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Context-Dependent Urgency Influences Speed-Accuracy
Trade-Offs in Decision-Making and Movement Execution

David Thura, Ignasi Cos, Jessica Trung, and Paul Cisek
Groupe de Recherche sur le Systeme Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, H3T 1J4 Canada

Speed-accuracy tradeoffs (SATs) exist in both decision-making and movement control, and are generally studied separately. However, in
natural behavior animals are free to adjust the time invested in deciding and moving so as to maximize their reward rate. Here, we
investigate whether shared mechanisms exist for SAT adjustment in both decisions and actions. Two monkeys performed a reach
decision task in which they watched 15 tokens jump, one every 200 ms, from a central circle to one of two peripheral targets, and had to
guess which target would ultimately receive the majority of tokens. The monkeys could decide at any time, and once a target was reached,
the remaining token movements accelerated to either 50 ms (“fast” block) or 150 ms (“slow” block). Decisions were generally earlier and
less accurate in fast than slow blocks, and in both blocks, the criterion of accuracy decreased over time within each trial. This could be
explained by a simple model in which sensory information is combined with a linearly growing urgency signal. Remarkably, the duration
of the reaching movements produced after the decision decreased over time in a similar block-dependent manner as the criterion of
accuracy estimated by the model. This suggests that SATs for deciding and acting are influenced by a shared urgency/vigor signal.
Consistent with this, we observed that the vigor of saccades performed during the decision process was higher in fast than in slow blocks,

suggesting the influence of a context-dependent global arousal.
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Introduction

To obtain rewards, animals must both choose the right action
and perform it correctly. Although taking more time to decide
improves choice accuracy (Pachella, 1974; Wickelgren, 1977), it
also reduces the reward rate, facing animals with a speed—accu-
racy trade-off (SAT; Myerson and Green, 1995). A similar trade-
off exists in movement control because moving fast tends to be
less accurate (Fitts, 1954). The mechanisms of SAT adjustment in
decision-making (Chittka et al., 2009; Balci et al., 2011; Hayden et
al., 2011; Heitz and Schall, 2012) have generally been studied
separately from those in movement control. However, because
animals are often free to adjust the time they invest in deciding
versus moving, they can also trade decision time for movement
time to maximize their total reward rate. It is therefore possible
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that SAT mechanisms in decision-making and movement con-
trol are integrated, and perhaps involve similar neural substrates.

The predominant model of SAT in decision-making is the
“drift-diffusion model,” which suggests that decisions involve a
slow accumulation of sensory information until a fixed accuracy
criterion is reached (Gold and Shadlen, 2007; Ratcliff and McK-
oon, 2008; Churchland et al., 2011). With a high boundary, de-
cisions are accurate but slow, and with a lower boundary, they are
faster but less accurate. Thus, it has been proposed that to adjust
the SAT, the brain controls the boundary of the accumulation
process (Bogacz et al., 2010). Neurally, this may involve a variety
of mechanisms, including shifting the starting point, the thresh-
old, or the gain of accumulation (Heitz and Schall, 2012; Hanks et
al., 2014).

Recently, several studies have proposed that decision-making
incorporates an “urgency” signal that grows over time to bring
neural activity closer to the initiation threshold (Ditterich, 2006;
Churchland et al., 2008; Cisek et al., 2009; Thura et al., 2012),
effectively implementing an accuracy criterion that decreases
over time. Importantly, to explain existing data, models that in-
corporate urgency need not assume a slow accumulation of evi-
dence (Ditterich, 2006; Cisek et al., 2009; Thura et al., 2012).
Instead, sensory information can be computed quickly using a
low-pass filter with a short time constant (Ludwig et al., 2005;
Ghose, 2006; Stanford et al., 2010), and then modulated by the
urgency signal. The advantage of such “urgency-gating models”
is that they respond more quickly to changes in the environment,
and yield a higher reward rate than any constant criterion model
(Thura et al., 2012; Miller and Katz, 2013). Recordings in the
premotor and primary motor cortex of monkeys making deci-
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sions in dynamically changing situations have shown that neural
activity combines rapid estimates of evidence with a growing
urgency signal (Thura and Cisek, 2014).

Here, we investigate the hypothesis that the brain adapts its
SAT by adjusting the urgency signal as a function of the task
context. Furthermore, we explore the conjecture that a similar
mechanism, perhaps sharing a common neural substrate, con-
trols the vigor of movements after the choice is made. Some of
these results have previously appeared in abstract form (Thura
and Cisek, 2010, 2011, 2012).

Materials and Methods

Subjects and apparatus. Two male macaque monkeys (Macaca mulatta;
Monkey S: 6 years old, 6 kg; Monkey Z: 4 years old, 4 kg) participated in
this study. The monkeys sat in a custom primate chair, with their heads
fixed, and were trained to perform two planar reaching tasks. Their non-
acting hand was maintained on an armrest with Velcro bands. Arm
movements were performed using a vertically oriented cordless stylus
whose position was recorded by a digitizing tablet (CalComp, 125 Hz).
Target stimuli and continuous cursor feedback were projected onto a
mirror suspended between the monkey’s gaze and the tablet, creating
the illusion that they were in the plane of the tablet. Unconstrained eye
movements were recorded using an infrared camera (ASL, sampling rate
of 120 Hz). In some sessions, neural recording was performed in the
cerebral cortex (Thura and Cisek, 2014). All surgery, testing procedures,
and animal care were approved by the local animal ethics committee.

Behavioral tasks. In the “tokens” task (Fig. 1A) the monkey is presented
with one central starting circle (1.75 cm radius) and two peripheral target
circles (1.75 cm radius, arranged at 180° around a 5-cm-radius circle).
The monkey begins each trial by placing the cursor in the central circle in
which 15 small tokens are randomly arranged. The tokens then begin to
jump, one-by-one every 200 ms (“predecision interval”), from the center
to one of the two peripheral targets. The monkey’s task is to move the
cursor to the target that he believes will ultimately receive the majority of
tokens. The monkey is allowed to make the decision as soon as he feels
sufficiently confident, and has 500 ms to bring the cursor into a target
after leaving the center. Crucially, when the monkey reaches a target, the
remaining tokens move more quickly to their final targets (“postdecision
interval,” which was either 50 ms or 150 ms between each token jump in
separate fast and slow blocks of trials, respectively). After all tokens have
jumped, visual feedback is provided to the monkey (the chosen target
turns green for correct choices or red for error trials) and a drop of fruit
juice is delivered for choosing the correct target. A 1500 ms intertrial
interval precedes the following trial. In both fast and slow blocks, the
monbkey is thus presented with a trade-off: either wait until the decision
can be made with confidence, or guess ahead of time, which may not be
as reliable but could yield potential successes more quickly (because of
the acceleration of the remaining tokens). Consequently, hasty decisions
in the fast blocks are more advantageous in terms of reward rate because
guessing quickly allows the monkey to save a larger amount of time than
in the slow block.

In the delayed reach (DR) task (usually 30—48 trials per session), the
monkey again begins by placing the cursor in the central circle containing
the 15 tokens. Next, one of six peripheral targets is presented (1.75 cm
radius, spaced at 60° intervals around a 5-cm-radius circle) and after a
variable delay (500 = 100 ms), the 15 tokens simultaneously jump into
that target. This “GO signal” instructs the monkey to move the handle to
the target to receive a drop of juice. This task is used to determine the
monkey’s mean reaction time (RT) as an estimate of the total delays
attributable to sensory processing of the stimulus and to response
initiation.

Monkey training procedure. Training animals in the tokens task in-
volved three distinct stages: (1) Monkeys first learned the main logic of
the task; i.e., to move the handle to the target that contains the majority of
tokens. During that stage, the predecision and postdecision intervals
were both 0 ms. (2) Next, we progressively and simultaneously increased
both predecision and postdecision intervals across sessions. Until the
predecision interval reached ~50 ms, monkeys tended to move the han-
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Figure 1. A, Schematic of the tokens task. B, Temporal profile of success probability in an

example trial. The estimated time of the decision is computed by subtracting the monkey’s
mean reaction time (RT) in the delayed reach task from movement onset time, allowing com-
putation of the success probability at that moment. (, Example success probability profiles of
easy, ambiguous, and misleading trials. A trial is classified as “easy” if success probability (SP)
exceeds 0.6 after two token jumps and 0.75 after five. A trial is ambiguous if the SPis 0.5 after
two jumps, between 0.4 and 0.65 after three, and then between 0.55 and 0.66 after five and
seven jumps. A trial is misleading if SP is <<0.4 after three token jumps.

dle after all tokens had jumped. As the predecision interval increased
further, they began to make earlier decisions, and we began to set the
postdecision interval to be shorter than the predecision interval. Both
monkeys naturally learned to progressively adjust their SAT policy ac-
cording to the timing parameters. Our goal then was to bring the prede-
cision interval to 200 ms to compare our observations with human data
(Cisek et al., 2009). The inherent challenge associated with choosing a
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postdecision interval was to prevent monkeys from either guessing too
quickly or waiting too long. Indeed, if the postdecision interval is close to
the predecision interval (i.e., 200 ms), the best strategy is to wait until all
tokens have jumped. In contrast, if it is close to zero, then it is optimal to
guess as soon as the first token jumps. During training, we gradually
adjusted the parameters so as to keep the monkeys” behavior between
these extremes. Ultimately, both monkeys achieved a policy that fell be-
tween hasty guessing and waiting to the end, with the same set of param-
eters for the predecision interval (200 ms per token jump) and
postdecision interval (150 ms per token in slow blocks and 50 ms per
token in fast blocks). (3) The last stage of training involved providing
monkeys with alternating blocks of slow and fast trials (~100-150 trials
in a block). Because the main goal of the present study is to explore
monkeys” SAT adjustment between the blocks, data presented in this
report only includes trials performed during this final stage of training.
Based on behavioral data (see Results), we defined two periods during
this last stage: first, when behavior was comparable between the two
blocks; and second, when the monkeys began to behave differently in the
two blocks, in terms of decision duration and success probability.

Data analysis. The tokens task allows us to calculate, at each moment in
time, the “success probability” p,(t) associated with choosing each target
i. For instance, if at a particular moment in time the right target contains
Ny, tokens, whereas the left contains N, tokens, and there are N tokens
remaining in the center, then the probability that the target on the right
will ultimately be the correct one (i.e., the success probability of guessing
right) is as follows:

1
K(Ne — 0T M

N 'min(Nc,7fNL)
C.

p(RINg, Ny, No) = e >
k=0

To characterize the success probability profile for each trial, we calculated
this quantity (with respect to the target ultimately chosen by the monkey)
for each token jump (Fig. 1B). Although each token jump and each trial
was completely random, we could classify a posteriori some specific
classes of trials embedded in the fully random sequence (e.g., “easy,”
“ambiguous,” and “misleading” trials; Fig. 1C). In easy trials, the initial
token jumps consistently favor one of the targets, quickly driving the
success probability for that target to 1. In ambiguous trials, the initial
jumps are more balanced between the two targets, keeping success prob-
ability close to 0.5 until late in the trial. In misleading trials, the first
tokens jump to the incorrect target and the following ones jump to the
correct target.

To estimate the decision time (DT) on each trial in the tokens task, we
detect the time of movement onset (based on kinematics) and subtract
the monkey’s mean RT from the DR task performed on the same day. We
then use Equation 1 to compute for each trial the success probability at
the time of the decision (SPD; Fig. 1B).

To quantify performance, we use a local definition of reward rate
(Haith et al., 2012; Thura et al., 2012), which can be thought of as the
time-discounted expected value of the choice made on each trial. This is
computed as follows:

SPD,

RRy = [ RT + MT, + RD, + ITI’

(2)

where SPD,, is the probability that the choice made on trial n was correct,
DT,, is the time taken to make the decision, RT is the average reaction
time, MT,, is the movement time, RD,, is the duration of the remaining
token jumps after the target is reached, and ITI is the intertrial interval
(fixed at 1500 ms).

Calculation of the monkey’s accuracy criterion (or “confidence”) at
DT relies on the available sensory evidence at that time. Because we
considered it very unlikely that monkeys can calculate Equation 1, we
computed a simple “first order” approximation of sensory evidence as
the sum of log-likelihood ratios (SumLogLR) of individual token move-
ments as follows:

_ c plecls)
SumLogLR(n) = Elogm> (3)
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where p(e, | S) is the likelihood of a token event e, (a token jumping into
either the selected or unselected target) during trials in which the selected
target S is correct, and p(e, | U) is its likelihood during trials in which the
unselected target U is correct. The SumLogLR is proportional to the
difference in the number of tokens which have moved in each direction
before the moment of decision (Cisek et al., 2009, provides more details
on this analysis). To characterize the decision policy of a given monkey in
a given block of trials, we binned trials as a function of the total number
of tokens that moved before the decision, and calculated the average
SumLogLR for each bin.

All arm and eye movement data were analyzed off-line using MATLAB
(MathWorks). Reaching characteristics were assessed using monkeys’
movement kinematics. Horizontal and vertical position data were first
differentiated to obtain a velocity profile and then filtered using a sixth-
order low-pass filter with a frequency cutoff of 15 Hz. Onset and offset of
movements were determined using a 3 cm/s velocity threshold. Peak
velocity was determined as the maximum value between these two
events.

During both the tokens task and the DR task, monkeys’ eye move-
ments were unconstrained. After each session, eye data were first differ-
entiated and then filtered using a sixth-order low-pass filter with a
frequency cutoff of 50 Hz. The beginning and end of saccades were iden-
tified using an adaptive velocity threshold algorithm (varying as a func-
tion of signal-noise ratio). For analysis, we only used trials performed
during the second period of Stage 3 of training and in which the horizon-
tal targets were presented (because our oculometer accuracy was better
for horizontal saccades). Moreover, to be included, saccades had to have
amplitude between 10 and 15° (saccades between the two targets), dura-
tion <100 ms, and be executed before our estimate of the monkey’s
decision time.

Computational modeling. To simulate the decision data, we used a
minimal implementation of the urgency gating model (Cisek et al., 2009;
Thura et al., 2012), in which evidence is multiplied by a linearly increas-
ing urgency signal, and then compared with a threshold. In general, the
urgency-gating model includes a low-pass filter, which is indispensable
for dealing with intratrial stimulus noise when calculating evidence.
However, in the present task there is no stimulus noise so we can simplify
the model and calculate evidence simply as the difference in the number
of tokens in each target. The result can be expressed as follows:

yi=(N; = Njz) - [mt + b]" <T, (4)
where y;is the “neural activity” for choices to target i, N; is the number of
tokens in target i, ¢ is the number of seconds elapsed since the start of the
trial, m and b are the slope and y-intercept of the urgency signal, and [ ] *
denotes half-wave rectification (which sets all negative values to zero).
When y; for any target crosses the threshold T, that target is chosen. Two
sources of internal variability were introduced into the model. Intertrial
variability was simulated by multiplying the urgency signal by a factor
that was normally distributed with mean 1 and SD 0.1. Intratrial variabil-
ity was simulated by jittering the decision time by a term that was nor-
mally distributed with mean zero and SD of 0.2 s.

This simple model has only two parameters: m and b (the threshold T
is just a scaling factor). To fit the data, we set T = 1 and then performed
an exhaustive grid search for all combinations of m and b where m ranged
from 0 to 1.75, and b ranged from —1.2 to 0.48. This was performed
separately for each monkey and each block type, and the quality of fit was
assessed using the mean-squared-error between the decision criterion as
afunction of time (Eq. 3) generated by the model and data for all decision
times in the interval between 0.4 and 2.4 s (which accounted for 90% of
the data). After finding the best pair of parameters for each dataset using
the grid search, we fine-tuned the fit using constrained minimization
procedures ( fmincon function in MATLAB) starting with the best pair, as
well as neighboring pairs to avoid local minima. The pair of m and b
parameters that gave the lowest mean-squared-error among all of these
minimizations was regarded as the best-fit solution, and errors on the
fitted parameters were calculated using the diagonal elements of the
square root of the inverse Hessian matrix around that best fit solution.
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Figure2. A, The evolution of mean decision times (and mean SPD), in slow (blue) and fast (red) blocks, over the course of training for Monkey S (left) and Monkey Z (right). Each bin represents
the average decision time (and success probability) calculated across 5000 trials performed in either the fast or the slow blocks. The gray shaded area illustrates the period in training when each
monkey's behavior is clearly and consistently different in the two blocks. Thin solid arrows indicate four specific times over the course of training, which will be examined in more detail later. B,
Example sessions for each monkey, showing the decision times and success probability at decision for sequential trials in a slow block (blue), a subsequent fast block (red), and another slow block
(blue). €, Distributions of decision times, and cumulative distributions of success probability at decision time for easy (blue), ambiguous (green) and misleading (red) trials in the slow (top) and fast
(bottom) blocks for Monkey S (left) and Monkey Z (right). The vertical dotted lines mark mean values and shaded distributions of decision time illustrate error trials.

Results

Decision-making behavior

We focus here on the third stage of the monkeys’ experience in
the task, with the predecision interval (between token jumps)
fixed at 200 ms, and postdecision interval (between token jumps)
of 150 ms in slow blocks and 50 ms in fast blocks. This includes
over 2 years of data for Monkey S, and 1.5 years for Monkey Z.
Monkeys’ behavior in the tokens task through this last stage ex-
hibited two periods (Fig. 2A). The first months were character-
ized by comparable DTs and SPDs in both blocks. Later, monkeys
adapted their behavior as a function of the postdecision interval.
In this report, we will first describe behavior after the monkeys
established clear and consistently different strategies in the two
blocks (Fig. 24, gray shaded areas). This amounts to 75,185 trials
(both correct and error) from Monkey S (46,303 in slow blocks)
and 43,506 trials from Monkey Z (30,669 in slow blocks). Subse-
quently, we will report how this SAT adjustment developed over
the course of training, considering all trials performed during the
entire third stage of experience in the task (n = 109,668 for Mon-
key S; n = 78,033 for Monkey Z).

After extensive training, Monkey S was on average 397 ms
faster in the fast blocks compared with the slow blocks, and the
difference was 496 ms for monkey Z [Wilcoxon—-Mann—Whitney
(WMW) test, p < 0.001 for both monkeys]. Example sessions are
shown in Figure 2B. Both monkeys also made decisions with a
significantly lower level of success probability in the fast blocks
compared with the slow blocks (0.73 vs 0.78 for Monkey S, 0.68 vs
0.74 for Monkey Z; WMW test, p < 0.001). This adjustment of
behavior as a function of block was highly robust across weeks
and months of training, as shown in Figure 2A.

Furthermore, the specific pattern of token movements within
a trial had a significant effect on behavior, in both fast and slow
blocks (Fig. 2C). As expected, monkeys made decisions signifi-
cantly earlier in easy trials than in ambiguous and misleading
trials (WMW test, p < 0.001 for all comparisons: slow easy vs
slow ambiguous trials, slow easy vs slow misleading trials, fast
easy vs fast ambiguous and fast easy vs fast misleading trials, in
both monkeys). In addition, the initial bias in misleading trials
clearly induced more errors compared with ambiguous or easy
trials, especially in fast blocks. We also found that monkeys made
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Figure 3.

A, Top, y-axis: mean (== SE) of our estimate of the monkey’s accuracy criterion (calculated as the SumLogLR) at DT as a function of DT (in 200 ms bins) during slow (blue) and fast (red)

blocks. Bottom, y-axis: distributions of decision time in the slow (blue) and the fast (red) blocks of trials. Insets, Distributions of the reward rate in each block (Eq. 2). B, In the left panels, the data (solid
line ==SE) shown in Ais compared, separately for each monkey and each block type, with the SumLogLR computed using the best-fit urgency-gating model (dotted line == SE) with a simple linearly
increasing urgency function, shown on the right. Note that the urgency signal that actually scales evidence in the model is a half-wave rectified version of these linear functions. That is, all negative
values are set to zero. C, The distributions of decision time and cumulative distributions of success probability at decision time for each of the three trial types, produced by simulating the

urgency-gating model using the functions shown in B (compare these results to Fig. 20).

decisions at a significantly lower level of success probability in
ambiguous and misleading trials compared with easy trials
(WMW test, p < 0.001 for the same eight comparisons stated
above). This is consistent with human behavior (Cisek et al.,
2009), and with the idea that to solve this task, monkeys lower
their standards of accuracy as time is elapsing (i.e., they have a
growing urgency signal). The rationale here is that spending time
to collect more sensory evidence usually improves a subject’s
accuracy. However, as time is passing, the loss in terms of reward
rate may exceed the benefit of potentially gaining accuracy, espe-
cially in a dynamic task in which one does not know whether
better evidence will ever come.

To further investigate this possibility, we estimated the “accu-
racy criterion” for committing to a choice by computing the
available sensory evidence for the chosen target at the time of the

decision as a function of decision duration (see Materials and
Methods). Figure 3A shows that for both monkeys, the accuracy
criterion (denoted as the SumLogLR) is significantly higher dur-
ing slow blocks than fast blocks for decisions made between the
third and the 10™ token jump (the majority of decisions: 76%
and 78% of slow and fast decisions in Monkey S, respectively;
75% and 58% of slow and fast decisions in Monkey Z). This
suggests that the monkeys are more willing to guess in the fast
blocks and wait longer to decide in the slow blocks. We also found
that except for very fast decisions (<1 s), the level of sensory
evidence that monkeys require before committing to a target
decreases as a function of decision duration, in both blocks. This
means that if sensory information is strong (e.g., in easy trials),
monkeys usually decide quickly. If information is ambiguous,
they wait to see if it improves. Finally, if too much time has
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passed, the monkeys make a guess. We propose that this analysis
reveals how animals voluntarily establish (in a given block) and
adjust (between blocks) their “trade-off” between time and accu-
racy to solve the tokens task.

There are different ways in which such a process can occur in
the brain and be implemented in a decision model. The decreas-
ing accuracy criterion can be implemented either through a de-
creasing value of a neural firing threshold or through an
increasing gain of neural activity and a fixed firing threshold. Our
recent neural results (Thura and Cisek, 2014) favor the latter
interpretation: during deliberation, neural activity in premotor
and motor cortices is related to both the sensory evidence and
elapsed time before reaching a fixed level of activity at the mo-
ment of commitment. Thus, our interpretation of the curves de-
picted in Figure 3A is the following: the decrease of the average
SumLogLR function (our estimate of monkey’s accuracy crite-
rion) after ~1 s can be easily explained by a (half-wave rectified)
growing urgency signal, as in our simple model (Eq. 4). We be-
lieve this signal is a motor initiation-related buildup, unrelated to
the sensory events, that reflects the growing urge to make a re-
sponse. The initial rise of the average SumLogLR function may at
first appear to require additional assumptions, but that is in fact
not the case. It can simply be explained by noise: Because both
urgency and evidence are low early in the trial, the only way for
neural activity to reach the threshold is due to noise, which will
obviously generate many errors. Consequently, the average Sum-
LogLR across those trials will be close to zero and gradually in-
crease as the influence of sensory information grows. Later in the
trial decisions are less and less dominated by noise, and thus the
average SumLogLR becomes a more veridical estimate of the level
of sensory information that a monkey requires before commit-
ting to the decision.

To demonstrate this, we used our model to find, separately for
each monkey and each block, the slope and intercept of urgency
that produced the best estimate of the SumLogLR curve (in the
least-mean-squared error sense). The best fitting parameters are
shown in Figure 3B (right), along with errors on the parameter
estimates. Although our goal was not to provide a perfect fit to the
data, the simple assumption of a rectified linear urgency signal
can capture the shape of the SumLogLR curve remarkably well, as
shown in Figure 3B (left). For both monkeys, the urgency func-
tions that best reproduce the data show a similar pattern: In the
slow block, the urgency has a lower y-intercept but a higher slope
than in the fast block. Consequently, although the urgency signal
is initially lower in the slow block, the two functions eventually
converge ~1790 ms after the start of token movements. This
makes sense because the difference in the amount of time poten-
tially saved in the fast blocks versus slow blocks decreases as the
number of remaining tokens decreases. Thus, later in the trial
there is less of an advantage to behave differently in the two
blocks. If time was the only factor taken into account by the
monkeys and if they could estimate it perfectly, then the two
urgency signals should ideally converge at exactly 3 s. However,
real behaving animals do not usually behave in an idealized man-
ner. Furthermore, because 90% of all decisions in the slow block
are made before 2 s (98% before 2.2 s; Fig. 3A, see distribution of
DTs), and in the fast block, 90% of decisions are made before 1.7 s
(98% before 2 s), the results of our fits are unlikely to extrapolate
beyond ~2s.

Overall, both monkeys adopted this qualitative pattern of de-
cision policies in the two blocks, allowing them to improve their
reward rate (Fig. 3A, insets). For both monkeys and both blocks,
the errors on the fitted parameters were small (<2% for slope and
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<6% for intercept), suggesting that the fits were quite robust.
Using the urgency functions derived from fitting the SumLogLR
curves (Fig. 3B), we were able to simulate the qualitative patterns
of behavior in the three trial types (easy, ambiguous, and mislead-
ing) for both monkeys and both block types (Fig. 3C). Although
the model did not make very early decisions as often as the mon-
keys (especially in fast blocks), it did remarkably well for such a
simple model. In particular, it qualitatively reproduced the shape
of the SumLogLR curve, as well as the major trends in both deci-
sion time and success probability distributions in all three trial
types. Thus, capturing the complex shape of the SumLogLR
curves (rising until 1 s, and then falling) does not require one to
posit multiple mechanisms or complex polynomial urgency
functions, but can be well approximated with a minimal model
thatincludes a rectified linear urgency signal that varies from trial
to trial.

Arm reaching behavior

The results above show how monkeys exert control over three
variables relevant to their reward rate (Eq. 2): the success proba-
bility of each choice, the time taken to decide, and the time of
remaining token jumps. However, there is a fourth variable un-
der their control, the time taken to complete the movement. It is
important to note that in our task, the tokens remaining in the
center start to accelerate only after the cursor enters the chosen
target. This further increases the effect of movement duration on
the reward rate (Eq. 2; Shadmehr, 2010). It is thus possible that
the decision policy and in particular, the time at which decisions
are made, influence the duration of the movements executed to
report them. Intuitively, one might expect that the more time is
spent deciding, the less is spent moving, and that this tradeoff
may also be adjusted differently across the slow and fast blocks of
trials. This prediction would be in agreement with results of
Shadmehr et al. (2010), who showed that increasing the ITI (or
delaying the reward) reduces the velocity of saccades. This is
because the cost of movement duration is not as penalizing when
reward is delayed as when it is not. In our task, monkeys are faced
with the same temporal discounting problem: After long deliber-
ation there are only a few tokens remaining and thus the reward
and next trial come quickly (which is similar to a short ITI), so
movement duration is shorter (higher speed and/or shorter am-
plitude). When comparing the two blocks, decisions in the slow
blocks are usually longer than in the fast blocks, but the remain-
ing tokens do not accelerate as much as in the fast blocks. The
delay to reward is thus shorter in the fast blocks compared with
the slow blocks, leading to shorter duration movements in the
fast blocks, especially for decisions shorter than 1.8 s. Again, this
makes sense because the difference in the amount of time poten-
tially saved in the fast blocks versus slow blocks decreases as the
number of remaining tokens decreases.

Therefore, a simple hypothesis is that the same urgency signal
that drives the monkeys to make a decision also influences their
movements, and especially their duration. This trivially predicts
that if we group trials by decision time within a given block, we
will see shorter movement durations (by means of higher speed
and/or shorter amplitude) after longer decisions because the ur-
gency signal increases monotonically as a function of time after it
goes above zero. Furthermore, we expect shorter movement du-
rations in the fast blocks because the urgency level is higher in fast
blocks, and the difference between the two blocks to converge, as
observed in the SumLogLR curves and the urgency signals de-
rived using the model fits (Fig. 3A, B).
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Figure4. A, Mean (==SE) of the peak velocity of arm movement across trials binned accord-
ing to DT in 200 ms bins, in the slow (blue) and fast (red) block for Monkey S (left) and for
Monkey Z (right). B, Mean (== SE) of the movement amplitude in the same trials. €, Mean ( = SE)
of the total movement duration in the same trials. D, Mean (==SE) of the total movement
duration in easy (top), ambiguous (middle) and misleading trials (bottom).

Analysis of arm movement properties supported these predic-
tions. Similar to the decision variables, we only focus here on data
collected when monkeys applied a block-dependent strategy to
solve the task (i.e., period 2 of Stage 3 in Materials and Methods).
As shown in Figure 4A (left), for Monkey S the peak velocity of
movement increased for longer decisions and clearly differed be-
tween the two blocks (ANCOVA, velocity, block X time interac-
tion, F(, ;) = 202.63, p < 0.001), converging ~2100 ms. Allowing
for a significant baseline velocity, this trend strongly resembled

Thura et al. @ Urgency Governs SATs in Decisions and Movement

the urgency functions estimated on the basis on Monkey S’s de-
cision policies (Fig. 3B, left). In Monkey Z, movement velocity
also increased as a function of decision duration (velocity, time,
F,) = 522.6, p < 0.001) in both speed conditions (velocity,
block X time interaction, F(, ;, = 3.3, p = 0.07), but here, velocity
was generally higher in the slow condition (Fig. 4A, right). Nev-
ertheless, if one also takes into account the amplitude of the
movement, which for Monkey Z was larger in the slow block (Fig.
4B, right, block; F; ;, = 126.29, p < 0.001), then the total move-
ment duration patterns in both monkeys were consistent with
our hypothesis (Fig. 4C): First, for both animals, movement du-
rations decreased as decision durations increased, regardless of
the block condition (Monkey S: movement duration, time,
F11) = 1391.8, p < 0.001; Monkey Z: F, ;, = 654.7, p < 0.001).
Second, movement durations were shorter in fast blocks than
slow blocks and the effect of time was block-dependent (ANCOVA,
block X time, Monkey S: F, ;, = 83.5, p < 0.001; Monkey Z:
F )= 62.9,p <0.001). As suggested by the urgency hypothesis,
the range of movement duration reduction was larger in the slow
blocks compared with the fast blocks, in both monkeys (Monkey
S: from 393 ms to 312 ms, a 21% decrease in the slow blocks and
from 358 ms to 308 ms, a 14% decrease, in the fast blocks; Mon-
key Z: from 361 ms to 316 ms, a 12% decrease in the slow blocks
and from 343 ms to 309 ms, a 10% decrease, in the fast blocks; Fig.
4C). Thus, the difference of movement durations between blocks
vanishes for long decisions. That both monkeys appeared to find
a policy that adjusts movement duration makes sense in light of
the fact that it is movement duration that is most relevant to
reward rates. It is worth noting that the weaker effect of time on
movement duration between blocks in Monkey Z is consistent
with the weaker effect of time in that monkey’s decision data: the
difference of the SumLogLR curves is smaller in Monkey Z com-
pared with Monkey S (Fig. 3B). This provides further support for
the hypothesis that decision urgency is related to movement
vigor. To assess to what degree urgency predicts movement du-
rations, we performed a Pearson correlation analysis between the
two variables, independently in each monkey in each block. For
each trial, we estimated the urgency level at decision time using
the urgency function derived for each monkey (Fig. 3B), and
correlated this against movement duration. Although highly sig-
nificant (p < 0.001 in all conditions), correlations were quite low
in terms of r values (Monkey S, slow block: —0.15; Monkey S, fast
block: —0.12; Monkey Z, slow block: —0.14; Monkey Z, fast
block: —0.07). This means that although movement duration is
significantly influenced by urgency, it is also strongly influ-
enced by many other factors (starting point, biomechanics,
changes in attention, etc.) that vary from trial to trial.

To control for a potential effect of trial difficulty or success
probability on the results described above, we performed the
same analysis on each trial type separately (Fig. 4D). For each of
them, we observed the same phenomenon as those described
above. In Monkey S, all ANCOVAs performed on the movement
duration parameter (effect of block, effect of time, interaction of
time and block) confirm significance of the results, except for the
interaction of block Xtime in easy trials (p = 0.08). In Monkey Z,
all ANCOVAs performed on the movement duration parameter
confirm significance.

Could the increase in movement velocity over time (Fig. 4A)
be related to an increase in confidence as the tokens accumulate
in the targets? We believe that cannot be the case. Recall that on
average, decisions made later in time are made with less sensory
evidence (Fig. 3A). The reason is that monkeys wait for an ex-
tended time only in trials in which the token movements were



Thura et al. @ Urgency Governs SATs in Decisions and Movement

A |
Q3 i
2 |
(3} ]
=) 1
z 5
£ :
o i
(0] i

0 . 1
0 500 1000 1500 2000 2500
Time (ms)
B
Monkey S Monkey Z

2=, 600

K4

D 600

R

>

'S 550

© 550

o

>

X

3

Q. 500 . 500

C 18 18

)
()
Y 17
()
©
2
S 16 16
IS
<
15 Bl

D e 55
’g 54
£ 58
c 53
RS
S 56 52
>
o 51

54 50

01 0509 13 17 21 25 010509 1317 21 25

Time (s) Time (s)
E
Monkey S Monkey Z
9.5 Slow blocks 9.5

i
o ©

fombeF "*"{

Selected target

al
(SR

Unselected target

.
3

Fast blocks

Center — End point dist (°)
o m o o o~

~

01 0.9 1.7 25 01 0.9 1.7 2.5
Time (s) Time (s)
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highly ambiguous. In easier trials, they tended to decide more
quickly. A relationship between confidence (or uncertainty) and
movement speed may exist (but see Georgopoulos et al., 1981),
but it should have an effect that is the inverse of what we
observed.

The findings summarized in Figure 4 are particularly note-
worthy in our task because of the fairly large size of the targets (3.5
cm in diameter). Such targets are easy to hit, and the monkeys
made very few aiming errors (Monkey S: 0.23%; Monkey Z:
0.14%). Thus, one might have expected the monkeys to make
very fast movements in all conditions (e.g., 300 -320 ms), exploit-
ing the ease of the task to reduce the movement duration and
increase reward rate. However, that was not the case. Instead,
there appears to be a relationship between the duration of deci-
sions and the duration of movements, which is controlled in a
unified manner. It is plausible that this control involves the same
context-dependent urgency signal that invigorates both the deci-
sions that are made and the actions that are performed. This led
us to hypothesize that the urgency signal may play a more general
arousal role for all motor systems, even those that are not in-
volved in yielding rewards.

Saccade behavior

In our task, eye movements were unconstrained and had no in-
fluence on reward rate. Nevertheless, if a general arousal signal
exists then that signal may also invigorate the saccades made
during the course of the decision process. To test this prediction,
we focused our analysis on saccades made before the decision,
using only trials performed by monkeys during the last period of
training (Fig. 2A, gray shaded areas). Moreover, due to strict
target selection (only horizontal targets) and technical reasons,
only 8428 trials from Monkey S (5354 in slow blocks) and 7819
trials from Monkey Z (5624 in slow blocks) were included for the
analysis, yielding a dataset consisting of 19,072 saccades from
Monkey S (12,632 in slow blocks) and 15,634 from Monkey Z
(11,626 in slow blocks).

Monkeys usually executed several saccades per trial, looking
primarily at the center and the two targets, and usually (74-79%
of trials) were already looking at the selected target at the moment
of the decision. Figure 5A shows the instantaneous eye velocity
for one trial, in which the decision was made at 1847 ms after six
saccades were performed. By inspection, it appears that the ve-
locity of the saccades is generally increasing before the decision.

Indeed, when we grouped all saccades made before the deci-
sion as a function of their latency with respect to the start of token
movements, we saw in both blocks and in both monkeys a highly
significant trend for increasing velocity and amplitude over the
course of the trials (Fig. 5B,C), ranging between 520 and 580
deg/s (a 12% increase) for peak velocity and between 15.5° and
18° for amplitude. For both monkeys, time significantly affects
saccade velocity (ANCOVA, time, Monkey S: F(, ;, = 276.4, p <
0.001; Monkey Z: F, |, = 68.7, p < 0.001) and amplitude (AN-
COVA, time, Monkey S: F(, ;, = 566.8, p < 0.001; Monkey Z:
Fi.py = 3348, p < 0.001).

<«

saccades made before decision time, binned as a function of time in 200 ms bins, in the slow (blue) and
the fast (red) block for Monkey S (left) and Monkey Z (right). ¢, Mean (== SE) of the amplitude of
corresponding saccades. D, Mean (=SE) of the total duration of corresponding saccades. E, Effect of
time on the mean (== SE) saccade amplitude (calculated from the center of the central circle to the
saccade end point), separately for the target that was selected (solid) or not selected (dotted). In B—E,
only saccades executed between the two horizontal targets (see Materials and Methods) and before
our estimation of decision commitment are included for analysis.
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Moreover, in Monkey S, saccade velocity was also higher in
fast blocks compared with slow blocks (velocity, block, F, ;, =
23.6, p < 0.001). It is again interesting to note that in Monkey S,
the velocity of saccades as a function of time resembles the
context-dependent urgency functions derived from the model
(Fig. 3B), including a convergence late in the trial (block X time
interaction, F(, ;, = 10.5, p = 0.001). A similar pattern is also seen
in the amplitude of saccades, consistent with the well known
correlation between saccade amplitude and velocity (Bahill et al.,
1975). Consequently, Monkey S’s saccade durations were longer
in fast blocks compared with slow blocks (duration, block,
F,, = 80.16, p < 0.001) and remain relatively stable across
decision time (time, F(, ;) = 3.65, p = 0.06), in both blocks
(block X time interaction, F, ;, = 0.61, p = 0.43; Fig. 4D).

In Monkey Z, we observe similar trends overall. Again, veloc-
ity increases with time in both speed conditions, and this increase
is block-dependent (velocity, block X time interaction, F, ;, =
5.48, p = 0.019; amplitude, block X time interaction, F, ;, =
11.80, p = 0.0006). Contrary to Monkey S, however, the effect of
block appears to have a stronger effect on saccades executed late
in the trial.

We considered several possible explanations for these effects.
One is that saccade amplitudes are increasing over time because
the tokens accumulating in the targets cover a larger area, pre-
senting more targets for the eye that are further from the center.
However, because the placement of each token was completely
random, when averaged across a large number of trials the ex-
pected value of the center of the token distribution was always the
center of the target, regardless of elapsed time. Another possibil-
ity is that the monkey’s attention is increasingly driven toward
the target that is ultimately selected by the monkey (and perhaps
more likely to be rewarded), shifting saccade endpoints over

time. However, despite the fact that we found that saccade am-
plitudes were slightly larger to the selected target compared with
the unselected target, both exhibited the same trend for larger
amplitudes over time (Fig. 5E).

Still another possibility is that attention is drawn toward sites
in visual space with the larger number of tokens, and thus the
effects shown on Figure 5 are due to the weakening pull exerted
by the depleting tokens in the central circle and the increasing
salience of targets receiving more tokens with time. To assess this
possibility, we examined the effect of time on the amplitude of
saccades made to a target with a given number of tokens. This
showed that in Monkey Z, saccade amplitudes are only weakly
affected by passing time but tend to increase with the increasing
number of tokens in the target (Fig. 6A, bottom left). In Monkey
S, we observed a mixed effect of both elapsing time and the num-
ber of tokens in the saccade target (Fig. 6A, top left). According to
this analysis, time does not explain, at least for Monkey Z, the
effects depicted in Figure 5. Thus, to better estimate the role of
the number of tokens in the fixated target (i.e., the salience ef-
fect), we then performed the opposite analysis, looking at the
effect of the number of tokens in the fixated target on saccade
amplitude made within given time epochs (in 200 ms bins from
the first token jump). This analysis clarified that saccade ampli-
tude tends to increase with the number of tokens in the fixated
target, regardless of the timing of the saccade (Fig. 6A, right).
Thus, at least for Monkey Z, the apparent effect of elapsing time
in the data in Figure 5 can be explained by the increasing number
of tokens in the fixated target. The difference between the blocks,
however, cannot be explained in this manner.

We performed the same two control analyses on reaching
durations to determine whether the effects depicted in Figure 4
were due to passing time, as we proposed via the increasing ur-
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Figure 7 also illustrates idiosyncratic
aspects of each monkey’s personality.
Monkey S has always been patient and
conservative when performing the tokens
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training (see Materials and Methods), we
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gency signal, or if a salience effect (i.e., number of tokens in the
selected target) was also responsible for these results. As illus-
trated in Figure 6B for both monkeys, the number of tokens in the
selected target has very small effects on reach duration, whatever
the timing of these movements (right). In contrast, in both mon-
keys most of the effect on movement durations can be attributed
to elapsing time, regardless of how many tokens were in the se-
lected target at the time of the reach (Fig. 6B, left).

Co-occurrence of the effects through practice

The hypothesis that a common vigor signal influences the deci-
sion policy as well as movement execution predicts that the effects
we report should develop in parallel over the course of the mon-
keys’ training in the task. To test this, we selected four epochs of
time (Fig. 2A, vertical arrows) during the third stage of training,
two before and two after a significant difference was observed in
the decision policy. Each epoch consisted of 5000 trials per-
formed either in the slow or in the fast blocks, and for each we
performed the SumLogLR analysis (as a metric of the monkey’s
decision policy) as well as analyses probing the effect of decision
duration on arm movement duration. This is illustrated in Figure
7 for both monkeys. In Monkey S, the specific decision policy

Top row, Mean SumLogLR (== SE) of Monkey S as a function of decision duration in the slow (blue) and the fast (red)
blocks during the four periods of training indicated by arrows in Figure 24 (left). Each period consists of 5000 trials performed in
either block. Second row, Mean (=SE) arm movement duration of Monkey S as a function of decision duration in the two blocks
during the same four periods of training. Third row, SumLogLR for Monkey Z in the four periods of training indicated in Figure 24
(right). Fourth row, Mean movement duration for Monkey Z in the same four periods of training.

of Monkey S returned and he slowed
down both his decisions and his reaches
over the course of training. Note the link
between decisions and actions during the
evolution of the monkey’s strategy: more
conservative behavior during decision-
making is accompanied by slower move-
ments. This is highly consistent with the
recent study of Choi et al. (2014), showing
alink between human subjects’ personality and the vigor of their
movements.

Monkey Z has a different personality. He has always been
impatient and hasty. During phase 2 of training, we thus set the
postdecision interval to motivate him to slow down his decision
times. This was successful and Monkey Z became conservative
enough to start phase 3. However, as time was passing his impul-
sive nature reappeared and his movements became more and
more vigorous. Note that in parallel, his decision policy did not
become as conservative as the one reached by Monkey S. This
demonstrates again the link between decision-making and
movement execution, both processes reflecting the monkey’s
impulsivity.
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Discussion

In the present study, we demonstrate a context-dependent corre-
lation between two phenomena traditionally considered sepa-
rate: the accuracy criterion for decisions (Fig. 3A) and the
duration of movements used to report them (Fig. 4C). A simple
way to explain our results is to suppose that the vigor of move-
ments is in part influenced by the level of the urgency signal at
decision time. Such a shared mechanism may allow animals to
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adjust the SAT of both decisions and movements to ultimately
increase their reward rate.

Reward rate is a major motivating factor in decision-making.
For instance, during foraging in a patchy environment, the food
intake rate governs the stay-switch policy adopted by animals,
including humans, both in nature and in the laboratory (Ste-
phens and Krebs, 1986; Smith and Winterhalder, 1992; Hayden et
al., 2011). Likewise, human subjects in a decision task adjust their
SAT to maximize reward rate rather than performance per se
(Balci et al., 2011). Reward rate, however, is influenced not only
by the time spent in deciding but also by the time spent moving,
and here too there are SATs. For arm movements, these are his-
torically described by Fitts’s law (Fitts, 1954), which relates how
movement speed increases with movement amplitude and de-
creases with required accuracy. In the oculomotor system, sac-
cades usually follow a “main sequence”, where larger movements
typically have longer durations and velocities (Bahill et al., 1975;
Harris and Wolpert, 2006), and can also depend on reward
(Takikawa et al., 2002).

In general, SATs in decision-making have been studied sepa-
rately from those in motor control. A recent exception is the work
of Shadmehr and colleagues, who showed that delaying the re-
ward reduces the velocity of saccades, as if their subjective cost is
elevated (Shadmehr et al., 2010). Moreover, saccade peak veloc-
ities and durations can be predicted by a model in which the
objective is to maximize reward rate (Haith et al., 2012). More
recently, it has been shown that people who exhibit greater vigor
in their movements tend to exhibit steeper temporal discounting
(Choi et al., 2014). This suggests a link between decision-making
and movement control, both of which ultimately influence re-
ward rate.

Our work provides a complementary link, comparing the
mechanisms involved in controlling the duration of decisions
with those controlling the duration of the subsequent move-
ments. Importantly, unlike previous studies of SATs (Reddi and
Carpenter, 2000; Palmer et al., 2005; Heitz and Schall, 2012), here
we do not explicitly instruct subjects to emphasize speed or accu-
racy, but simply change the timing parameters of the task so as to
motivate a voluntary SAT modification. We deliberately make no
attempt at instructing movement speed and place no constraints
at all on saccadic behavior. This allows us to observe the decision
and movement policies to which animals naturally converge in
our task, presumably revealing principles of SAT adjustment in
general.

We found that like humans (Cisek et al., 2009), monkeys grad-
ually decrease over time the apparent criterion of evidence re-
quired for committing to a decision (Fig. 3A). The rationale for
this is that if too much time has been invested in gathering evi-
dence to increase accuracy, then it is better (in terms of reward
rate) to make a best guess, especially if it is not known whether
more evidence will appear. Moreover, both monkeys learned to
modify their decision policy as the timing parameters of the task
were varied, making hastier decisions in fast blocks and more
conservative ones in slow blocks (Figs. 2, 3), but overall yielding a
higher reward rate in the fast blocks. These results can be simu-
lated by a simple version of the urgency gating model (Cisek et al.,
2009; Thura et al., 2012), which suggests that neural activity com-
bines an estimate of evidence that is computed rapidly (using a
low-pass filter with a short time constant) with an urgency signal
that grows linearly over time in a context-dependent manner
(Fig. 3B, C). Our recent neural recordings in the premotor and
primary motor cortex of Monkeys S and Z (Thura and Cisek,
2014) provide strong support for this model. Neural activity in
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both regions reflects the temporal profile of sensory evidence
provided by the token movements, along with a tendency for
activity to grow until the moment of commitment. We interpret
the buildup of neural activity as a motor initiation-related signal
that pushes the monkeys to decide and act. Remarkably, the ur-
gency signal estimated from each monkey’s decision policy for
each block type resembled kinematic features of the correspond-
ing arm movements, resulting in an inverse relationship between
decision and movement duration within each block (Fig. 4).
These results support the hypothesis that the vigor of movements
is influenced by the level of urgency attained at the time the
monkeys commit to their choice.

Is this influence specific to the arm motor system, or does it
generalize to other systems, including ones that have no bearing
on reward rate? When examining the unconstrained saccades
made before the decision, we observed only a weak relationship
between urgency and vigor of saccades. Nevertheless, although
the effect of elapsing time is not significant in both monkeys, the
difference between blocks is consistent with a higher urgency for
the fast block. We thus suggest that part of the mechanism for
SAT adjustment involves a global, context-dependent arousal
that influences the oculomotor as well as the arm motor system.
While our data cannot prove that the same signal governs all of
these systems, it does suggest that they share similar principles.

According to the “drift diffusion” model (Ratcliff, 1978; Ma-
zurek et al., 2003; Ratcliff and McKoon, 2008; Churchland et al.,
2011), decisions are made when temporally integrated sensory
information reaches a threshold, whose setting controls both the
speed and the accuracy of decisions (Gold and Shadlen, 2002;
Bogacz et al., 2006; Ditterich, 2006; Simen et al., 2006). Although
this model can account for behavior in tasks where the pertinent
sensory information pertinent is static, it fails in situations where
the information is changing (Cisek et al., 2009; Thura et al.,
2012), because slow integration is too sluggish to respond to sud-
den changes. Instead, we and others have proposed that sensory
information is processed quickly (e.g., using a low-pass filter with
a short time constant) and that what brings neural activity to the
threshold is an urgency signal (Ditterich, 2006; Cisek et al., 2009;
Stanford et al., 2010; Thura et al., 2012; Thura and Cisek, 2014).
The urgency signal effectively implements an accuracy criterion
that decreases over time within each trial, which yields higher
reward rates than any setting of a constant criterion (Drugow-
itsch et al., 2012; Thura and Cisek, 2012). It remains to be estab-
lished whether the urgency signal is multiplied, as we propose
here, or simply added to the evidence.

Our work is in agreement with the conclusions of recent stud-
ies by Salinas et al. (2014) showing perceptual and motor adjust-
ments during SAT in a compelled-saccade task. In particular,
their results are well explained by their accelerated race-to-
threshold model, which is very compatible with our urgency-
gating model because it includes an increasing signal that
represents the evolving motor plans during the decision process.

The hypothesis that decisions are influenced by a growing
urgency signal suggests that this signal, not the threshold, con-
trols the trade-off between decision speed and accuracy (Hanks et
al., 2014). It also suggests that the same or related signal may also
influence the action performed after commitment is made, as our
data proposes. However, what is the origin of this signal? Buildup
activity has been observed in many structures, including the sup-
plementary motor areas (Mita et al., 2009; Casini and Vidal,
2011), dorsal premotor cortex (Renoult et al., 2006; Lebedev et
al., 2008), and the lateral intraparietal cortex (Leon and Shadlen,
2003; Janssen and Shadlen, 2005; Maimon and Assad, 2006;
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Churchland et al., 2008; Hanks et al., 2011). Although any one or
more of these regions may contribute, we believe the most prom-
ising candidate hypothesis is that urgency is controlled by the
basal ganglia. In particular, the basal ganglia are intimately in-
volved in the control of learned behaviors (Graybiel et al., 1994,
1998), are essential for modification of behavior through rein-
forcement (Barto, 1995; Doya, 2000; Daw and Doya, 2006), and
have been implicated in the adjustment of the speed and accuracy
of decisions (Bogacz and Gurney, 2007; Nagano-Saito et al.,
2012). Moreover, the basal ganglia also play a critical role in
motor control and appear to regulate the speed and size (the
“vigor”) of movement (Niv et al., 2007; Turner and Desmurget,
2010). In monkeys, inactivation of the internal segment of the
globus pallidus reduces movement velocity and acceleration
(Horak and Anderson, 1984; Desmurget and Turner, 2010), and
a major deficit of Parkinson’s disease is the inability to move
rapidly (Mazzoni et al., 2007). Thus, several converging lines of
evidence suggest that the basal ganglia may be the central source
of a general signal that energizes both the urgency of decisions
and the vigor of the selected action.
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