47 regions was obtained
from the open source CoCoMac neuroinformatics database of published
macaque anatomical tracer studies (Stephan et al., 2001) (CoCoMac,
RRID: nif-0000 – 00022). This database includes information on cortical
parcellation schemes of the macaque cortical surface, including the com-
bined von Bonin and Bailey (1947) and Walker (1940) atlas. The CoCo-
Mac database contains information on studies making report of the
specific presence (i.e., an examined and observed anatomical tract be-
tween brain regions) as well as the specific absence (i.e., an examined, but
not found tract) of anatomical projections between brain regions. The
database was queried for the existence of tracer studies reporting on the
presence (or absence) of anatomical projections between each pair of
regions in the WBB47 atlas. An anatomical tract between region i and
region j was included in the SC matrix if at least �5 reports were made on
this potential tract in the CoCoMac database, and if the number of pos-
itive reports (i.e., reports of the presence of an anatomical connection of
any strength) or “prevalence” across these �5 studies was at least two-
thirds (66%) (de Reus and van den Heuvel, 2013). Testing other settings
(e.g., number of reports being �4 or �6 and the prevalence set to 60% or
70%) revealed consistent findings. Based on these query results, a 39 � 39
SC matrix was constructed between the 39 cortical WBB47 regions. As
the CoCoMac database provides information on the source and target
site of each tracer injection, the connectivity matrix included a directed
SC matrix. No clear information on the sex or age of the macaque mon-
keys was available from the CoCoMac database; the included dataset
therefore most likely consists of combined information on connectivity
in both male and female macaque cortex. Spatial coordinates of the in-
cluded WBB47 regions were taken from information provided by the
CARET software package (Van Essen et al., 2001), and from which the
Euclidean distance between region pairs was computed as a proxy of
the projection distance of anatomical pathways.

Macroscale functional connectivity data
Information on corticocortical functional connectivity (stryFC) was ob-
tained from a meta-study by Stephan et al. (2000a). Using the WBB47
parcellation scheme, the macaque functional connectivity (stryFC) data-
set, as presented by Stephan et al. (2000a), contains information on di-
rected unihemispheric corticocortical functional connections between
the 39 WBB47 regions of the macaque cortex collated from strychnine
neuronography studies (Stephan et al., 2000). The technique of strych-
ninization as developed by Dusser de Barenne (1924) and Dusser de
Barenne and Mcculloch (1938) involves the application of the GABAA

and glycine receptor antagonist strychnine on the cortical surface, lead-
ing to local disinhibition, thereby facilitating glutamatergic transmission
of action potentials, causing multisynaptic spread of the signal across
long-distance axonal projections (Dusser de Barenne, 1924; Dusser de
Barenne and Mcculloch, 1938). Early studies have shown that strychnine

induced patterns of cortical activation are highly reproducible within a
single animal, stable for any given area across individuals, and highly
similar to those found after electrical stimulation (Dusser de Barenne and
Mcculloch, 1938). This method has thus been suggested as an approach to
map functional connections between brain regions (Dusser de Barenne and
Mcculloch, 1938). Interestingly, literature does not just describe anatomi-
cally connected areas to become activated after strychninization, but regular
reports have been made on anatomical projections to have no net excitatory
effect on target regions or even to consistently induce deactivation in target
areas (Dusser de Barenne et al., 1941). The application of strychninization
techniques thus provides the unique opportunity to map net excitatory as
well as net inhibitory influence of brain regions on each other, information
that is not directly accessible by means of modern functional neuroimaging
techniques, such as EEG or fMRI.

Macroscale graph analytical analysis
Network science was used to elucidate aspects of topological organiza-
tion of the SC network, including the assessment of nodal and edge-
centric metrics (Rubinov and Sporns, 2010) (Brain Connectivity
Toolbox, RRID nlx_143925). The following commonly used nodal met-
rics were computed from the SC matrix:

1. Nodal total degree and in-degree and out-degree, being the number of
afferent and efferent connections of a node;

2. Clustering coefficient, describing the level of local connectedness of a
node, computed as the proportion of connected triangles around a node;

3. Shortest path length, describing the number of binary steps needed to
travel from source node i to target node j in the network, averaged
over all j;

4. Eigenvalue centrality, describing the largest eigenvector of the eigen-
value decomposition of the connectivity matrix, providing an esti-
mate of the centrality of each node in the overall network (Rubinov
and Sporns, 2010; Zuo et al., 2012; de Lange et al., 2014).

Community structure
Functional domains of the macaque brain were extracted from the
stryFC matrix by means of Newman’s modularity algorithm as present in
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010) (1000 runs,
taking the highest modularity value Q) (Kofuji and Newman, 2004).
Similar to the community analysis performed by Stephan et al. (2000a)
on the stryFC matrix, community detection resulted in three communi-
ties (see Results). In addition, performing a two-step approach in which
each of these main communities was again examined individually for the
existence of subclusters using Newman’s modularity algorithm revealed
a total of 8 smaller subnetworks (see Results). These communities were
taken as a functional modular partitioning of the macaque cortex. A
similar two-step approach was used to detect possible community struc-
ture in the anatomical SC matrix.

Testing robustness of community structure. Robustness of community
structure was examined by means of a random rewiring procedure (Kar-
rer et al., 2008). This procedure involves the random rewiring of p%
edges (randomly selected) of the matrix across a set of iterations, fol-
lowed by a subsequent comparison of the community structure of each of
the randomized matrices with the community structure of the original
matrix. Here, 1000 random matrices were computed with p � 10%, and
the overlap in community structure between the original and random-
ized situations was computed using the Rand index (Rand, 1971), which
involves the pairwise count of the number of node pairs that are classified
in the same or different modules across the module assignments of the
two compared matrices (Karrer et al., 2008) (a Rand index of 0 indicates
no overlap, 1 indicates complete overlap). To assess a null distribution of
Rand-indices that might occur at chance level (Bassett et al., 2008; van
den Heuvel et al., 2010), module assignment of the original matrix was
randomized (10,000 runs) and the Rand index with the original module
assignment was computed. A p value was then assigned to the original
observed Rand-indices (i.e., between original module assignment and
module assignments of the 10% randomized matrices) by testing for
statistical difference between the two distributions.

Comparison of the community structure of anatomical and functional
data. The Rand index was also used to directly compare the modularity
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structure of the SC and stryFC matrix. The Rand index between the
two-step community structure of the SC and stryFC was computed, and
statistical significance was assessed by permutation testing using a similar
approach as described above: The modular assignments of the nodes of
both the SC and stryFC were randomized (thus keeping the number and
size of the modules intact) across 10,000 permutations, and the Rand
index in the random situations was computed. This resulted in a null
distribution of effects occurring at chance level. Using this null distribu-
tion, the original Rand index of overlapping community structure of the
SC and stryFC matrix was assigned a p value as the percentage of obser-
vations in the random condition exceeding the original value.

Intramodular and intermodular connectivity profile of nodes
Within-module degree z-score. With the functional modules describing a
modular decomposition of the network, the level of intramodular in-
volvement of each node i was examined by means of the within-module
degree z-score zi, describing the extent to which node i is structurally
connected to the other nodes in its module (Rubinov and Sporns, 2010),
with a high zi-score reflecting a relatively high involvement of a node
within its own community.

Participation coefficient. The intermodular character of a node in the
network was assessed by computing the participation coefficient Pi of
each node i, formally given by the following:

Pi � 1 � �
S�1

m �kiS

ki
�2

(1)

with kiS being the number of structural links from node i to nodes in
functional module S, m the number of modules, and ki the total degree of
node i. A high Pi indicates a strong intermodular character of node i,
showing that its connections are relatively equally distributed over the
modules in the network.

Rich club organization
A rich club organization of a network reflects the existence of a series of
sets of nodes with increasing degree k that display a level of interconnec-
tivity exceeding the level of connectivity that can be expected on basis of
chance alone. Formally, the unweighted rich club coefficient �(k) is
computed as the fraction of the number of connections present within
the subnetwork S of nodes with a degree �k (van den Heuvel and Sporns,
2011) and the total number of possible connections in S (Colizza et al.,
2006):

��k� �
E�k

N�k�N�k � 1�
(2)

�(k) is typically normalized by �random(k), being the average rich club
coefficient for each k of a set of randomized graphs (acquired by random-
izing the adjacency matrix, while preserving the degree sequence of the
network), resulting in a normalized rich club coefficient �norm(k).
�random(k) was computed for a set of a 1000 random networks (van den
Heuvel and Sporns, 2011). A network is said to display rich club organi-
zation if �(k) � �random(k) (or, equivalently, �norm(k) �1) for a
range of increasing k. Taking �random(k) as a null distribution of the
level of connectivity between nodes of degree �k, the level �(k) (and
thus the ratio �norm(k)) was assigned a p value as the percentage of
observations in �random(k) exceeding �(k). Previous studies have de-
scribed consistent structural rich club organization of the mammalian
brain: human (van den Heuvel and Sporns, 2011; van den Heuvel et al.,
2012; van den Heuvel and Sporns, 2013b), cat (Zamora-López et al.,
2009; Zamora-López et al., 2011; de Reus and van den Heuvel, 2013), and
macaque (Harriger et al., 2012) brain, for different resolutions and for
different parcellation schemes.

Rich club selection. In this study, the cortical rich club was taken as the
set of nodes showing a total degree k �38 (van den Heuvel and Sporns,
2011; Harriger et al., 2012). Nodes participating in the rich club were
classified as “rich club hub nodes”; other nodes were categorized as “pe-
ripheral nodes” (van den Heuvel et al., 2012; Towlson et al., 2013).

Classification of edges
This classification of network nodes into rich club hub nodes and periph-
eral nonhub nodes allowed for the categorization of edges into the fol-
lowing: (1) rich club connections, edges between two rich club nodes; (2)
feeder connections, edges linking peripheral nodes to hub nodes
(feeder-in connections) and vice versa (feeder-out connections); and (3)
local connections, edges interlinking peripheral nodes (van den Heuvel
et al., 2012).

In addition, edges were classified according to their role with respect to
module formation in the network. Edges were labeled as intramodular
when they connected nodes within the same functional module, and
intermodular when they linked two nodes in two different modules (de
Reus and van den Heuvel, 2013; van den Heuvel and Sporns, 2013b).

Microscale regional measures of layer III pyramidal neurons: soma
size, spine count, spine density, and dendritic tree size
At the cellular level, basal dendrites are the largest target site for synaptic
input onto cortical pyramidal neurons (Larkman, 1991; Lübke and Feld-
meyer, 2007). To examine regional variation in neuronal morphology,
Elston and colleagues performed a series of studies (e.g., Elston et al.,
2010) investigating layer III pyramidal neurons across multiple sites of
the macaque cortex. Combining information from their studies (for a list
of all included papers, see Table 1), we collated morphological data from
cortical layer III pyramidal neurons of 25 distinct regions. These regions
were manually mapped by two anatomy experts to the cortical regions
defined in the WBB47 atlas, obtaining pyramidal information of 22 of the
39 cortical regions of the WBB47 parcellation atlas. Table 1 provides
detailed information on the performed regional mapping, including in-
formation on the original source of each metric value. Collated data on
the morphology of layer III pyramidal cells included information on the
following: (1) size of the pyramidal dendritic tree, (2) estimated total
count of spines per cortical area of an average pyramidal neuron, (3)
dendritic spine density, and (4) soma size of the layer III pyramidal
neurons.

Microscale regional measures of cell count, cell density, and neural
cell density of cortical regions
Information on the total cell count of regions of the macaque cortex was
taken from the recent study of Collins et al. (2010), quantifying cell count
and cell density of the entire cortex of a single macaque. In their study,
Collins et al. (2010) divided the cortical mantle of the right hemisphere
into 41 distinct blocks and acquired detailed information on the follow-
ing: (1) total cell count (including glial cells and neurons), (2) neural cell
count, (3) ratio of neurons to non-neuron cells, (4) total cell density
(including non-neuron cells) (millions/g), and (5) neuronal cell density
(millions/g) and neuronal cell percentage of each tissue block. The spatial
locations of the 41 cortical blocks, as reported by Collins et al. (2010),
were manually allocated to the regions in the WBB47 parcellation atlas
(Table 1 provides a description of the mapping). The average neuronal
characteristics of the brain pieces contained in each of the WBB47 corti-
cal regions were computed (Table 1), obtaining cellular information of
all regions of the WBB47 parcellation atlas.

Hierarchical organization of the visual system
In addition to information on the neuronal organization of cortical re-
gions, information on the hierarchical ordering of regions of the visual
system, as published by Hilgetag et al. (2000), was included in our net-
work analysis. Hilgetag et al. (2000) defined the hierarchical ordering of
visual regions based on interlaminar differences in cortical source and
target layers, using the classification as proposed by Felleman and Van
Essen (1991), classifying the interareal connections as ascending, de-
scending, or lateral. Based on these classifications, Hilgetag et al. (2000)
defined a hierarchical arrangement of 30 cortical areas of the visual sys-
tem of a single hemisphere of the macaque cortex, assigning to each area
a peak frequency of its location in the hierarchical arrangement, ranging
from 1 (low hierarchy with predominantly feedforward (ascending) ef-
ferent connections and feedbackward (descending) afferent connec-
tions) to 16 (high in hierarchy with predominantly feed-backward
efferent connections and feedforward afferent connections). The spatial
location of all regions and their hierarchical scores were mapped to the
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WBB47 atlas (for the mapping, see Table 1), providing information on
visual hierarchy of 13 of the 39 cortical areas of the WBB47 atlas.

Regional measures of metabolic activity
Cortical regional variation in cerebral glucose metabolism was obtained
from a glucose metabolic PET imaging study by Cross et al. (2000),
examining 6 young macaques (mean � SD: 6.2 � 2 years of age). After
intravenous injection of the glucose uptake tracer fludeoxyglucose, to-
mographic (PET) images were acquired and overlaid with an anatomical
T1 image, yielding quantitative reports of the rate of glucose metabolism
of cortical regions. In addition to whole-brain levels, Cross et al. (2000)
reported levels of glucose metabolism for 11 cortical structures (and 4
subcortical structures). These cortical structures were mapped to 11 re-

gions in the WBB47 atlas. Table 1 summarizes the assignments across the
used parcellation schemes.

Receptor fingerprint
Interregional variation in neurotransmitter receptor densities in the ma-
caque cortex was taken from the study by Kötter et al. (2001), providing
a “receptor fingerprint” (Zilles et al., 2002) of the chemoarchitecture of
the unihemispheric cortical visual and motor system. For the motor and
visual regions, ligand binding densities for five receptor types were re-
ported, including the glutamatergic AMPA receptor, �-aminobutyric
acid receptor A (GABAA), serotoninergic receptor 5-HT2, and the mus-
carinergic acetylcholine receptors M1 and M2. All 29 reported areas were

Table 1. Overview of the mapping of all neuronal measures included in the meta-analysis to the WBB47 parcellationa

WBB47
atlas Pyramidal complexity Cell and neuronal count PET glucose metabolism Receptor densities Visual hierarchy

FA 4 (ER02) 30, 36 (CA10) Precentral/postcentral
gyrus (CR00)

F1 (KO01) —

FB 6 (ER02) 33, 34, 36, 38 (CA10) — F2v, F2d, F3, F6, F7 (KO01) —
FBA — 29, 30, 35, 38 (CA10) — F4v, F4d (KO01) —
FCBm — 26, 35 (CA10) — F5 (KO01) —
FCop — 26 (CA10) — — —
8A — 40 (CA10) Lateral frontal (CR00) — FEF (HI00)
8B — 37, 38 (CA10) — — —
9 9d (EB11) 37, 40 (CA10) — — —
10 10 (E00, EB11) 41 (CA10) Principal sulcus (CR00) — —
11 11 (E00) 40 (CA10) — — —
12 12 (E00, EB11) 26, 35, 40 (CA10) — — —
13 13 (EB11) 26 (CA10) — — —
14 — 26, 40 (CA10) — — —
45 — 40, 41 (CA10) — — —
46 46 (EB11) 41 (CA10) — — reg46 (HI00)
IA — 26 (CA10) — — —
IB — 24, 26, 35 (CA10) — — —
LA Ant cing (EBD05) 39, 41 (CA10) Anterior cingulate (CR00) — —
LC Post cing (EBD05) 39 (CA10) Posterior cingulate (CR00) — —
FL — 41 (CA10) — — —
PB 3b (ER02) 29 (CA10) — — —
PC — 29 (CA10) Precentral/postcentral

gyrus (CR00)
— —

PCop — 32, 35 (CA10) — — —
PEm 5 (ER02) 31, 32 (CA10) — VIP (KO01) PIP, VIP (HI00)
PEp 7m (EO1) 15, 31 (CA10) — PO, MIP, PEP (KO01)
PF 7b (ER02) 32 (CA10) Lateral parietal, supramarginal

gyrus (CR00)
— 7a (HI00)

PG MT, LIPv, 7a (ER97) 19, 20, 28, 32 (CA10) Lateral parietal, supramarginal
gyrus (CR00)

LIP, PG, MT, MTp, MST (KO01) 7a, LIP (HI00)

TA STP (ETR99, E01) 23, 27, 28 (CA10) — FST (KO01) MSTl, FST, STPa, STPp, MSTd
(HI00)

TB — 25 (CA10) — — —
TC A1 (EO10) 24 (CA10) — — —
TE TE (E99, EO11), IT (EBD05) 18, 22, 23 (CA10) — — PITd, PITv, CITv, AITv,

AITd, CITd (HI00)
TEO TEO (ER98) 17, 18, 20, 21, 22 (CA10) Lateral temporal (CR00) — VP, V3, V3A, V4, PO, DP,

VOT, V4t (HI00)
TF — 22 (CA10) — — TF (HI00)
TG — 23 (CA10) — — —
TH — 22 (CA10) — — TH (HI00)
A — 22 (CA10) — — —
OA MT (ER97), V4 (ER98) 14, 15, 16, 17, 19, 20, 21, 22 (CA10) Lateral occipital (CR00) V3v, V3d, V3A, V4v, V4d, V6A,

V4t, MT (KO01)
V2, VP, V3, V3A, V4, PO, DP,

VOT, MT (HI00)
OB V2 (ER97, ER98) 1, 2, 3, 4, 5, 8, 19, 20, 21 (CA10) — V2v, V2d (KO01) V2 (HI00)
OC V1 (ER97, ER98, ETR99) 6, 7, 9, 10, 11, 12, 13 (CA10) Cuneus/lingual gyrus (CR00) V1 (KO01) V1 (HI00)
aThe first column lists all cortical areas included in the WBB47 parcellation, to which the areas listed in the subsequent columns were mapped. Pyramidal complexity information was mapped from a series of studies by Elston and colleagues:
E00 (Elston, 2000), E01 (Elston et al., 2001), EB11 (Elston et al., 2011b), EBD05 (Elston et al., 2005), EO10 (Elston et al., 2010), EO11 (Elston et al., 2011a), ER02 (Elston and Rockland, 2002), ER97 (Elston and Rosa, 1997), ER98 (Elston and Rosa,
1998), and ETR99 (Elston et al., 1999); cell and neuronal count was mapped from a study by Collins and colleagues: CA10 (Collins et al., 2010); PET glucose metabolism from work by Cross and colleagues: CR00 (Cross et al., 2000); receptor
fingerprint from Kötter and colleagues: KO01 (Kötter et al., 2001); and visual hierarchy from Hilgetag and colleagues: HI00 (Hilgetag et al., 2000).
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mapped to 11 areas in the WBB47 parcellation
atlas, of which Table 1 provides a detailed
description.

Statistical analyses
Overlap between macroscale structural and func-
tional connectivity data. Potential overlap be-
tween the anatomical SC connectivity matrix
and strychnine derived stryFC connectivity
matrix was assessed by means of the Mantel test
for comparison of matrices (Mantel, 1967; van
den Heuvel et al., 2014). A distance matrix was
computed between the binary SC and stryFC
expressing which cell entries displayed a 1 or 0
in both matrices, with the level of overlap O
computed as the density of distance matrix.
Permutation testing was used to obtain a null
distribution of overlap scores that are present
under the null-hypothesis of no overlap be-
tween the two matrices, randomizing the en-
tries of the SC and stryFC matrix for 10,000
iterations (using the Maslov and Sneppen algo-
rithm; Maslov and Sneppen, 2002; Rubinov
and Sporns, 2010) with the overlap computed
for each iteration. Based on this null distribu-
tion, the original observed overlap O between
the SC and stryFC matrix was given a p value as
the fraction of the null distribution that ex-
ceeded O (e.g., Bassett et al., 2008; van den
Heuvel and Sporns, 2011; van den Heuvel and
Sporns, 2013b).

Associations between macroscale network and microscale architectonic
metrics. Assessment of potential associations between graph topological
metrics at the macroscale (in total 13 metrics, e.g., degree metrics, clus-
tering, path length, participation coefficient) and architectonic metrics at
the microscale (in total 18 metrics, e.g., metrics of pyramidal complexity,
neuronal count, metabolism, receptor densities) was performed by com-
puting Pearson’s correlations. Between the two scales, the evaluation of a
total of 234 tests would be possible, yielding the need for a proper cor-
rection to the � level. In situations of multiple testing, a correction
method that balances Type I and Type II errors is needed, that is, a
correction method that controls for the occurrence of false discoveries,
without jeopardizing sensitivity (i.e., including too many false negatives).
Classical Bonferroni correction is known to provide good control for
family-wise error, but in case of existence of strong dependencies be-
tween the examined metrics, most often at the cost of Type II errors. In
our study, and as commonly reported, the examined macroscale graph
metrics showed an average correlation of 0.375 (SD: 0.28) (Lynall et al.,
2010; van den Heuvel and Sporns, 2011), and the microscale metrics
showed an average correlation of 0.37 (SD: 0.32). Several correction
methods in such situations of correlated variables have been proposed.
The false discovery rate (FDR) is designed to control for the expected
proportion of incorrectly rejected null hypotheses (i.e., Type I errors)
and can also incorporate information on the correlation between the
examined variables (Benjamini and Yekutieli, 2001). Across the set of
microscale–macroscale correlations, the FDR corrected � level q � 0.05
yielded 0.0121.

FDR methods provide a less stringent control compared with methods
that control for family-wise error rate (e.g., Bonferroni), which are de-
signed to reduce the probability of even one false discovery. To control
for Type I error in a more conservative way while still keeping enough
sensitivity, methods to estimate the effective number of tests from which
a “partial Bonferroni”-corrected � can be computed have been designed
(Li and Ji, 2005; Gao et al., 2008; Shriner et al., 2008). To this end, we
applied a method based on principal component analysis (PCA) (Gao et
al., 2008). A PCA analysis involves the transformation of a dataset of
related variables to a set of linearly uncorrelated variables, named “prin-
cipal components,” with the extracted components ordered according to
the amount of explained variance. The procedure involved the following

steps (Gao et al., 2008): First, at the macrolevel, a PCA was performed on
the data matrix of the macroscale metrics, and the number of largest
components together explaining 95% of the total variance in the data was
selected. Following the same approach, also a PCA was performed on the
data matrix of the microscale metrics, and the number of components
together explaining 95% of the total variance of the microscale data were
selected. For the macroscale graph theoretical data, the first three largest
components were found to explain �95% of the variance; for the mi-
croscale data, the first two largest components were found to explain
�95% of the variance. Finally, based on these PCA results, a partial
Bonferroni correction factor was computed as the number of tests per-
formed between the 3 and 2 PCA components, resulting in an adjusted �
of 0.05/(3 � 2) � 0.0083.

Based on these two statistical thresholds (with FDR controlling for
FDR and partial Bonferroni for family-wise error), evaluated mac-
roscale–microscale correlations reaching FDR correction were taken as
trend-level effects, and effects reaching the more conservative partial
Bonferroni correction were taken as significant. All other correlations
were labeled as statistically nonsignificant effects.

Statistical analysis of differences in microscale metrics between hub and
nonhub regions. Nonparametric permutation testing was used to examine
potential differences of microscale metrics between hub and nonhub
regions. For the microscale metric of interest, the group difference be-
tween the mean values of rich club regions and peripheral regions was
computed. A null distribution was computed by randomizing group
assignment (i.e., hub vs peripheral), and the difference between the
group means of the random groups was computed for 10,000 permuta-
tions. A p value was then assigned to the original difference (i.e., rich club
vs peripheral nodes) as the fraction of observations of the null distribu-
tion exceeding the observed group difference. Based on the PCA results
of the microscale metrics (see above), effects reaching a partial Bonfer-
roni corrected � of 0.05/2 were interpreted as statistically significant.

Statistical analysis of differences on edge metrics. Potential differences
between rich club, feeder, and local edges on edge properties were tested
using permutation testing by random group assignment, using a similar
approach as described above. In total, across 3 edge metrics (edge direc-
tionality, edge projection length, stryFC) and across 4 classes (i.e., rich
club, feeder-in, feeder-out and local), a total of 3 � 4 � 12 tests were

Figure 1. Anatomical connectivity matrix. Left, Degree (i.e., total number of efferent and afferent connections) of cortical
regions. The figure represents a lateral, medial, and ventral view, as originally presented by Stephan et al. (2000). Right, Matching
directed weighted connectivity matrix derived from the CoCoMac database (Stephan et al., 2001). Rows represent the efferent
anatomical connections of regions; columns represent afferent connections of regions. Dots represent anatomical projections; size
reflects estimated projection distance (small to large), color (light blue to dark blue), the averaged reported connectivity strength.
Bottom and side bar plots represent, respectively, the in-degree and out-degree of the 39 cortical regions.
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performed. Tests reaching a strict Bonferroni corrected � level of 0.05/
12 � 0.004 were interpreted as statistically significant.

FE91 atlas
The WBB47 atlas was taken as the primary parcellation approach in our
study. Across the literature, several parcellation atlases of the macaque
cortex have been presented. To verify that observed microscale–mac-
roscale correlations in our study were independent of the selected
WBB47 atlas, we validated our findings in the context of a second par-
cellation atlas. Another commonly used parcellation atlas of the macaque
cortex is the Felleman and Van Essen 91 (FE91) atlas (Felleman and Van
Essen, 1991). The FE91 atlas also describes a single hemisphere and in-
cludes a parcellation of the cerebral cortex into 78 nonoverlapping re-
gions. Similar to the approach used for the WBB47 atlas, data on the
anatomical connectivity between the FE91 regions were extracted from
the CoCoMac database. To obtain good coverage of all region-to-region
combinations of the more fine-grained FE91 atlas, information on all
node-pairs was included without requiring a minimum number of re-
ports, with a “1” included in the SC matrix when at least 66% (two-
thirds) of the reports on a node-pair were positive; otherwise, a “0” was
included in the matrix. This resulted in an SC connectivity matrix of
18.4% density. Next, using a similar approach as described for the main
WBB47 analysis, the collated microscale data (i.e., metrics of pyramidal
complexity, neuronal count, receptor levels, etc.) was manually mapped
to the FE91 regions. Macroscale–microscale associations observed in the
WBB47 dataset were validated with the FE91 dataset. Mapping resulted
in pyramidal complexity data of 25 cortical regions (32% of total FE91
regions), neuronal and total cell count data of 78 regions (100%), visual
hierarchy of 32 regions (41%), receptor levels of 20 regions (26%), and
metabolism data of 11 regions (14%). Remapping of the stryFC data to
the FE91 parcellation was not feasible because of the nature of the stryFC
dataset, so we limited the FE91 analysis to anatomical SC effects.

Results
We will first describe the results of the
graph analytical analysis of the macaque
cortical network, followed by the cross-
resolution analysis of the graph analytical
findings in relation to collated microscale
information of the cortical regions, asso-
ciating macroscale network attributes
with information on regional variation in
dendritic complexity of layer III pyrami-
dal cells, total cell and neuronal count,
receptor binding levels, hierarchical or-
dering, and glucose metabolic activity.

Macroscale graph analytical findings
Anatomical connectivity
The macaque cortical brain network, rep-
resented by a 39 � 39 unweighted directed
anatomical connectivity matrix (SC) (Fig.
1), was found to be 35.0% dense, to show a
high level of clustering (0.73, normalized
clustering: 1.14, p 	 0.001, 10,000 permu-
tations) and to have a short path length
close to that of random networks (1.75,
normalized shortest path length: 1.04),
together indicating a small-world organi-
zation (small-world index: 1.09). Consis-
tent with previous observations (Harriger
et al., 2012; Goulas et al., 2014), the ma-
caque anatomical network displayed an
overall rich club organization, showing a
�norm �1 for 11	k	41 (p 	 0.001, sur-
viving Bonferroni correction for 42 per-
formed tests of different k levels).

Community detection (Fig. 2, left) showed the existence of two
main structural modules (Rand index at 10% random rewiring:
0.72, p 	 0.001, 10,000 permutations), overlapping visual–so-
matosensory and frontal–temporal regions. Two-step commu-
nity detection revealed 2 and 3 submodules, respectively,
resulting in a total of 5 anatomical (sub)clusters (Rand index at
10% random rewiring: 0.86, p 	 0.001, 10,000 permutations).

stryFC
Cross-reference of the stryFC with the anatomical SC matrix re-
vealed a significant overlap (1.55 times more overlap than in the
random condition, p 	 0.001, Mantel test, 10,000 permutations).
Overlapping the analysis of Stephan et al. (2000), community
detection revealed the existence of 3 main functional communi-
ties, including a visual–somatosensory cluster (consisting of 18
regions), a lateral frontal–temporal cluster (8 regions), and a me-
dial frontal–temporal cluster (13 regions) (Rand index at 10%
random rewiring: 0.82, p 	 0.001, 10,000 permutations) (Fig. 2,
right). Two-step community detection revealed further subclus-
tering (Rand index at 10% random rewiring: 0.84, p 	 0.001,
1000 permutations). The visual–somatosensory community re-
vealed 3 subclusters, consisting of 6, 7, and 5 regions, respectively,
including visual (dark blue) and motor and sensory regions (me-
dium and light blue shades). The medial temporal–frontal cluster
included 3 subclusters, describing a frontal subcluster of 4 re-
gions, including 10/11/FL and cingulate region LA (light yellow),
a subcluster of 6 regions, including cingulate cortex LC, frontal
region 8B and temporal regions (e.g., TH, TF, A) (medium yel-
low) and a subcluster of 3 regions including insular region IA and

Figure 2. Anatomical and functional community structure. Figure represents a side-to-side presentation of the community
structure of the anatomical and strychnine functional macaque brain network. Left, Community structure of the anatomical SC
network. Community detection revealed two main communities, including a community overlapping somatosensory and visual
regions (blue) and a community overlapping frontal and temporal cortical regions (green). Using a two-step community detection
approach (in which the main first-level communities were subject to community detection themselves; see Materials and Meth-
ods) revealed the existence of, respectively, three subclusters (light, medium, and dark blue) and two subclusters (light and dark
green). Right, Community structure of the stryFC network. First-level community detection revealed three main communities,
including a visual–somatosensory community (blue), a lateral frontal–temporal cluster (green), and a medial frontal–temporal
cluster (yellow). Two-step community detection revealed three functional subclusters of the visual–somatosensory network,
overlapping a visual (dark blue), motor and sensory network (medium and light). In addition, two-step community detection of the
lateral frontal–temporal network revealed two subclusters (light and dark green) and three subclusters in the medial frontal–
temporal network (light, medium, and dark yellow). Formal statistical testing of the anatomical and functional community
structure revealed significant overlap between the two-step community structures ( p 	 0.001; see Results).
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frontal regions 13 and FCoP (dark yellow). Community structure
of the lateral frontal–temporal community involved 2 subclus-
ters, including a subcluster overlapping auditory regions and
frontal region 14 (4 regions, light green) and a subcluster over-
lapping superior/inferior temporal cortex (3 regions, dark green)
and frontal area 9.

Figure 2 shows a side-by-side comparison of the two-step
structural and functional community structure, demonstrating a
relatively high level of overlap between the anatomical and func-
tional community structure. Formal statistical testing of this
overlap (see Materials and Methods) revealed a significant level of
consistency between functional and structural module structure
(Rand index: 0.81, p 	 0.001, 10,000 permutations). Further-
more, the stryFC (sub)clusters, despite the relatively coarse par-
cellation of the cortex, tend to show overlap with functional
networks as reported from resting-state fMRI recordings in the
macaque (Hutchison et al., 2011; Hutchison and Everling, 2012).
Examining this potential overlap in detail is out of the scope of
our paper, but future studies examining the consistency (and
differences) between stryFC and resting-state fMRI derived func-
tional networks would be of interest.

Macroscale network–microscale metric associations
Figure 3 reports the correlations between all possible microscale–
macroscale metrics and indicates which effects survived statistical
evaluation. In what follows, we describe the most prominent
findings, focusing on effects reaching FDR (labeled as trend-level

effects) and partial Bonferroni corrected � levels (for the compu-
tation of these corrected � levels, see Materials and Methods).

Relationship between macroscale connectome organization
and cytoarchitectural and dendritic architectural properties
of layer III pyramidal neurons
Association with macroscale degree
Basal dendrites are the largest target site for synaptic input of
cortical pyramidal neurons (Larkman, 1991; Lübke and Feld-
meyer, 2007). Microscale data on regional variation in pyramidal
cell complexity, as obtained from a series of studies by Elston et al.
(2010), included information on the length of dendritic tree, es-
timated total count of spines per cortical area of an average pyra-
midal neuron, dendritic spine density, and soma size of layer III
pyramidal neurons. Cross-correlating these microscale cellular
metrics with macroscale network properties revealed several
associations:

Pyramidal dendritic tree size positively correlated to mac-
roscale anatomical degree (in-degree, p � 0.0005, r � 0.68; and
out-degree, p � 0.0004, r � 0.69), indicating that pyramidal cells
with the largest dendritic tree are found in those regions with the
highest total number of efferent and afferent macroscale connec-
tions (Fig. 4). In addition, total spine count, reflecting the total
amount of (possible) synaptic terminals on the dendritic tree of a
neuron, positively correlated with regional variation in the num-
ber of macroscale efferent (p � 0.0027, r � 0.60) and afferent
connections (p � 0.0039, r � 0.59) (effects reaching partial Bon-
ferroni corrected �). However, no significant effects were found
between degree and spine density (i.e., the number of spines per
section of the dendritic tree; Elston, 2000) (in-degree, p � 0.0502,
not significant, r � 0.43; out-degree, p � 0.0374, not significant,
r � 0.47). A positive relationship between soma size of layer III
pyramidal neurons and macroscale in-degree was observed (in-
degree, p � 0.0049 r � 0.60; out-degree: p � 0.0101 FDR; r �
0.56).

An exception to the positive association between macroscale
degree and layer III pyramidal neuron characteristics was region
PG (Fig. 4). Cortical region PG, well recognized as a key region in
the so-called visual where pathway (Felleman and Van Essen,
1991; Ungerleider and Haxby, 1994) of the macaque visual sys-
tem, was found to display a relatively high macroscale degree, but
a (relative to the fitted linear relationship) small dendritic tree
(Fig. 4, region PG), low spine count, and low spine density. Ex-
cluding region PG from the correlation analysis revealed stronger
correlations for all pyramidal metrics, now showing a potential
positive association between macroscale degree and spine density
(in-degree, p � 0.0022, r � 0.60; out-degree, p � 0.0037, r �
0.62). Interestingly, in contrast to region PG, region LA (anterior
cingulate cortex) and LC (posterior cingulate cortex) formed a
positive exception scoring above the fitted linear relationship
(Fig. 4), with layer III pyramidal neurons in region LA showing
the most elaborate dendritic trees of all reported regions, with
region LC in second place. These findings led to the hypothesis of
high-degree region PG being mostly involved in local neuronal
processes, potentially the processing of mostly unimodal infor-
mation, whereas regions LA and LC have a more globally orien-
tated profile involved in the processing and integration of
multimodal information across the whole network.

Association with macroscale projection distance
A possible local versus global connectivity profile of cortical re-
gions was further examined by looking at a region’s projection
distance of afferent macroscale connections in relationship to

Figure 3. Macroscale–microscale metrics correlations. Figure plots all correlations between
macroscale metrics (columns) and microscale metrics (rows). Green to blue represent negative
associations; yellow to red represent positive correlations. Open circle represents effects reach-
ing FDR correction for multiple testing; filled circle represents effects reaching the stricter partial
Bonferroni correction. Metrics of stryFC, visual hierarchy, and metabolism were compared both
to microscale metrics as well as to the class of macroscale metrics and are thus included in both
categories.
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microscale neuronal architecture. The white matter projections
of outlier region PG were found to have a relatively short average
projection distance (mean � SD: 4.53 � 3.06 a.u., averaged over
31 afferent connections; 26 efferent connections: 4.52/3.11), con-
sistent with a potential local connectivity profile of this region.
The connections of high-degree region LA (afferent/efferent 7.97,
23 connections) and LC (11.37, 25 connections) were found to
display on average the longest white matter projections of the
macaque macroscale connectome, thus on average receiving
projections from more distant regions in the cortex (efferent con-
nections, respectively, 4.98, 21 connections; and 5.61, 24 connec-
tions). These findings are consistent with the observation of LA
and LC to have a high dendritic complexity.

Next, we examined this association across the entire cortex.
Projection distance of afferent connections was significantly cor-
related to spine count (p � 0.0060, r � 0.56; Fig. 5). Trend-level
(FDR) effects were observed between projection distance and
dendritic tree size (p � 0.0091, r � 0.54) and spine density (p �
0.0084, r � 0.57) (Fig. 3). Figure 3 summarizes the results of all
examined correlations with projection distance.

Association with macroscale visual hierarchy
Information on the hierarchical ordering of cortical regions of
the macaque visual system, as obtained by the study of Hilgetag et
al. (2000) (see Materials and Methods), revealed further insight
into a potential association between the topological organization
of macroscale connectivity and the microstructural organization
of cortical regions. Hierarchical ordering of visual regions, based
on interlaminar differences in cortical source and target layers of
afferent and efferent projections (Felleman and Van Essen, 1991)

(see Materials and Methods), showed a positive correlation with
dendritic tree size (p � 0.0058, r � 0.80), spine count (p �
0.0021, r � 0.85), and spine density (p � 0.0030, r � 0.83) (Fig.
6), with regions ranking higher in hierarchy showing the most
complex pyramidal neuronal organization.

Association with topological graph metrics
No significant relationships between network clustering Ci and
pyramidal complexity metrics were observed (all p � 0.05; see
also Fig. 3). In contrast, global shortest path length Li significantly
negatively correlated to dendritic tree size (p 	 0.001, r � 0.74;
Fig. 7), spine count (p � 0.0011, r � 0.64), and soma size (p �
0.0064, r � 0.59). These findings tend to suggest that regions with
a shorter path length show a more complex architecture, a rela-

Figure 4. Association between macroscale degree and microscale layer III pyramidal complexity. Top, Dendritic tree size, total spine count, and spine density as derived for 22 cortical regions on
basis of the studies of Elston and colleagues (Table 1). Bottom, Associations between macroscale degree and pyramidal complexity, showing a positive significant relationship between macroscale
total degree (i.e., sum of in-degree and out-degree) and dendritic tree size (left, effect reaching partial Bonferroni correction) and total spine count (middle, effect reaching partial Bonferroni
correction). Spine density did not show a significant correlation with macroscale degree (right, effect not reaching correction for multiple testing). Exploratory exclusion of region PG as a potential
data outlier from the correlation analysis did reveal a potential relationship with total degree ( p � 0.0026, r � 0.64).

Figure 5. Association between average projection distance of cortical regions and mi-
croscale layer III spine count. Left, Mean projection distance of all connections (efferent and
afferent combined) of each cortical region. Right, Association between mean projection length
of connections of cortical regions (afferent and efferent connections) and spine count.
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tionship influenced by the positive association between dendritic
complexity and degree (see above). Indeed, correcting for this
interaction (by regressing out the effect of degree) revealed only a
remaining effect for soma size (p � 0.0028).

A potential link between topological architecture and micro-
architecture is further supported by an observed positive associ-
ation between the intermodular participation coefficient Pi and
dendritic complexity, with regions with a more extensive inter-
modular connectivity profile showing a larger dendritic tree size
(p � 0.0003, r � 0.70), higher spine count (p � 0.0002, r � 0.71),
higher spine density (p � 0.0009, r � 0.67), and larger layer III
pyramidal soma size (p � 0.0001, r � 0.77). Correcting Pi for
nodal degree revealed a remaining effect for spine density (p �
0.0039, r � 0.60; Fig. 7).

Regional covariation in microarchitectural organization
Next, we examined the level of similarity in dendritic organiza-
tion across the included cortical regions, computed as 1/distance
(Euclidean) between the pyramidal metric values of each pair of
cortical regions. Covariation in microstructural organization was
found to be significantly higher for regions interconnected by a
macroscale projection, compared with region pairs not directly
connected (p 	 0.001, 10,000 permutations), suggesting that an-
atomically connected regions tend to show overlap in their neu-
ronal architecture.

Macroscale connectome organization and regional variation
in total cell count, cell density, and neural cell density
Information on regional variation in total cell and neuronal
count across all cortical laminae was obtained from a recent study
by Collins et al. (2010), in which the cortical mantle of a single

macaque was divided into distinct blocks and examined for total
cell count, total cell density, neuronal cell count, percentage of
neurons, and neuronal cell density. Macroscale in-degree re-
vealed a trend-level positive relationship with total cell count
(p � 0.0091 FDR, r � 0.41; Fig. 8).

Correcting total cell count for the positive relationship with
neuronal count (taking the ratio between total cell count and
neuronal count) revealed a positive correlation with macroscale
degree (in-degree: p � 0.0010, r � 0.51; Fig. 8; out-degree: p �
0.0006, r � 0.53). Indeed, macroscale in-degree and out-degree
were found to correlate negatively with neural cell density (p �
0.0048, r � 0.44; p � 0.0024, r � 0.47) and neuronal percentage
(p � 0.0008, r � 0.51; p � 0.0059, r � 0.53, reaching partial
Bonferroni correction).

Relationship between macroscale connectivity and regional
variation of glucose metabolism
Examining graph organizational properties in relation to the level
of glucose metabolism of cortical regions as reported by the study
of Cross et al. (2000) (see also Materials and Methods) revealed a
positive correlation between glucose metabolism and macroscale
in-degree (p � 0.0039, r � 0.82, primary visual OC taken as
outlier; Fig. 9). A positive relationship was also found between
glucose metabolism and total cell (p � 0.0030, r � 0.83, region
OC taken as outlier) and total neuronal count (p � 0.0071, r �
0.78, region OC taken as outlier).

Receptor fingerprints
Information on the chemoarchitecture of cortical regions of the
macaque cortex was collated from the study of Kötter et al.
(2001), summarizing levels of quantitative receptor binding in
the motor and visual system of the macaque brain (see Materials
and Methods), which were mapped to the WBB47 atlas. No direct
correlations were found between macroscale anatomical degree
and binding levels (all p � 0.05), indicating that our findings

Figure 6. Association between macroscale visual hierarchy and microscale layer III spine
density. Left, Scored hierarchical ordering of regions of the visual system (based on the laminar
projection patterns of a region’s efferent and afferent projections), as translated from Hilgetag
et al. (2000) plotted on the cortical surface. Right, Positive relationship between visual hierarchy
and spine density.

Figure 7. Relationship between macroscale graph organizational features and microscale
complexity. Both nodal intermodular participation coefficient Pi and normalized path length Li
were found to be significantly correlated with pyramidal complexity. Relationship between Li
and dendritic tree size (left) and Pi (degree corrected) and spine density (right) are shown.

Figure 8. Association between macroscale in-degree and neuronal count. Left, Total cell
count and ratio total cell count/neuronal count. Cell count and neuronal count were translated
from the study by Collins et al. (2010). Interestingly, a correlation was present not only between
macroscale degree and total cell count (top right, effect reaching FDR correction), but also
between macroscale degree and the ratio total cell count/neuronal count (bottom right), sug-
gesting that macroscale degree is also related to regional variation in non-neuronal tissue at the
microscale.
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provide no evidence for the notion of receptor metrics to be
associated with the network topological profile of regions (for the
correlations, see Fig. 3). No clear difference between similarity in
receptor binding levels (computed as 1/distance (Euclidean) be-
tween the metric values of each pair of cortical regions) of ana-
tomically connected and nonconnected regions was observed
(p � 0.0212, not significant, 10,000 permutations).

Microscale architectonics of macroscale rich club
The rich club was selected as the set of nodes showing a combined
in-degree and out-degree k � 38, including a set of in total 12
cortical regions (region 9, 10, 12, 46, IA, IB, LA, LC, PG, TA, TE,
and A) (Fig. 10). Similar to previous observations (Harriger et al.,
2012; de Reus and van den Heuvel, 2013), different rich club
levels (e.g., k � 36 or k � 40) revealed consistent findings. Con-
sistent with an overall rich club organization, these hub regions
showed a dense level of mutual connectivity (98%), significantly
higher than in a set of randomly connected networks (1.12�
higher, p 	 0.001, 1000 random networks preserving degree se-
quence) (van den Heuvel and Sporns, 2011).

stryFC
Efferent anatomical rich club edges (i.e., connections spanning
between rich club nodes) were found to have significantly less
often a net excitatory strychnine effect (15% of edges) on their
target regions compared with the class of local connections (i.e.,
connections spanning between local nodes, 86%, p 	 0.001,
10,000 permutations, surviving Bonferroni correction; feeder:
47%). In addition, examining the neuronal architecture of rich
club regions, rich club hubs were found to be present in 3 of the 3
functional communities (100%) and 6 of the 8 (75%) functional
subnetworks (as revealed by two-step community detection).
Rich club and feeder edges were found to be well represented
among intermodular connections (88% and 87% of connections,
respectively), more than local connections (69% of connections),
as computed on the basis of the two-step community approach.
For the first-level stryFC communities, a similar pattern was ob-
served, with rich club edges involving 72% intermodular connec-
tions, feeder connections 57%, and local connections 39%.

Figure 10 summarizes mean values of macroscale and mi-
croscale metrics of rich club and non-rich club regions. Rich club
edges were found to be predominantly bidirectional (98%), more
frequently than feeder (86%) and local connections (76%). Rich
club edges were found to span significantly longer physical dis-
tances compared with local connections (i.e., edges connecting
peripheral nodes, p 	 0.001, 10,000 permutations, surviving

Bonferroni correction). Rich club hub regions showed a signifi-
cantly larger dendritic tree compared with non-rich club regions
(p � 0.0024, 10,000 permutations; Fig. 10). No significant effects
were found for spine count (p � 0.0788), spine density (p �
0.0958), soma size (p � 0.11), or metabolism (p � 0.0584). Ex-
cluding region PG (see text above; Fig. 4) revealed a difference in
spine count between hub and nonhub peripheral nodes (p �
0.0208, 10,000 permutations; Fig. 10).

FE91 validation
Associations found to be significant in the main analysis were
validated using the FE91 parcellation dataset, now involving Co-
CoMac extraction of macroscale anatomical connectivity on ba-
sis of the FE91 atlas, and mapping of the collated microscale
pyramidal complexity data to the FE91 regions. The FE91 analysis
results revealed high consistency with the associations reported
for the WBB47 datasets. A summary of these findings include the
following, with the computed FDR correction for the FE91 atlas
set yielding a corrected � of 0.0175 and a partial Bonferroni cor-
rected � of 0.05/(2 � 2) � 0.0125 (based on PCA analysis as
described in Materials and Methods).

The FE91 network revealed a significant community structure
(mean Rand index: 0.93, 10% rewiring, p 	 0.001, 1000 itera-
tions, two-step communities), including 5 main communities
and in total 12 subcommunities (Fig. 11A), together with a sig-
nificant rich club formation (12	k	62, p 	 0.001, reaching
Bonferroni correction). Confirming the WBB47 analysis, mac-
roscale nodal degree (taken as the total sum of in-degree and
out-degree) was found to show significant associations to pyra-
midal complexity (dendritic tree size, p � 0.0009, r � 0.62; spine
count, p � 0.0052, r � 0.54; soma size, p � 0.0046, r � 0.57), the
ratio of neuronal count and cell count (p 	 0.0001, r � 0.48),
neural percentage (p � 0.0033, r � 0.45), and an effect with
neural cell density (p � 0.0051, r � 0.44) (Fig. 11). Pyramidal
complexity also showed a positive correlation with visual hierar-
chy (e.g., dendritic tree size, p � 0.0013, r � 0.84; spine count,
p � 0.0030, r � 0.80). No significant correlation was observed
between degree and spine density (p � 0.0296, not significant,
r � 0.44). Pyramidal complexity correlated negatively with net-
work path length (e.g., dendritic tree, p � 0.0009, r � 0.62; spine
count, p � 0.0052, r � 0.54). No significant relationship was
observed between macroscale degree and regional metabolism
(p � 0.30, not significant, r � 0.36) or between macroscale pro-
jection distance and pyramidal complexity (e.g., dendritic tree
size, p � 0.29, not significant, r � 0.29; spine count, p � 0.51, not
significant, r � 0.183). The latter may have been influenced by the
notion that, of only 45 FE91 regions (58% of total), information
on spatial coordinates was available.

Consistent with the results of the WBB47 analysis and recent
reports (Harriger et al., 2012; Goulas et al., 2014), the FE91 data-
set revealed the existence of hub regions and a densely connected
rich club (selected as regions with a combined degree �43, in-
cluding 20 regions [25.6% of total], density 87%, 1.22 times more
than random, p 	 0.001, permutation testing) (selecting other
rich club levels, e.g., k�41 or k�45, revealed consistent findings).
Rich club and feeder edges were found to be strongly present
among intermodular edges (rich club: 72%, feeder-in: 68%,
feeder-out 75%, local: 53%, based on the revealed two-step com-
munities), to mostly involve bidirectional connections (92% and
significantly more than local edges, p 	 0.001, with feeder-in:
59%, feeder-out 63%, local: 62%) and to project over longer
distances than local edges (p 	 0.001, 10,000 permutations);
effects all reaching Bonferroni correction. Validating rich club

Figure 9. Association between macroscale in-degree and glucose metabolism. Left, Re-
gional variation of glucose metabolism across the macaque cortex, with metabolic rates ob-
tained from the study by Cross et al. (2000). Regional in-degree was found to be positively
correlated with regional variation in glucose metabolism, suggesting that regions with a higher
macroscale degree show a higher level of glucose metabolism. Region OC was interpreted as an
outlier, and not taken into account in the statistical analysis.
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observations of the WBB47 results, rich
club nodes showed higher levels of pyra-
midal complexity (dendritic tree size, p �
0.0164 reaching FDR; spine count, p �
0.0042 partial Bonferroni; spine density,
p � 0.0108 partial Bonferroni; soma size,
p � 0.0142 FDR; Fig. 11). Figure 11 shows
a summarized overview of the results of
the FE91 dataset.

Discussion
Combining information on the topologi-
cal organization of the macroscale ma-
caque connectome with collated data on
the neuroarchitectonic organization of
cortical regions, our findings show several
potential links between between mac-
roscale network organization and mi-
croscale neuronal architecture. The
number of macroscale white matter ana-
tomical connections (i.e., network de-
gree) was found to be associated with
cortical variation in metrics of complexity
of layer III pyramidal neurons, with higher connected regions
showing more elaborate dendritic branching, larger soma size,
and higher total spine count compared with macroscale low-
degree regions. In addition, macroscale degree also significantly
correlated to the ratio between regional variation in total cell and
neuronal count and thus negatively with neural density, suggest-
ing that macroscale wiring may also be potentially related to the
relative density of other non-neural cortical tissue, for example,
glial cells and capillaries (Collins et al., 2010). Furthermore, hier-
archical position in the visual system was associated with den-
dritic organization (Fig. 6), with regions higher in the visual
hierarchy showing both a higher pyramidal complexity as well as
a more central role in the overall network. These observations
point to the direction of regions low in hierarchy, processing
predominantly unimodal information and having a low number
of connections, to show a relatively low degree and low pyramidal
complexity, whereas more richer connected regions positioned
higher in the hierarchy, assumed to process more transmodal and
multimodal information, display a more complex pyramidal ar-
chitecture.

Our findings are in line with previous observations of mac-
roscale and microscale organization of the mammalian brain.
Across their experiments, Elston et al. (2009, 2010) noted a sys-
tematic trend for an increasing complexity of dendritic trees of
functionally ordered regions, with pyramidal neurons becoming
progressively larger, more branched, and more spinous when
traveling in anterior direction through the visual system. Elston et
al. (2010) already hypothesized that such a specialization of py-
ramidal cells could have an impact on the functioning of cortical
regions at both the cellular and whole-brain levels. Our cross-
resolution findings now indeed tend to suggest that a putative
gradient of increasing microscale pyramidal organization goes
hand in hand with a more and more central role of cortical re-
gions at the macroscale network level. Furthermore, human and
animal studies have noted that macroscale high-degree regions
tend to predominantly overlap with functional multimodal areas
of the cortex (Goldman-Rakic, 1988; Tomasi and Volkow, 2011;
Power et al., 2013; de Reus and van den Heuvel, 2013), and neu-
roimaging studies have indeed already suggested that these high-
degree regions belong to the most metabolically active regions of

the cortex (Collins et al., 2010; Vaishnavi et al., 2010; Liang et al.,
2013), with high levels of energy usage hypothesized to be poten-
tially related to high synaptic turnover and synaptic plasticity
(Lim and Isaac, 2005) and maintenance of elaborate dendritic
trees of cortical neurons (Vaishnavi et al., 2010).

In addition to the total number of pathways, our study also
provides indications of a possible link between the macroscale
topological role of cortical regions and microscale architectonics.
The average projection distance of a region’s connections was
observed to be positively related to pyramidal spine count (Figs. 3
and 5), with regions with a broad connectivity profile showing
the most elaborate dendritic trees. Furthermore, network met-
rics, such as topological connection distance (shortest path
length) and participation coefficient (reflecting the intermodular
connectivity profile of a network node), were found to be associ-
ated with microscale dendritic tree length and spine count, sug-
gesting a potential relationship between topological position of
cortical regions in the macroscale brain network and microscale
neuronal architecture.

Consistent with other recent studies, the anatomical macaque
connectome showed the formation of macroscale neural hubs
(Harriger et al., 2012; Markov et al., 2013). Because of their cen-
tral embedding in the macroscale network, rich club hubs have
been proposed to form a topologically central structure for global
communication and information integration (van den Heuvel et
al., 2012; Crossley et al., 2013; Park and Friston, 2013; van den
Heuvel and Sporns, 2013a). Extending these findings, our study
now suggests that on both the macroscale as well as on the mi-
croscale, high-degree hub regions display an architecture poten-
tially suited for facilitating functional neural integration
processes (Elston, 2000; Elston et al., 2001; Jacobs et al., 2001;
Schüz and Miller, 2002; van den Heuvel and Sporns, 2013a).

Although tract tracing data are often seen as a “gold standard”
of white matter pathway reconstruction, it is important to realize
that animal connectome reconstructions (as also performed
here) are often based on a collation of data across a wide range of
experiments, experiments that have not always reported consis-
tent results. For a robust reconstruction, pathways were included
on which CoCoMac contained information from �5 studies and
of which the majority of these studies (�66%) involved a positive

Figure 10. Microscale properties of graph analytically derived hub regions. Left, Red represents the 12 hub regions (k � 38).
Gray represents all other peripheral nonhub nodes. Right, Differences between hub and peripheral nonhub nodes on several
macroscale and microscale metrics. *p 	 0.025 (reaching partial Bonferroni correction). **p � 0.0208 excluding outlier region PG
(reaching partial Bonferroni correction).
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report, but there is no clear consensus on these settings. Sparse
sampling of other settings (e.g., �4; 60% or �5 and 50%) re-
sulted in consistent results, but it is important to note that recent
studies have suggested much denser wiring diagrams of the ma-
caque cortex (Markov et al., 2013) than resulting from our Co-
CoMac extraction. In addition, in the main analysis of this study,
the WBB47 atlas was used to parcellate the cortex, providing
complete coverage of the macaque cortex and allowing for the
analysis of functional strychnine data, but many other parcella-
tion atlases (as, e.g., the FE91 replication atlas) are available, with
most of these atlases containing a more fine-grained parcellation.
Last, the examined microscale data involved a collation of data
across studies from the literature, thus also including informa-
tion across multiple experiments, and moreover including only a
relatively coarse sampling of the cortex with missing data on
microscale metrics for several cortical regions (Table 1). These
effects limit the sensitivity of our study.

Our study should only be seen as a first attempt to examine a
potential microscale–macroscale relationship. Many open ques-
tions of course remain. For example, microscale–macroscale as-
sociations were assessed by means of a series of simple
correlations. As shown by the correlation and PCA analysis,
both microscale and macroscale metrics show strong intra-
class correlations, suggesting that most presented macroscale–
microscale associations are driven by global underlying
organizational effects. Interestingly, although the strong depen-
dency of network metrics on degree is well reported (Lynall et al.,

2010; van den Heuvel and Sporns, 2011),
PCA results also revealed strong correla-
tions between several microscale metrics,
effects that are potentially nontrivial. Fu-
ture studies examining these microscale
relationships, together with how they re-
late to global underlying macroscale net-
work descriptors, would be of particular
interest. Furthermore, the important
question of “what is driving what” re-
mains unanswered. Is the neuroarchitec-
tonic organization of cortical regions
tuned to accommodate large-scale mac-
roscale projections, or does a high com-
plexity of cortical regions allow for the
existence of a large number of macroscale
efferent and afferent white matter projec-
tions? Earlier studies have hypothesized
differences in global connectivity patterns
to have consequences for the structural
and histological organization of cortical
regions, with macroscale connectivity
patterns potentially including an impor-
tant factor for architectonic differentia-
tion of cortical regions, bringing to
attention the need for studies examining
the link between macroscale connectional
patterns and microscale architectonics
(Kaas, 2002; Schüz and Miller, 2002).
More experimental studies are needed to
provide insight into a potential causal re-
lationship between neuroarchitectural or-
ganization of cortical regions and
macroscale connectivity patterns, as well
as their interaction to the formation of
large-scale hierarchies, community struc-

ture, and neural hubs (Elston et al., 2009; Buckner and Krienen,
2013). In addition, in this study we have primarily been focusing
on the examination of anatomical architectonic features, but ex-
amination of the potential influence and interplay of microscale
architectonics and macroscale connectome formation on the
emergence of functional dynamics and functional hierarchical
systems (Breakspear and Stam, 2005; Zhou et al., 2006; Kiebel et
al., 2008; Meunier et al., 2010) would be of particular interest.
Pioneering cross-species studies have noted that resting-state
networks in the macaque as derived from resting-state fMRI data
resemble those observed in the human (Hutchison et al., 2011,
2013), and similar cross-species observations have been made
regarding anatomical connectivity (Goulas et al., 2014; Miranda-
Dominguez et al., 2014). Because of the inherent nature of the
method, the stryFC data as analyzed in this study are different
from FC estimates based on resting-state fMRI; nevertheless, the
stryFC subclusters have been noted to show overlap with known
functional domains of the macaque cortex, identifying visual, so-
matosensory, and frontal networks (Stephan et al., 2000). A formal
comparison between resting-state fMRI-derived functional com-
munities and stryFC-defined community structure would be of in-
terest and might provide new information on the underlying
biological foundation of resting-state network formation in the
mammalian cortex.

This study provides evidence for a potential relationship be-
tween the properties of macroscale and microscale connectivity
of the mammalian cortex. Our findings converge on the notion of

Figure 11. FE91 validation analysis. Figure summarizes findings of the validation analysis using the Felleman and Van Essen
(1991) FE91 atlas. A, The 78 regions of the FE91 atlas (Felleman and Van Essen, 1991), color coded according to their anatomical
modular structure (five main modules, color coded in blue, purple, orange, yellow, and green; and subclusters of the two-step
module depicted in color shades). B, Map of the degree distribution across the FE91 regions. C, Two distribution maps of pyramidal
complexity values as collated from the Elston papers, showing a map of dendritic tree size (left) and spine count (right). D,
Distribution map of neuronal count as mapped by Collins et al. (2010). Consistent with the main analysis based on the WBB47 atlas
(e.g., Fig. 4), analysis of the FE91 dataset revealed several associations between macroscale network organization and microscale
neuroarchitectonics. E, Summary of three of these associations, showing a significant positive relationship between macroscale
degree and dendritic tree size, spine count, and the ratio between total cell count and total neuronal count (surviving partial
Bonferroni correction). F, Distribution of high-degree rich club nodes across the cortex as observed in the FE91 dataset (left).
Consistent with the main analysis (Fig. 10), rich club nodes were observed to show a significantly larger dendritic tree size and
higher spine count compared with the class of peripheral nodes. *p 	 0.05 (surviving partial Bonferroni correction).
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an interplay between the neuroarchitectonic organization of cor-
tical regions and their connectional pattern on the macroscale
connectome level.

Notes
Supplemental material for this article is available at www.dutchconnectomelab.
org. This material has not been peer reviewed.

References
Amunts K, Zilles K (2012) Architecture and organizational principles of

Broca’s region. Trends Cogn Sci 16:418 – 426. CrossRef Medline
Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-

Lindenberg A (2008) Hierarchical organization of human cortical net-
works in health and schizophrenia. J Neurosci 28:9239 –9248. CrossRef
Medline

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in
multiple testing under dependency. Ann Stat 29:23.

Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multi-
scale architecture. Philos Trans R Soc Lond B Biol Sci 360:1051–1074.
CrossRef Medline

Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde.
Leipzig: Johann Ambrosius Barth.

Buckner RL, Krienen FM (2013) The evolution of distributed association
networks in the human brain. Trends Cogn Sci 17:648 – 665. CrossRef
Medline

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat Rev Neurosci 10:186 –
198. CrossRef Medline

Colizza V, Flammini A, Serrano M, Vespigiani A (2006) Detecting rich-club
ordering in complex networks. Nat Phys 2:6.

Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron den-
sities vary across and within cortical areas in primates. Proc Natl Acad Sci
U S A 107:15927–15932. CrossRef Medline

Cross DJ, Minoshima S, Nishimura S, Noda A, Tsukada H, Kuhl DE (2000)
Three-dimensional stereotactic surface projection analysis of macaque
brain PET: development and initial applications. J Nucl Med 41:1879 –
1887. Medline
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