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Systems/Circuits

Actions of NPY, and Its Y1 and Y2 Receptors on Pulsatile
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The hypothalamic NPY system plays an important role in regulating food intake and energy expenditure. Different biological actions of
NPY are assigned to NPY receptor subtypes. Recent studies demonstrated a close relationship between food intake and growth hormone
(GH) secretion; however, the mechanism through which endogenous NPY modulates GH release remains unknown. Moreover, conclu-
sive evidence demonstrating a role for NPY and Y-receptors in regulating the endogenous pulsatile release of GH does not exist. We used
genetically modified mice (germline Npy, Y1, and Y2 receptor knock-out mice) to assess pulsatile GH secretion under both fed and fasting
conditions. Deletion of NPY did notimpact fed GH release; however, it reversed the fasting-induced suppression of pulsatile GH secretion.
The recovery of GH secretion was associated with a reduction in hypothalamic somatotropin release inhibiting factor (Srif, somatostatin)
mRNA expression. Moreover, observations revealed a differential role for Y1 and Y2 receptors, wherein the postsynaptic Y1 receptor
suppresses GH secretion in fasting. In contrast, the presynaptic Y2 receptor maintains normal GH output under long-term ad libitum-fed
conditions. These data demonstrate an integrated neural circuit that modulates GH release relative to food intake, and provide essential

information to address the differential roles of Y1 and Y2 receptors in regulating the release of GH under fed and fasting states.
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Introduction

Growth hormone (GH) secretion is under the reciprocal control
of hypothalamic stimulatory growth hormone releasing hor-
mone (GHRH) and inhibitory somatotropin release inhibiting
factor (SRIF; somatostatin) neurons (Frohman et al., 1992). A
close relationship exists between GH secretion and food intake.
In humans, consumption of a high-caloric diet results in the early
suppression of pulsatile GH secretion (Cornford et al., 2011).
Similarly, consumption of a high-fat diet suppresses pulsatile GH
secretion in rodents (Huang et al., 2012). In addition, food with-
drawal immediately suppresses pulsatile GH secretion in both
rats (Glad et al., 2011) and mice (Steyn et al., 2012). Altered GH
secretion relative to food intake may, in part, be mediated
through changes in GHRH and/or SRIF secretion (Bruno et al.,
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1993; Tannenbaum et al., 1996; Luque and Kineman, 2006; Steyn
et al., 2012) that occur in response to hypothalamic orexigenic
and anorexigenic systems.

Hypothalamic NPY neurons mediate their orexigenic effect
through the activation of Y receptors (Y1, Y2, Y4, and Y5, and in
mice and rabbits, the Y6 receptor; Herzog, 2003; Fetissov et al.,
2004). Of these receptors, the Y1 receptor (Y1R) is the dominant
postsynaptic receptor, whereas the Y2 receptor (Y2R) is mainly
presynaptically expressed on NPY neurons (Chen and van den
Pol, 1996; Balasubramaniam et al., 2007; Keen-Rhinehart and
Bartness, 2007). Activation of the Y1R stimulates feeding whereas
activation of Y2R inhibits NPY production and release (Keen-
Rhinehart and Bartness, 2007; Ortiz et al., 2007). While the role of
NPY and its receptors on food intake is well characterized (Her-
zog, 2003), their effects in regulating GH secretion remains
largely unknown. Anatomical and neuropharmacological evi-
dence provides insights into the possible interconnectivity be-
tween NPY and GH regulating systems. Early studies in rodents
demonstrate an inhibitory role of NPY on the GH axis (Pierroz et
al., 1996; Raposinho et al., 2001), while morphological studies in
rats showed that NPY neurons in the arcuate nucleus (ARC)
project to SRIF neurons located within the periventricular nu-
cleus (PeVN; Hisano et al., 1990). Furthermore, observations in
mice demonstrate an increase in hypothalamic levels of Npy
mRNA, alongside an increase in Srif nRNA expression following
9 h of fasting (Steyn et al., 2012). Given that SRIF inhibits the
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release of GH secretion, these observa-
tions suggest that NPY neurons mediate
the fasting-induced suppression of GH se-
cretion, possibly through increasing SRIF
neuronal activity. Accordingly, we inves-
tigated the actions of NPY neurons, and
the Y1R and Y2R in mediating pulsatile
GH secretion under ad libitum-fed and
fasting conditions.

Materials and Methods

Mice. All experiments were conducted in adult
male mice (8—12 weeks of age) on either a wild-
type or transgenic background. Heterozygous
Npy*/~, YIR"~, and Y2R™/~ mice, bred on a
mixed C57BL/6129Sv] background, were used
to generate homozygous Npy /~, YIR /"~ ,and
Y2R™/~ mice and age-matched wild-type lit-
termates (Sainsbury et al., 2002; Howell et al.,
2003; Karl et al., 2008). Mice were maintained
under controlled light (12 h light/dark cycle,
lights off at 18:00 h) and temperature (22 =
2°C) conditions and had free access to food and
water unless otherwise specified. Mice were in-
dividually housed at least 1 week before exper-
iments. All experimental procedures were
approved by the University of Queensland An-
imal Ethics Committee.

Confirmation of anatomical relationship
between NPY and SRIF neurons in mice. Brain
tissues from transgenic NPY-humanized Re-
nilla reniformis-GFP mice (B6.FVB-Tg(Npy-
hrGFP)1Lowl/]J; stock number 006417; The
Jackson Laboratory; 9—-10 weeks old; Wu et
al., 2014) and C57BL/6 wild-type mice were
collected for immunohistochemistry and in
situ hybridization, respectively. Briefly, Npy-
hrGFP mice were anesthetized with isoflu-
rane and perfused with 0.1 M phosphate
buffer, followed by 4% paraformaldehyde
(Sigma-Aldrich). The brain was excised and
post fixed in 4% paraformaldehyde over-
night at 4°C and then replaced in 30% su-
crose. For immunohistochemistry, coronal
brain sections from Npy-hrGFP mice were
cut at a thickness of 30 um on a cryostat
(Leica CM 1850) and every fourth section
through the hypothalamus was collected and
stored in cryoprotectant (30% sucrose, 1%
polyvinyl pyrrolidone and 30% ethylene gly-
colin 0.1 M phosphate buffer) at —20°C. Sec-
tions were incubated with primary antibodies
[rabbit anti-somatostatin-14, 1:5000; Bachem;
mouse monoclonal antibody against the syn-
aptic vesicle protein 2 (SV2), a marker for
synaptic sites in neurons and endocrine cells;
Buckley and Kelly, 1985; 1:100; Invitrogen]
diluted in blocking serum for 72 h at 4°C on
an orbital shaker. Following incubation in
primary antibodies, sections were washed
and incubated with secondary antibodies
(donkey anti-rabbit 555, 1:500; Invitrogen
and donkey anti-mouse IgG 647, 1:500; Life
Technologies). To visualize immunoreactiv-
ity, sections were air dried, mounted with
Golden anti-fade reagent with DAPI (Invit-
rogen), and examined using a confocal laser-
scanning microscope (Olympus, FV 1000).
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Figure 1. lllustration of anatomical interactions between SRIF and NPY-expressing neurons within the hypothalamus (4, B) by
immunofluorescence ((—K) and in situ hybridization (L—N). Brain slices were collected between —0.94 and —1.70 bregma.
Schematic representation of specific areas within the hypothalamus, representative of the PeVN (4, enlarged inset, shaded areas
inred) and ARC (B, enlarged inset, shaded area in red). Within the PeVN (C—H) we observed a number of SRIF-immunopositive
neurons (red) in close apposition with NPY-GFP-immunopositive fibers (green; C~E). Further assessment using SV2 (gray; Fand G;
purple; H) revealed the synaptic interactions between SRIF and NPY-positive fibers (F-H; colocalization is indicated by white
arrows). SRIF-positive immunoreactivity and NPY-GFP within the ARC (/-K) demonstrate punctuate SRIF expression, distributed
among NPY-positive GFP neuronal cell bodies. In situ hybridization illustrates the proportion of Srif (black) and Apy (light blue)
mRNA-expressing neurons within the ARC (L—N). These two populations of neurons were in close proximity. Scale bars: (~E, I-N,
100 m; F-H, 10 wm. Inserts illustrate a magnified view of the figures. Representative images illustrate interactions verified
across four animals.
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Figure2.

Representative examples of pulsatile GH secretion profiles (2 animals; #1, closed circles; #2, open circles; A-D, left) and corresponding output figures (4-D, right) in male adult Apy

/™ mice (red)

and age-matched wild-type littermates (black). Assessment of pulsatile GH secretion was done in ad libitum-fed mice (4, B) and during the first 6 h of fasting (C, D). Samples were collected for 6 h at 10 min
intervals, starting at 0700 h (fed) and 1830 h (fasting). Corresponding output figures illustrate the onset of GH pulses (pulse onset indicated by open circles along the x-axis). GH secretory parameters following
deconvolution analysis are illustrated in E~H (ad libitum fed) and I-L (fasting). Total (E) and pulsatile GH secretion rate (F), the mass of GH secreted per burst (G), and number of secretory bursts (H) in pr’/ -
mice were comparable to ad libitum-fed wild-type mice. In contrast, the fasting-induced suppression of GH secretion observed in wild-type mice was prevented in py "~ mice. This was characterized by a

significant increase in total (/) and pulsatile GH secretion rate (J), and the mass of GH secreted per burst (K) in Npy

mean == SEM, N = 10-12, *p << 0.05.

Images were processed using Image] software (version 1.46r). For In
situ hybridization, two sequential coronal brain sections (14 um)
were thaw mounted as mirrored images onto SuperFrost slides
(Menzel-Gliser). Matched sections from the adjacent coronal brain
level were processed for DIG-labeled Srif and Npy mRNA expression,
following established in situ hybridization methodology (Tan et al.,
2013). DNA oligonucleotides complementary to mouse Srif and Npy are
5'-TAATACGACTCACTATAGGGgggccaggagttaaggaaga-3' and 5'-TA
ATACGACTCACTATAGGGgcagactggtttcaggggat-3', respectively. Sec-
tions were imaged on an Aperio ScanScope XT slide scanner (Aperio
Technologies). Extracted images were opened in Image] and matched
sections were adjusted to mirror symmetry.

Determination of pulsatile GH secretion in Npy '~ mice under fast-
ing and fed conditions. At 8 weeks of age, pulsatile secretion of GH was
assessed in Npy ™/~ mice and the corresponding age-matched wild-
type littermates following the first 6 h of food withdrawal. At the start
of dark cycle, animals were deprived of food (between 1800 and
1815 h). Starting at 1830 h, 36 sequential tail-tip blood samples were
collected from individual mice at 10 min intervals under dim red
light. Blood samples were collected and processed as described previ-
ously (Steyn et al., 2011). Following collection of blood samples, mice
were returned to their home cage and allowed to settle for at least 2
weeks before repeat serial blood collection under ad libitum-fed con-
ditions (10 weeks of age, sampling commenced at 0700 h). Samples

/

/" mice. The number of secretory bursts (L) remained unchanged. Data are presented as

were processed by an in-house GH ELISA to determine whole blood
GH content (Steyn et al., 2011). One week following the second blood
collection, mice were killed following 6 h of fasting (as detailed
above). Body length was measured from nose to rump at the time of
killing. Brains were collected, snap frozen, and kept at —80°C for
further analysis.

Analysis of hypothalamic Srif and Ghrh gene expression. We previ-
ously showed that the rise in hypothalamic Srif mRNA at 9 h of fasting
in the mouse occurs alongside a rise in hypothalamic Npy mRNA
expression. Moreover, treatment of NPY results in an increase in SRIF
release from hypothalamic explants (Rettori et al., 1990). Accord-
ingly, we anticipated that the recovery of GH release in Npy /™ mice
occurred alongside a loss in NPY-mediated SRIF release. To address
this, we determined the expression of Srif and Ghrh mRNA from
hypothalamic tissue biopsies from Npy /~ mice and corresponding
age-matched wild-type littermates under fasting and fed conditions.
To confirm that loss of Npy~’~ does not impact hypothalamic Srif
and Ghrh mRNA expression under basal ad libitum-fed condition,
Npy ™/~ mice and wild-type littermates were killed and brain tissues
were collected between 0800 and 0900 h. These animals had free
access to food and water the night before tissue collection. To deter-
mine whether loss of NPY will result in altered Srif expression,
Npy~/~ mice and wild-type littermates were killed following 6 h of
food withdrawal in the dark cycle (tissue collected between 0000 and
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0100 h; food was removed immediately following the onset of the dark
cycle). For tissue collection, mice were anesthetized with a single
intraperitoneal injection of sodium pentobarbitone (32.5 mg/ml,
1PO643-1; Virbac Animal Health). Once anesthetized, the brain from
each mouse was immediately removed, snap frozen on dry ice, and
stored at —80°C until microdissection of specific nuclei (ARC and
PeVN), following established methodology (Steyn et al., 2012). In
brief, frozen brain tissue was cut (300 wm) on a cryostat (Leica), and
transferred to RNase free SuperFrost plus slides. Tissue biopsies rep-
resentative of the ARC and PeVN located between —0.94 and —2.18
mm bregma (as shown in Fig. 3A4) were processed for qRT-PCR. Total
cellular RNA was extracted from brain tissues collected in TRIzol
using PureLink RNA Micro Kit (Invitrogen). The final concentration
and quality of RNA was determined via a spectrophotometer (Nano-
Drop, ND-1000; Thermo Scientific). First-strand cDNA was synthesized
from 100 ng total RNA using the Vilo cDNA Synthesis kit (Invitrogen).
qRT-PCR was performed using Taq polymerase (TagMan) probes and the
following primers: Ghrh, assay ID: Mm00439100_ml; Srif, assay ID:
MmO00436671_ml; and Gapdh, assay ID: Mm9999915_gl. All primers were
purchased from Applied Biosystems. The experiment was set up accord-
ing to the protocol and reagents provided. Amplification in a 10 ul reac-
tion volume was assessed using the QuantStudio 7 system (Applied
Biosystems). Data were displayed as an amplification plot and analysis
was done by ViiA7 Software v1.2 (Applied Biosystems). Changes in
cycle threshold of the gene of interest were corrected to the house-
keeping gene (Gapdh). Final measurements of the gene expression
from Npy~/~ mice were presented as relative levels corresponding to
ad libitum-fed or fasting wild-type mice.

Determination of circulating blood glucose, NPY, and peptide YY
(PYY) in response to acute food deprivation. NPY neurons sense glu-
cose (Murphy etal., 2009), and activation of hypothalamic NPY neu-
rons occurs within 60 min of central glucoprivation (Minami et al.,
1995). Accordingly, alterations in blood glucose levels might underlie
altered NPY activity. To determine the time-dependent response of
circulating levels of glucose relative to food withdrawal, blood glucose
was assessed from tail blood using the Accu-Chek Performa blood glu-
cose meter (Roche). Blood glucose measures were collected at 15 min
intervals for a period of 2.5 h, starting at 1800 h (food was removed
immediately following the onset of the dark cycle). Circulating gut hor-
mone PYY is secreted in response to food ingestion and is a natural ligand
of Y receptors (Batterham et al., 2002). Changes in circulating PYY may
underlie Y-receptor-mediated GH secretion. Accordingly, circulating
levels of PYY in response to fasting were determined by commercial
ELISA kit (mouse metabolic magnetic bead panel, #fMMHMAG-44K;
Millipore) using terminal blood samples collected from C57BL/6 mice at
0, 45, and 90 min following the onset of food withdrawal. Samples were
collected via cardiac puncture from anesthetized mice, and sampling
intervals were selected based on observations from glucose measure-
ments. Although peripheral NPY is largely a marker of sympathetic ner-
vous system activity (Zukowska-Grojec et al., 1998), a number of studies
in both humans and rats have demonstrated effects of NPY on GH secre-
tion in pituitary cells (Adams et al., 1987; Chabot et al., 1988). Accord-
ingly, we determined circulating levels of NPY in fasting mice to
determine whether alterations in circulating levels of NPY may contrib-
ute to the suppression of GH release at this time. Circulating NPY was
assessed by commercial ELSIA kit (rat/mouse NPY, #EZRMNPY-27K;
Millipore) from terminal samples collected as described above.

Assessment of pulsatile GH secretion in YIR '~ and Y2R ™/~ mice
under fasting and ad libitum-fed conditions. To determine whether the
NPY-mediated GH secretion occurs via postsynaptic YIR or presynaptic
Y2R-mediated mechanisms, pulsatile GH secretion was further determined
in germline Y1 or Y2 receptor knock-out mice and respective age-matched
wild-type littermates under ad libitum-fed and fasting conditions. Experi-
mental procedures were similar to that conducted in Npy~/~ mice (as de-
scribed above).

Statistical analysis. The quantitative features underlying GH secre-
tion and clearance associated with the observed GH concentration
profiles were determined at a fixed half-life of 7.95 min by deconvo-
lution analysis, as described previously (Huangetal., 2012). Resulting
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output measures are indicative of the secretion of GH from the pitu-
itary gland, and thus a measure of hypothalamic-mediated pituitary
activity that accounts for the observed circulating measures of GH. All
data are presented as mean = SEM unless otherwise stated. Differ-
ences between groups were identified by two-tailed unpaired ¢ test
unless otherwise stated. All measures (excluding deconvolution anal-
ysis) were performed using GraphPad Prism 6.0e. The threshold level
for statistical significance was set at p < 0.05.

Results

Hypothalamic NPY neurons are structurally integrated with
hypothalamic SRIF neurons

Immunofluorescence assessment of hypothalamic NPY and SRIF
expression demonstrates close apposition of NPY-immunopositive
fibers with SRIF-expressing neurons, specifically within the PeVN
(Fig. 1C-E). Insets illustrate close apposition of NPY-GFP fibers
with SRIF-immunoreactive cell bodies, while the 60X magnified
view (Fig. lF-H ) demonstrates SV2 immunoreactivity in both SRIF
(Fig. 1F) and NPY-immunopositive fibers (Fig. 1 G), and colocal-
ization of SV2, SRIF, and NPY immunoreactivity (Fig. 1H). Thus,
synaptic interactions occur between SRIF and NPY neurons. Immu-
nofluorescence assessment of NPY-GFP and SRIF-positive immu-
noreactivity within the ARC demonstrate punctate SRIF expression,
distributed among NPY-positive GFP neuronal cell bodies (Fig. 11—
K). Given that SRIF within the ARC was not clearly localized to cell
bodies, we completed in situ hybridization assessment of Npy (Fig.
1L) and Srif (Fig. 1M) mRNA within this region. In sifu hybridiza-
tion confirmed the close proximity of Npy and Srif mRNA-
expressing neurons (Fig. 1N). Collectively, observations provide a
structural basis for potential physiological interactions between hy-
pothalamic NPY and SRIF-expressing neurons.

Deletion of NPY prevents fasting-induced suppression in GH
secretion in mice

Representative secretory profiles and output figures illustrate the
onset of pulsatile GH secretion in ad libitum-fed Npy /™ and
corresponding wild-type mice (Fig. 2A,B), and the same mice
following 6 h of fasting (Fig. 2C,D). Peaks in GH secretion oc-
curred at regular intervals, and were dispersed by periods of low
basal levels of secretion. There was no significant difference in
GH release (including total; Fig. 2E; t,,, = 1.29, p = 0.21) and
pulsatile (Fig. 2F; t,o) = 1.30, p = 0.27) GH secretion, the mass of
GH secreted per burst (Fig. 2G; t,0) = 1.67, p = 0.11), and the
number of secretory events (Fig. 2H; t,,) = 0.67, p = 0.51) be-
tween Npy /™ mice and corresponding wild-type mice under ad
libitum-fed conditions, as determined by deconvolution analysis.
During fasting, pulsatile GH secretion was significantly sup-
pressed in wild-type mice (Fig. 2C) whereas GH secretion was
sustained in Npy /" mice (Fig. 2D). Deconvolution analysis of
pulsatile measures of GH confirmed that deletion of NPY recov-
ered GH secretion. This is characterized by a recovery in total
(Fig. 21 t(5) = 5.88, p < 0.01), pulsatile (Fig. 2J; t(59) = 5.54,p <
0.01), and mass of GH secretion per pulse (Fig. 2K; t(,, = 3.57,
p < 0.01), whereas the number of secretory bursts remained
unchanged (Fig. 2L; t,,, = 0.72, p = 0.48). Of interest, Npy
mRNA exhibits circadian rhythm in gene expression with highest
levels observed early in the dark cycle (Kohsaka et al., 2007). This
suggests NPY neurons are primed at this time, and is in agree-
ment with the immediate cessation of GH secretion as observed
in wild-type mice following food withdrawal (Fig. 2C).
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Figure 3. Comparison of Ghrh and Srif mRNA expression within the ARC/PeVN of Npy ™ mice
and corresponding WT mice under ad libitum-fed conditions and following 6 h of fasting. Micropunch
biopsies of tissue representing the ARC/PeVN (between —0.94 and —2.18 bregma) were collected
from frozen brain sections (4, location of punch biopsies illustrated in red). Compared with wild-type
mice, deletion of NPY did not result in a significant difference in Srif (B, left) or Ghrh (C, left) mRNA
expression under ad libitum-fed conditions. In contrast, deletion of NPY resulted in a reduction of Srif
mRNA expression (B, right) following 6 h of fasting. Ghrh mRNA expression remained unchanged (€,
right). Data are presented as mean == SEM, N = 5-6, *p << 0.05.

The recovery of GH secretion in Npy ~'~ mice following 6 h of

fasting is associated with a reduction in hypothalamic Srif
mRNA expression

Our previous results demonstrate that reduced GH secretion in
fasting wild-type mice coincides with elevated Srif mRNA expres-
sion (Steyn etal., 2012). To further determine whether the recov-
ery of pulsatile GH secretion in Npy ’~ mice in response to
fasting is associated with changes in primary hypothalamic GH
regulators, Ghrh and Srif gene expression was assessed. Loss of
NPY did not impact ARC/PeVN Srif (Fig. 3B, left; t4) = 1.03, p =
0.55) or Ghrh (Fig. 3C, left; t5, = 0.21, p = 0.84) mRNA expres-
sion under ad libitum-fed conditions. In contrast, Srif mRNA
expression was significantly reduced in Npy~/~ mice following
the first 6 h of food withdrawal (Fig. 3B, right; t4y = 2.74, p <
0.05), indicating that fasting may induce NPY-activated SRIF ex-
pression. No change in Ghrh mRNA expression within the ARC/
PeVN area was observed (Fig. 3C, right; t, = 0.15, p = 0.88).

J. Neurosci., December 3, 2014 - 34(49):16309-16319 « 16313

A 2- %

Baseline corrected
glucose (mmol/L)

-o- Ad libitum
-e- Fasting

0 50 100 150
Time following onset of fast
(minutes)

vy}
R
S

[ Ad libitum
Il Fasting

1

Time following onset of fast
(minutes)

Neuropeptide Y
(NPY ,ng/ml)
o
i

o
o

> ;_515013 Ad libitum
£ Fasti
- 8100'. asting

S =

S

0 T T
0 45 90
Time following onset of fast
(minutes)

Figure 4.  Assessment of circulating levels of blood glucose, NPY, and PYY in response to

fasting. Glucose was measured every 15 min for a duration of 150 min, and corrected to starting
levels (4). Circulating levels of NPY (B) and PYY (C) were determined following 45 and 90 min of
fasting. Fasting resulted ina decline in circulating levels of glucose by 45 min of food withdrawal
(A). Unlike glucose, circulating levels of NPY and PYY remained unchanged for the duration of
the fasting period (B, €). Data are presented as mean = SEM, N = 12, *p < 0.05.

Fasting rapidly reduces circulating glucose levels, whereas
circulating NPY and PYY levels remain unchanged

Increased NPY activity occurs in response to glucoprivation (Mi-
nami et al., 1995), and thus may underlie the trigger for the sup-
pression of GH release in fasting mice. Circulating levels of
glucose declined by 45 min of food withdrawal (Fig. 4A; two-way
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Representative examples of pulsatile GH secretion profiles (2 animals; #1, closed circles; #2, open circles; A-D, left) and corresponding output figures (4D, right) from ad libitum-fed male adult

mice with germline deletion of Y1 (Y7R~/~; green, B) or Y2 (Y2R /" ; blue, D) receptors and age-matched littermates (black, A and €) under ad ibitum-fed conditions. Samples were collected for 6 h at 10 min
intervals, starting at 0700 h. Corresponding output figures illustrate the onset of GH pulses (pulse onset indicated by open circles along the x-axis). GH secretory parameters following deconvolution analysis are
illustrated in E=H (Y7R—/~)and I-L (Y2R—/~). Total (F) and pulsatile GH secretion rate (F), the mass of GH secreted per burst (G), and number of secretory bursts (H) in Y1R™/~ mice were comparable toad
libitum-fed wild-type mice. GH secretion was significantly reduced in Y28~ mice as characterized by a significant reduction in total (1), pulsatile (J), and the mass of GH secreted per burst (K). While not
significant, the number of secretory bursts (L) was elevated in 2R~ mice (p = 0.06). Data are presented as mean = SEM, N = 47, %p << 0.05.

ANOVA; p < 0.01). In ad libitum-fed animals, blood glucose
levels were maintained relative to starting measures, and in-
creased slightly relative to the onset of nighttime feeding. Plasma
NPY and PYY concentrations remained unchanged following 45
min (Fig. 4B; £,) = 0.05, p = 0.96 and C; {,,, = 0.29, p = 0.77,
respectively) and 90 min of fasting (Fig. 4B; t 5,y = 1.79, p = 0.09
and G; t,,) = 0.11, p = 0.91, respectively). These observations
suggest that circulating NPY and PYY in early fasting does not
contribute to the NPY-mediated suppression of GH secretion
and supports the central actions of NPY in suppressing GH
release, presumably following alterations in blood glucose
concentration.

The Y1R mediates GH secretion following acute fasting,
whereas the Y2R modulates GH secretion under basal ad
libitum-fed conditions

To determine whether the recovery of pulsatile GH secretion
observed in Npy '~ mice following 6 h of fasting is assigned to
specific receptor subtypes, pulsatile GH secretion was further as-
sessed in postsynaptic Y1R and presynaptic Y2R germline knock-
out mice. GH secretory profiles from ad libitum-fed YIR/~ and
Y2R ™’ mice display regular pulsatile secretory patterns, charac-

terized by spontaneous GH secretory events (Fig. 5A-D). The
deletion of YIR did not affect GH secretion in ad libitum-fed mice
(including total; Fig. 5E; t9) = 0.95, p = 0.37) and pulsatile (Fig.
5F; t9y = 0.85, p = 0.42) GH secretion, the mass of GH secreted
per burst (Fig. 5G; tgy = 0.67, p = 0.52), and the number of
secretory events (Fig. 5H; t4) = 0.45, p = 0.67), whereas the loss
of Y2R resulted in a significant decline in peak GH secretion, as
demonstrated by a reduction in total (Fig. 5I; £,y = 2.37, p <
0.05) and pulsatile (Fig. 5]; t,,) = 2.79, p < 0.05) GH secretion,
and the mass of GH secreted per burst (Fig. 5K; t = (12) = 4.55,
p < 0.01). Of interest, germline Y2R deletion increased pulse
number (although this did not reach significance; Fig. 5L; t,,, =
1.25, p = 0.24) and pulse irregularity (as measured by approxi-
mate entropy; ApEn, a measure of pulse irregularity; Veldhuis et
al., 20015 0.45 * 0.05 vs 0.64 = 0.03, t,,y = 3.37,p < 0.01). GH
secretory profiles from fasting YIR ™/~ and Y2R ™/~ mice demon-
strate a differential role for these receptors in fasting-mediated
GH release (Fig. 6A-D). Deletion of Y1R prevented the fasting-
induced suppression of pulsatile GH release (including total; Fig.
6FE; tgy = 6.43, p < 0.01) and pulsatile (Fig. 6F; ty) = 6.80, p <
0.01) GH secretion, the mass of GH secreted per burst (Fig. 6G;
to) = 6.71, p < 0.01), whereas fasting still suppressed pulsatile
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Representative examples of pulsatile GH secretion profiles (2 animals; #1, closed circles; #2, open circles; A-D, left) and corresponding output figures (A-D, right) from male adult mice with

germline deletion of the Y1 (Y7R~; green, B) and Y2 (Y2R; blue, D) receptor and age-matched littermates (black, A and €) following 6 h of food withdrawal. Samples were collected for 6 h at 10 min
intervals, starting at 1830 h. Corresponding output figures illustrate the onset of GH pulses (pulse onset indicated by open circles along the x-axis). GH secretory parameters following deconvolution analysis are
illustratedin E-H (Y7R~~)and /=L (Y2R~"). Deletion of Y1R resulted in a prevention of the fasting-induced suppression of pulsatile GH release, and was characterized by an increase n total (E) and pulsatile

GH secretion rate (F), and the mass of GH secreted per burst (G). In contrast, pulsatile GH release was suppressed in fasting Y28

/" mice. This was characterized by a comparable total (1) and pulsatile GH

secretion (/), and the mass of GH secreted per burst (K') when compared with age-matched fasting wild-type littermates. Data are presented as mean = SEM, N = 4-7,*p < 0.05.

GH release in Y2R ™/~ mice (as total; Fig. 61,1, = 1.00,p = 0.33)
and pulsatile (Fig. 6]; t,,) = 1.02, p = 0.33) GH secretion, the
mass of GH secreted per burst (Fig. 6K; t(,,, = 2.17, p = 0.05).
The number of secretory events in fasting YIR '~ (Fig. 6H; t,5) =
0.51,p = 0.62) and Y2R ™/~ (Fig. 6L; t,,, = 0.15, p = 0.88) mice
did not change relative to wild-type littermates. Collectively, our
observations suggest that Y1 and Y2 receptors differentially reg-
ulate pulsatile GH release, wherein the YIR modulates fasting
control of GH release while the Y2R regulates pulse dynamics
under ad libitum-fed conditions. We observed a significant re-
duction in body length specific to Y2R™'~ mice (Fig. 7C; t,, =
6.10 p < 0.01), whereas body length between wild-type litter-
mates and NPY /~ (Fig. 7A; t5y, = 1.68,p = 0.11) and YIR '~
(Fig. 7B; t(9y = 0.49, p = 0.64) mice remained unchanged. Given
the role of GH in promoting linear growth (Attanasio and Shalet,
2007), we suggest reduced peak GH release contributes to the
observed reduction in body length in Y2R™/~ mice.

Discussion
Central injection of NPY inhibits GH secretion (Rettori et al.,
1990), although the endogenous role of NPY in modulating GH

release remains unknown. We provide evidence supporting func-
tional interactions between hypothalamic NPY neurons,
Y-receptors, and key components of the GH axis.

Fasting in the mouse immediately decreases pulsatile GH release
(Steyn et al., 2012) and this coincides with an early rise in Npy and
Srif mRNA expression within the hypothalamic ARC/PeVN com-
plex. In comparison, Ghrh mRNA expression remains unchanged
(Steyn etal., 2012). Thus, we anticipate that NPY neurons selectively
activate SRIF neurons to suppress GH release. Using immunofluo-
rescence and in situ hybridization, we confirmed synaptic interac-
tions between hypothalamic NPY and SRIF-expressing neurons.
This agrees with prior observations in rats (Kawano and Daikoku,
1988; Hisano et al., 1990).

Germline deletion of NPY does not alter GH pulsatility nor
does it impact hypothalamic Ghrh and Srif mRNA expression in
ad libitum-fed mice. Accordingly, NPY neurons do not modulate
GH release under fed conditions. The suppression of GH secre-
tion normally observed in fasting mice (Steyn et al., 2011, 2012)
was completely reversed in Npy ’~ mice. This occurred along-
side reduced hypothalamic Srif mRNA expression. Our data sug-
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gest NPY neurons modulate SRIF neuronal activity and couple
the suppression of GH release relative to food withdrawal. This
functional interaction agrees with observations in which NPY
stimulated the release of SRIF from cultured rat median emi-
nence fragments (Rettori et al., 1990). Observations provide a
physiological context for interactions between the SRIF neurons in
the PeVN and NPY neurons in the ARC, wherein NPY-induced
suppression of GH release can be prevented following structural
disruption in NPY/SRIF connectivity (Minami et al., 1998).
Plasma glucose concentrations were significantly reduced
within 45 min of food withdrawal. ARC NPY neurons are glucose
sensitive (Claret et al., 2007; Murphy et al., 2009), and are acti-
vated by a decrease in extracellular glucose (Minami et al., 1995).
We suggest diminishing glucose levels in mice following food
withdrawal activates NPY neurons, which subsequently stimulate
SRIF neurons to inhibit GH release. As NPY neurons remain
inactive when food is sufficient (Becskei et al., 2009), deletion of
NPY does not impact the release of GH in ad libitum-fed mice.
Recent in vitro observations argue that a decrease in extracellular
glucose concentrations activate glucose-sensing GHRH neurons

Huang et al. @ NPY, Y1, and Y2 Receptor Modulated GH Secretion

(Stanley et al., 2013). If this occurs in vivo, a fall in blood glucose
levels should increase GH release; however, hypoglycemia asso-
ciated with fasting reduces GH release. In light of this, we antici-
pate that NPY neurons act as gatekeepers to control GHRH
activity, activating SRIF neurons to suppress GHRH-induced GH
release, regardless of potential GHRH glucose-sensing effects
(Stanley et al., 2013).

The actions of NPY are mediated via a family of high-affinity
receptors (Pedragosa-Badia et al., 2013). The Y1R is the dominant
postsynaptic receptor regulating food intake (Keen-Rhinehart and
Bartness, 2007), whereas the Y2R is an auto-receptor that inhibits
the synthesis and release of NPY (Broberger et al., 1997). As seen
in Npy~/~ mice, pulsatile GH secretion in YIR /" mice did not
change in ad libitum-fed mice, whereas the fasting-induced sup-
pression of GH release was completely reversed. This corrobo-
rates observations in rats, where central administration ofa YIR
agonist suppressed circulating levels of GH (Suzuki et al., 1996).
While the Y1R is expressed on SRIF neurons within the dorsal
horn of the spinal cord (Zhang et al., 1999), coexpression of YIR on
SRIF neurons within the ARC or PeVN is yet to be confirmed. The
YIR is widely expressed within the PeVN and PVN (Kishi et al.,
2005), areas characterized by the abundant expression of Srif mRNA
(Tan et al., 2013), and thus Y1Rs may directly act within SRIF neu-
rons to modulate GH release.

The YIR commonly signals via inhibitory G (G;)-protein-
signaling pathways. For example, NPY (acting through the Y1R)
inhibits GnRH activity via the G; signaling cascade (Klenke et al.,
2010). This inhibitory role contradicts the anticipated stimula-
tory role of the Y1R in modulating SRIF-mediated changes in GH
release. It is possible that the YIR functions through a yet unde-
fined intermediate neuron to modulate SRIF activity. The Y1R
may silence this intermediate neuron that would normally sup-
press the activity of SRIF neurons, resulting in the inhibition of
GH release (Fig. 8, Scenario A). Importantly, acting through the
Y1R, NPY increased calcium currents in a proportion of vagal
sensory neurons, acting via G;/G,, proteins (Colmers and Bleak-
man, 1994). Thus potential direct stimulatory actions of YIR on
SRIF neurons cannot be excluded. Alternatively, the Y1IR may
alter SRIF activity, acting through coupling of GB and Gy sub-
units. The proliferative effects of NPY on dentate 3-tubulin-
positive neuroblasts are mediated via the YIR, and require
ERK1/2 activation (Howell et al., 2005). Similarly, the observed
proliferative effects of neuronal precursor cells within the adult
olfactory epithelium occur via stimulation of the Y1R, and are
mediated downstream through a kinase cascade involving PKC
and ERK1/2 (Hansel et al., 2001). Given these effects, NPY may
mediate SRIF activity via the Y1R, acting independent of classical
G;-mediated pathways (Fig. 8, Scenario B). Data confirming the
coexpression of the YIR on SRIF neurons does not exist, and the
direct role of Y1R on SRIF activity remains unconfirmed.

Fasting reduces pituitary GH immunoreactivity in wild-type
but not Y2R™/~ mice (Lin et al., 2007), providing evidence for
Y2R-mediated GH synthesis. These observations do not directly
test whether the Y2R modulates GH release. We now demon-
strate that the Y2R does not contribute to suppressed GH release
in fasting mice. Rather, the Y2R regulates peak GH release in ad
libitum-fed mice. Moreover, extended analysis of ApEn demon-
strates a rise in pulse irregularity in Y2R ™'~ mice, signifying an
overall derangement of GH pulse profile. Thus, the Y2R likely
regulates interactions between hypothalamic GH pulse generators,
the SRIF and GHRH neurons. This is consistent with the reduced
body length seen in Y2R /" mice. Therefore, while the Y2R directly
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Schematicrepresentation defining interactions between hypothalamic components of the GH axis (shaded), NPY neurons, and Y-receptors. Fasting induces the activation of NPY neuronsin the ARC.

Currentand published observations suggest that altered NPY activity promotes SRIF activity, presumably through activation of the postsynaptic Y1 receptors. Acting through intermediate inhibitory neurons, the
Y1R may stimulate SRIF-ergic tone through withdrawal in inhibition (Scenario A). Alternatively, Y1R may directly modulate SRIF-egic tone via nondlassical G-protein-mediated pathways (Scenario B). In both
scenarios, increased SRIF-ergic tone will inhibit GHRH-induced GH release, or directly inhibit somatotroph activity and thus GHrelease. Accordingly, GH release is not suppressed in fasting mice following germline
deletion of NPY or Y1R. Under ad libitum-fed conditions, activation and/or inactivation of NPY neurons in the ARC are under tight control of Y2 receptors. Deletion of Y2 receptors results in impaired peak GH
release, presumably through a potential increase in NPY feedback to SRIF neurons resulting in an increase in SRIF-ergic tone. Of interest, GHRH neurons express the Y2R (Lin etal., 2007) and promote GHRH activity
(Osterstock etal., 2010). Thus, germline loss of Y2R may directly impact GHRH activity in ad ibitum-fed mice, and thus GHRH-mediated GH release. PVN, paraventricular nucleus; 3V, third ventricle; ME, medium

eminence. Dashed lines represent an inhibitory effect whereas solid lines represent a stimulatory effect.

regulates bone formation (Baldock et al., 2002), the Y2R may also
facilitate pubertal growth by sustaining optimal GH release.

The Y2R inhibits NPY release (Chen and van den Pol, 1996;
Broberger et al., 1997) and deletion of Y2R increases hypotha-
lamic Npy mRNA expression (Sainsbury et al., 2002). Conse-
quently, the suppression of GH secretion in ad libitum-fed
Y2R™/~ mice may occur in response to increased hypothalamic
NPY activity. Given observed interactions between NPY and
SRIF neurons, we predict increased inhibitory SRIF tone and thus
GH release. The Y2R is expressed on GHRH neurons (Lin et al.,
2007), and Y2R agonist increases the discharge rate of GHRH
neurons (Osterstock et al., 2010). Thus the loss of Y2R may con-
tribute to altered GHRH tone, resulting in reduced-fed GH re-
lease. This requires further validation.

The differential effects of Y2R and NPY deletion on GH re-
lease suggest that factors other than NPY may modulate Y2R-

mediated GH release, such as PYY, which activates the Y2R
(Batterham et al., 2002). We anticipate that postprandial fluctu-
ations in PYY secretion may underlie the selective role of Y2R in
GH release in ad libitum-fed mice. This was somewhat corrobo-
rated by PYY data in fasting mice, as circulating PYY levels did
not change during the fasting period. It is thus unlikely that PYY
contributes to theloss of GH release at this time. In pigs, PYY3-36
(a potent agonist for Y2R; Dumont et al., 1994) treatment stim-
ulates GH release following an overnight fast (Ito et al., 2006). As
PYY expression rises in response to food intake (Batterham et al.,
2002), PYY may signal the hypothalamus to sustain optimal GH
release under fed conditions. Whether PYY modulates GH re-
lease, and whether these actions are mediated selectively via Y2R
expression on GHRH, needs further assessment. Regardless, ob-
servations highlight a critical role for the Y2R (and potentially
other Y-receptors) in growth and development. These complex in-
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teractions require extensive investigation, including the detailed as-
sessment of peak pulsatile GH release in fed and fasting states.

Our observations demonstrate that NPY neurons represent a
key hypothalamic node that integrates the production and release
of GH relative to food intake. We propose that NPY neurons
modify SRIF activity to suppress GH release in mice during fast-
ing (Fig. 8). While the exact mechanism is not defined, these
actions are likely mediated via postsynaptic Y1Rs acting via an
intermediate neuron, or directly via SRIF neurons. We confirmed
that the Y2R does not contribute to altered GH release in fasting
mice. Rather, the Y2R sustains peak pulsatile GH output specifi-
cally in ad libitum-fed mice, potentially in response to peripheral
factors released in response to feeding. Current observations are lim-
ited to germline knock-out animals, and thus cannot account for the
existence of compensatory pathways that develop in the absence of
NPY, YIR, or Y2R signaling. Confirmation of detailed circuitry re-
quires further assessment of GH release following selective alteration
of hypothalamic NPY neuron activity, or Y1R and Y2R expression.
Our data provide exciting evidence to confirm that the release of GH
is tightly coupled to hypothalamic food intake mechanisms that me-
diate orexigenic responses.
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