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Neurobiology of Disease

RAS/ERK Signaling Controls Proneural Genetic Programs in
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Neural cell fate specification is well understood in the embryonic cerebral cortex, where the proneural genes Neurog2 and Ascll are key cell
fate determinants. What is less well understood is how cellular diversity is generated in brain tumors. Gliomas and glioneuronal tumors,
which are often localized in the cerebrum, are both characterized by a neoplastic glial component, but glioneuronal tumors also have an
intermixed neuronal component. A core abnormality in both tumor groups is overactive RAS/ERK signaling, a pro-proliferative signal
whose contributions to cell differentiation in oncogenesis are largely unexplored. We found that RAS/ERK activation levels differ in two
distinct human tumors associated with constitutively active BRAF. Pilocytic astrocytomas, which contain abnormal glial cells, have
higher ERK activation levels than gangliogliomas, which contain abnormal neuronal and glial cells. Using in vivo gain of function and loss
of function in the mouse embryonic neocortex, we found that RAS/ERK signals control a proneural genetic switch, inhibiting Neurog2
expression while inducing Ascll, a competing lineage determinant. Furthermore, we found that RAS/ERK levels control AsclI’s fate
specification properties in murine cortical progenitors-at higher RAS/ERK levels, AsclI ™ progenitors are biased toward proliferative
glial programs, initiating astrocytomas, while at moderate RAS/ERK levels, Ascll promotes GABAergic neuronal and less glial differen-
tiation, generating glioneuronal tumors. Mechanistically, Ascll is phosphorylated by ERK, and ERK phosphoacceptor sites are necessary
for AsclI’s GABAergic neuronal and gliogenic potential. RAS/ERK signaling thus acts as a rheostat to influence neural cell fate selection
in both normal cortical development and gliomagenesis, controlling Neurog2-Ascll expression and Ascll function.
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Introduction

The RAS/ERK signal transduction cascade, which involves the
sequential activation of RAS—RAF—MEK—ERK, is a critical
pathway in neurodevelopment and brain cancer. In neurodevel-
opment, RAS functions are pleiotropic, ranging from the promo-
tion of cell proliferation to the induction of neuronal or glial
differentiation, depending on cellular context and developmental
stage (Lukaszewicz et al., 2002; Ménard et al., 2002; Ito et al.,
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2003; Imamura et al., 2008; Ohtsuka et al., 2009). In neoplasia,
RAS activation is a common pro-proliferative event that is trig-
gered by mutations of upstream receptor tyrosine kinases
(RTKs), or downstream signaling components, such as NF1 or
BRAF (Louis et al., 2007; Bar et al., 2008; Jones et al., 2008; The
Cancer Genome Atlas Research Network, 2008). While onco-
genic RAS activates several downstream pathways, including
ERK, AKT, and Ral (Repasky et al., 2004), ERK is considered the
key effector in tumorigenesis, as BRAF activating mutations are
observed in pilocytic astrocytoma (PA), ganglioglioma (GG),
pleomorphic xanthoastrocytoma, and glioblastoma variants
(Knobbe et al., 2004; Jones et al., 2008; Pfister et al., 2008; Dias-
Santagata et al., 2011; Schindler et al., 2011; Kleinschmidt-
DeMasters et al., 2013). Moreover, constitutively activate BRAF is
sufficient to induce PA in mice (Gronych et al., 2011).
RAS/ERK signaling promotes neoplastic proliferation, but
only recently has been suggested to also influence neural cell fate
selection. Indeed, inactivation of NF1, which inhibits RAS, pro-
motes aberrant glial instead of neuronal differentiation (Das-
gupta and Gutmann, 2005), a change that is reversed by MEK/
ERK inhibitors (Wang et al., 2012). Moreover, constitutively
active MEK induces astrocytic and oligodendrocytic differentia-
tion in neural progenitors (X. Li etal., 2012). However, RAS/ERK
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Table 1. Summary of human tumors analyzed for pERK expression
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Case ID Gender Age Diagnosis WHO grade Location

GG-1 F 31 Ganglioglioma | Cerebrum, temporal
GG-2 F 34 Ganglioglioma | Cerebrum, frontal
GG-3 M 40 Ganglioglioma | Cerebrum, temporal
GG-4 M 28 Ganglioglioma | Cerebrum, temporal
GG-5 M 2 Ganglioglioma | Cerebrum, temporal
GG-6 F 3 Ganglioglioma | Cerebrum, temporal
PA-1 M 16 Pilocytic astrocytoma | Cerebrum, parietal
PA-2 M 20 Pilocytic astrocytoma | Cerebrum, thalamic
PA-3 M 33 Pilocytic astrocytoma | Cerebrum, frontal
PA-4 F 26 Pilocytic astrocytoma | Cerebrum, frontal
PA-5 F 37 Pilocytic astrocytoma | Cerebrum, temporal

WHO, World Health Organization.

is commonly activated in gliomas and glioneuronal tumors, rais-
ing the question of how this pathway differentially influences
oncogenic cell fates.

We found that RAS/ERK activation levels differ in two distinct
human tumors associated with constitutively active BRAF; PAs,
which contain abnormal astrocytes and oligodendrocyte precur-
sor cell (OPC)-like cells, have higher ERK activation levels than
GGs, which contain abnormal neuronal and astrocytic cells. To
determine whether and how different levels of RAS/ERK signal-
ing influences cell fate choice, we examined interactions with the
proneural basic-helix-loop-helix (b HLH) transcription factors in
the developing neocortex. The neocortex is derived from the tel-
encephalon, where the proneural gene Neurogenin 2 (Neurog2)
specifies a glutamatergic (glu ") neuronal fate in dorsal progeni-
tors (Fode et al., 2000; Parras et al., 2002; Schuurmans et al., 2004;
Mattar et al., 2008), while the proneural gene Achaete scute-
like I (Ascll) specifies the identities of neocortical GABAergic
(GABA ) neurons and embryonic OPCs that are derived from
ventral progenitors (Casarosa et al., 1999; Britz et al., 2006; Parras
et al., 2007; Castro et al., 2011). We found that RAS/ERK signal-
ing promotes Ascll expression while blocking Neurog2 expres-
sion in neocortical progenitors. Moreover, we found that at low
RAS/ERK levels, Ascll promotes GABA ™ neuronal differentia-
tion and generates glioneuronal tumors, while at higher RAS/
ERK levels, Ascll promotes a proliferative glioblast phenotype
and generates glial tumors. Finally, we reveal that Ascll is directly
phosphorylated by ERK, and that the ERK phosphoacceptor sites
are necessary for the gliogenic potential of AsclI.

Materials and Methods

Animal breeding and maintenance. Animal procedures were approved by
the University of Calgary Animal Care Committee (protocol #ACI11-
0051 to J.A.C. and #AC11-0053 to C.S.) in compliance with the Guide-
lines of the Canadian Council of Animal Care. Timed pregnant wild-type
CD1, NeurogZGFPKI (Britz et al., 2006), and Ascl1 K (Leungetal., 2007;
purchased from The Jackson Laboratory; Stock number 012881) mice
were used for in utero electroporation and genotyped as described. The
morning of the vaginal plug was assigned embryonic day 0.5 (E0.5) for
staging. Embryos of either sex were used.

Patient-derived tumor tissues. Formalin-fixed paraffin-embedded tis-
sues from supratentorial gangliogliomas and supratentorial nonoptic
pathway pilocytic astrocytomas were obtained from pathology archives
at Calgary Laboratory Services and the Clark Smith Brain Tumor Bank at
the University of Calgary (Table 1; Kelly et al., 2009; Blough et al., 2010).
Human materials were used with approval of Calgary Laboratory
Services and the Calgary Health Region Ethics Board (University of
Calgary Conjoint Health Research Ethics Board #2875 to J.A.C. and
#24993 to C.S.).

Cell culture and luciferase assay. Postnatal day 19 (P19) embryonic
carcinoma cells (ATCC# CRL-1825) were maintained in Minimum Essen-

tial Medium o Medium (Gibco) supplemented with 10% fetal bovine serum
(FBS), 10 U/ml penicillin, and 10 pg/ml streptomycin. The 4.3 kb DIII lu-
ciferase reporter was previously described (Castro etal., 2006). The 1 kb Sox9
proximal promoter region was PCR amplified from mouse genomic DNA
with the primers: 5-ATACTCGAGAGAGAACAGCGGGCGTTGA-3'
(forward) and 5'-CACAAGCTTAGGGGTCCAGGAGATTCAT-3’ (re-
verse) and subcloned into pGL3-Basic (Promega). The DIx1/2 reporter
construct was generated by cloning the 112b intergenic enhancer from
p1230-DIx1/2 112b (Ghanem et al., 2007) into pGL3-Basic (Promega).
The P19 cells were seeded into 24-well plates (Nalge Nunc) 24 h before
transfection. Transfections were performed using Lipofectamine Plus
reagent (Invitrogen) as per the manufacturer’s protocol, cotransfecting
0.1 g of each test plasmid and 0.15 ug of the Renilla plasmid (transfec-
tion control). Four to six hours after transfection, Opti-MEM media
(Gibco) was replaced with fresh media. Twenty-four hours later, cells
were harvested and firefly luciferase and Renilla luciferase activities were
determined using the Dual-luciferase Reporter Assay System (Promega)
as per the manufacturer’s instructions, using a TD 20/20 Luminometer
(Turner Designs). Luciferase activity was normalized to the correspond-
ing Renilla activity.

In utero electroporation. Cortical telencephalic electroporations were
performed as described previously (Dixit et al., 2011; S. Li et al., 2012)
using endotoxin-free DNA (Qiagen) and platinum tweezer-style elec-
trodes (Protech; 5 mm) to apply seven 43 ms pulses at 43 V witha 1 s
interval. cDNAs were cloned into pCIG2 (provided by Dr. Franck Pol-
leux) or pCIC (provided by Dr. Dawn Zinyk) vectors. These constructs
expressed the insert mRNA coupled to EGFP (pCIG2) or mCherry
(pCIC) mRNA by an internal ribosome entry site (IRES2; Clontech;
Mattar et al., 2008; S. Li et al., 2012). pEFRasV12 and pEFRasN17 plas-
mids were provided by K. Kaibuchi (Cowley et al., 1994), pPBABEMekCA
and pBABEMekDN provided by C. Marshall (Yoshimura et al., 2006),
AktCA provided by J.D. Ashwell (v-AKT, the constitutively active viral
homolog of c-AKT; Eder et al., 1998), and EtvI provided by T.M. Jessell
(Arber et al., 2000). Plasmids containing cDNAs for BRAFV600E (from
W. Hahn, Addgene plasmid 15269; Boehm et al., 2007), AktDN
(AktK179M, from M.C. Huang, Addgene plasmid 15269; B. P. Zhou et
al., 2000), RalAV23 (from W. Hahn, Addgene plasmid 15252; Sablina et
al., 2007), RalADN (RalAS3IN, from C. Counter, Addgene plasmids
19718; Lim et al., 2005), RalBQ72L (from C. Counter, Addgene plasmid
19721; Lim et al., 2005), and RalBDN (RalBS28N, from C. Counter,
Addgene plasmid 19722; Lim et al., 2005) were obtained from Addgene.
Etv5 cDNA (IMAGE Clone 4036564; Lennon et al., 1996) was obtained
from Life Technologies.

Site-directed mutagenesis. Ascl1-SA3, in which all three leucine-serine-
proline (LSP) sites were mutated to leucine-alanine-proline, and AsclI-
SAG6, in which all six SP sites were mutated into alanine-proline (S-A
mutation), were generated via PCR-mediated site-directed mutagenesis
using overlapping extension PCR. Two complementary primers contain-
ing nucleotide substitutions (underlined bases) were designed using a
Stratagene Web-based primer design software program (Agilent): S62A-
forward: 5'-CGCCGCAGCTGGCCCCGGTGGCCG-3"; S62A-reverse:
5'-GCGGCGTCGACCGGGGCCACCGGC-3";S88A-forward: 5'-
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CCAGCGCTCGTCCGCTCCGGAACTGAT-3'; S88A-reverse: 5'-
GGTCGCGAGCAGGCGAGGCCTTGACTA-3";S185A-forward:
5'-CGGGCGTCCTGGCGCCCACCATC-3'; S185A-reverse: 5'-GCCCG-
CAGGACCGCGGGTGGTAG-3"; S189A-forward: 5'-GTCGCCCAC-
CATCGCCCCCAACTACTC-3'; S189A-reverse: 5'-CAGCGGGTGGT-
AGCGGGGGTTGATGAG-3'; S202A-forward: 5'-CTCTATGGCGGGT-
GCTCCGGTCTCGTC-3'; S202A-reverse: 5'-GAGAT ACCGCCCACGAG-
GCCAGAGCAG-3'; S218A-forward: 5'-GGATCCTACGACCCTCTT-
GCCCCAGAGGAACAAGA-3'; S218A-reverse: 5'-CCTAGGATGCTGGG-
AGAACGGGGTCTCCTTGTTCT-3".

Tissue processing. Brains were dissected in PBS and were processed for
frozen or paraffin sections. For frozen sections, brains were fixed in 4%
paraformaldehyde (PFA) in PBS, and cryoprotected in 20% sucrose be-
fore OCT embedding. Ten micrometer cryosections were collected on
SuperFrost Plus (Fisher) slides. For paraffin sections, brains were fixed in
4% PFA, postfixed in 10% neutral buffered formalin, and processed for
routine paraffin embedding. Five micrometer sections were cut and col-
lected on SuperFrost Plus slides.

Histology, immunohistochemistry, and immunofluorescence. Primary
antibodies included rabbit anti-GFP (Invitrogen), mouse anti-Neurog2
(David Anderson; Lo et al., 2002), rabbit anti-Neurog2 (Masato Naka-
fuku; Mizuguchi et al., 2001), mouse anti-Ascll (BD Biosciences), rabbit
anti-Sox9 (Millipore), rabbit anti-pERK (Cell Signaling Technology),
rabbit anti-Olig2 (Abcam), rabbit anti-GFAP (Dako Cytomation),
mouse anti-NeuN (Millipore Bioscience Research Reagents), rabbit anti-
Tbrl (Abcam), mouse anti-Tuj1 (Covance), rabbit anti-Pax6 (Covance),
rabbit anti-glutamine synthetase (Abcam), rabbit anti-Nfla (Benjamin
Deneen; Kang et al., 2012), goat anti-Sox2 (Santa Cruz Biotechnology),
mouse anti-Nestin (Santa Cruz Biotechnology), rabbit anti-Ki67 (Vector
Laboratories), and Rat anti-BrdU (Serotec). Secondary antibodies were
conjugated to Cy3, AMCA (Jackson ImmunoResearch), Alexa488 or Al-
exa 568 (Invitrogen), and diluted 1/500. Immunofluorescence prepara-
tions were counterstained with 4’,6-diamidino-2-phenylindole (DAPI;
Santa Cruz Biotechnology) before mounting of coverslips with
AquaPolymount (Polysciences). Paraffin sections were used for routine
hematoxylin and eosin (H&E) staining and for immunohistochemistry
with detection by Envision+ diaminobenzidine (DAB) kit (Dako) and
hematoxylin counterstain. Double labeling on formalin-fixed paraffin-
embedded tissues was visualized by dual DAB and alkaline phosphatase
(AP) development using the MultiView IHC system (Enzo).

RNA in situ hybridization. RNA in situ hybridization was performed
with digoxigenin (DIG)-labeled riboprobes as described previously
(Alam et al,, 2005). DIG-labeled probes were generated using a 10X
labeling mix per manufacturer’s instructions (Roche). Probe templates
included Neurog2 (Gradwohl et al., 1996), Ascll (Guillemot and Joyner,
1993), DixI (Anderson et al., 1997b), Olig2 (Q. Zhou et al., 2000), OligI
(Q. Zhou et al., 2000), EtvI (Arber et al., 2000), Etv5 (Hasegawa et al.,
2004), Spry2 (Minowada et al., 1999), and tenascin C (provided by Augret
Joesw). The GFP probe was generated from a cDNA clone (i.e., pEGFP-
N1; Cairine Logan; Mattar et al,, 2008; S. Li et al,, 2012). Additional
probes were generated from cDNA clones acquired from the LM.A.G.E.
consortium (HudsonAlpha Institute) as follows: Pdgfra: 5704645 and
S0x9: 5351850 (Lennon et al., 1996).

Western blotting. HEK293 cells were maintained in DMEM supple-
mented with 10% FBS, 10 U/ml penicillin, and 10 ug/ml streptomycin.
Cells were transfected as described for P19 cells (see above) and harvested
after 24 h. Cells or mouse embryonic brain tissue were lysed in NP-40
lysis buffer (0.05 m Tris, pH 7.5, 0.15 M NaCl, 1% NP-40, 1 mm EDTA, 50
mu NaF, 0.2 mm Na;VO,, 2 mm PMSF, 0.05 mm MG132, 1X complete
protease inhibitor tablet (Roche), incubated for 30 min on ice and clar-
ified by centrifuging at 20,000 for 15 min. Protein concentrations were
determined via Bradford analysis. For Western blotting, 10 ug of each
lysate was loaded on 10% SDS-PAGE gels and separated at a constant 125
mV voltage. Protein was transferred to a PVDF membrane in transfer
buffer (25 mm Tris, 192 mm glycine, 20% methanol, pH 8.3) at 75 V for
1 h. PVDF membranes were blocked 1 h at room temperature in TBST
(25 mm Tris, 3.0 mm KCl, 140 mm NaCl, pH 7.4, 0.1% Tween 20) con-
taining 50 mg/ml powdered milk. The membranes were incubated in
primary antibodies diluted in blocking solution for 1 h at room temper-
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ature, or overnight at 4°C. After 3 X 10 min washes in TBST, the mem-
branes were exposed to species-specific horseradish peroxidase-coupled
secondary antibody diluted 1/50,000 for 1 h at room temperature. Mem-
branes were washed 3 X 10 min, and developed using ECL Plus Western
Blotting Reagent (GE Healthcare Life Science) and x-ray film. Primary
antibodies used in Western blotting included the following: rabbit anti-
ERK (Cell Signaling Technology), rabbit anti-pERK (Cell Signaling
Technology), rabbit anti-B-actin (Abcam), mouse anti-Ascll (BD Bio-
sciences), and rabbit anti-pAscll. The custom phosphorylation-specific
Ascll (pAscll) antibody was generated by AnaSpec using peptide GVL-
(pS)-PTISPNYS+C-NH2. Bands were quantitated by densitometry us-
ing National Institutes of Health ImageJ, and corrected for loading
relative to B-actin.

In vitro kinase assay. Wild-type or mutant Ascll proteins were tran-
scribed and translated in vitro using TNT rabbit reticulocyte lysate kit
(Promega) according to the manufacturer’s instructions. For kinase as-
say in rabbit reticulocyte lysates, reaction components were added to a
precooled Microfuge tube: 5 ul in vitro transcribed and translated pro-
tein, 1 plactive ERK1 (0.1 pg/pl; SignalChem), 2.5 ul 0.1 M ATP, 11.5 ul
kinase assay buffer (25 mm MOPS, pH 7.2; 12.5 mm B-glycerol-phos-
phate; 25 mm MgCl,; 5 mm EGTA; 2 mm EDTA; and 0.25 mu dithiothre-
itol (added to kinase assay buffer before use). Blank controls were set up
as outlined above, excluding the addition of active ERK1 kinase. Reaction
samples were incubated at 30°C for 15 min and then applied on 10%
SDS-PAGE gels for Western blotting.

Image processing and analysis. Images were processed using Photoshop
software (Adobe) for orientation, clarity, false colorization, and overlay/
colocalization. Western blot quantitation was performed using Im-
age]. Immunohistochemistry quantitation of Sox9 and pERK on paraffin
sections was performed using an Aperio Scanscope and related image
analysis software. Briefly, slides were scanned to create digital images that
were marked to limit analyses to areas of solid tumor. After color calibra-
tion and thresholding for hematoxylin (blue) and DAB (brown), DAB
staining was scored using the color deconvolution algorithm where the
score was calculated taking into account staining intensities and percent-
ages [score = 1.0%(%weak) + 2*(%moderate) + 3*(%strong)] or the
nuclear quantification algorithm (for Olig2), where the score represents
the percentage of nuclei positively stained. Scores for replicate cores were
averaged and taken as the final score for the tissue sample.

Quantitative and statistical analysis. For the analysis of luciferase assay,
luciferase data were normalized by dividing raw light readings by the
corresponding Renilla values. Reported 7 values correspond to the num-
ber of individual experiments performed, each composed of three repli-
cates per sample. For in vivo experiments, brains from at least three
independent experiments were processed (1 values refer to number of
brains analyzed). Comparisons between control and experimental con-
ditions were performed using a two-tailed Student’s ¢ test (to compare
two values), while comparisons between multiple samples were per-
formed by applying ANOVA and Tukey’s multiple-comparison test us-
ing Prism software (GraphPad). Statistical variation was determined
using SEM.

Results

Levels of ERK activation are associated with differing content
of neuronal versus glial cells in human BRAF-associated brain
tumors

RAS pathway hyperactivation is a well recognized feature of
gliomas and glioneuronal tumors, which have mutations at
the level of upstream RTKs, NF1, BRAF, or previously (Louis
et al., 2007; Bar et al., 2008; Jones et al., 2008; The Cancer
Genome Atlas Research Network, 2008; Schindler et al., 2011).
However, constitutive RAS activation alone does not translate
into malignancy, as low-grade/benign neoplasms, such as PAs
and GGs, are also characterized by activating mutations and
rearrangements of BRAF (Zhu et al., 1997; Louis et al., 2007;
Bar et al., 2008; Jones et al., 2008; Otero et al., 2011; Schindler
et al., 2011). We thus asked whether RAS pathway hyperacti-
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vation might have an additional role in |

Low-grade glioma tissues

glioma biology other than driving pro-

| control

liferation. More specifically, as RAS sig-

naling can induce either neuronal or
glial differentiation in neurodevelop-
ment (Lukaszewicz et al., 2002; Ménard
et al., 2002; Ito et al., 2003; Imamura et
al., 2008; Ohtsuka et al., 2009), we asked
whether it could similarly be playing a
role in controlling neural cell fate spec-
ification during tumorigenesis.

We began our studies by investigating
human PAs and GGs, which have distinct
cellular compositions—GGs are composed N
of both neoplastic neurons and neoplastic el
glia (Zhu et al., 1997; Koelsche et al.,
2013), whereas PAs are considered glial
without a neuronal component. We as-
sessed cell content in sections from six hu-
man cerebral GGs and five cerebral PAs,
as well as three control brains (Table 1). 7
The areas selected for analysis and quan-
titation were specifically chosen from cen-
tral areas of solid tumors with care taken
to avoid areas where there might have
been possible infiltration into adjacent
normal brain tissue. Consistent with their
diagnoses, all six GGs contained abnor-
mal NeuN " cells whereas PAs did not
(p <0.0001 comparing GGs and PAs; Fig.
1A-C,M). Moreover, both GGs and PAs
had increased numbers of glial lineage
cells compared with control cortices, as
assessed by immunolabeling with the as-
trocytic marker, GFAP (Fig. 1D-F) and
the glioblast progenitor marker, Sox9,
with glial content highest in PAs (p < 0.05
comparing GGs and PAs; Fig. 1G-I,N).
Finally, to determine whether increased
glial and decreased neuronal content
correlated with differences in RAS/ERK
signaling, we performed immunohisto-
chemical staining for ERK1/2 phosphory-
lated on T202/Y204 (hereafter designated
PERK). pERK expression levels were significantly higher in
PAs versus GGs (p < 0.001 comparing GGs and PAs; Fig.
1J-L,0). Furthermore, within the GGs, strong pERK staining
was preferentially seen in cells with glial morphology and was
weak or absent in neuronal-like cells (Fig. 1H). This bias in
PERK expression was confirmed by coexpression studies in
GG tissues, where pERK staining largely colocalized with cells
expressing the glial markers GFAP and Olig2 (Fig. 1Q,R),
whereas cells expressing the neuronal marker NeuN only rarely co-
labeled with pERK (Fig. 1P). In addition to these cell populations,
GGs contained variable numbers of Sox2 " cells, consistent with a
progenitor phenotype in a subset of GG cells, but these cells only
showed occasional pERK colabeling (Fig. 15).

Although correlative in nature, these findings together raise
the possibility that different levels of RAS/ERK signaling might
influence the cellular identity of glioma and glioneuronal tumor
cells—with higher pERK leading to glial lineage selection over
alternate neuronal fates.
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RAS/ERK activation correlates with histological and molecular features of human low-grade gliomas. A—L, Represen-
tative sections of adult human neocortex through control (Cx) nondiseased regions (4, D, G, J) or through a ganglioglioma (GG) (B,
E, H, K) or pilocytic astrocytoma (PA) (C, F, I, L). Sections were processed for immunolabeling with the neuronal marker NeuN
(A-C), GFAP (D-F), Sox9 (G-1), or pERK (J-L). The percentage of cells expressing NeuN (M), Sox9 (N), and pERK (0) was
quantitated. *p << 0.05, **p << 0.01, ***p << 0.005. AP-visualized (red) and DAB-visualized (brown) double immunolabeling of
GG tissues with pERK/NeuN (P), pERK/GFAP (Q), pERK/Olig2 (R), and pERK/Sox2 (S). Scale bars: 50 pum.

RAS/ERK signaling is preferentially activated in AsclI and not
Neurog2-expressing cortical progenitors

To study the influence of RAS/ERK signaling on neural cell fate
decisions in an in vivo context, we used the embryonic cerebral
cortex as a model (Fig. 2 A, B). During normal development, cor-
tical progenitors in the dorsal telencephalon first give rise to glu *
neurons that sequentially form seven cortical layers (layer VII is
transient) between mouse E10 and E17 (Smart and Smarh, 1977;
Caviness, 1982; Caviness et al., 1995; Super et al., 1998; Takahashi
etal., 1999). In late embryogenesis, cortical progenitors then give
rise to astrocytes and postnatally they give rise to OPCs (Kessaris
etal., 2006; Piper etal., 2010; Subramanian et al., 2011). Similarly,
embryonic subcortical progenitors in the ventral telencephalon
differentiate sequentially, forming GABA * neurons, then astro-
cytes and finally OPCs, with a subset of GABA ™ neurons and
OPCs migrating tangentially into the cortex (Tamamaki et al.,
1997; Anderson et al., 1997a, 2001, 2002;Casarosa et al., 1999;
Horton et al., 1999; Marin and Rubenstein, 2001; Nery et al.,
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2002; Xu et al., 2003, 2004; Butt et al., 2005; Kessaris et al., 2006).
Based on their embryonic lineage relationships, and a molecular
understanding of fate specification, we thus consider glu * neu-
rons to have a cortical fate, while GABA " neurons and OPCs are
subcortical fates in the embryo (Fig. 2C).

In an instructive mode of cell fate specification, extrinsic sig-
nals control cell fate choices at lineage branch points by regulat-
ing genetic switches—activating one set of genes, while repressing
alternative genetic programs (Pearson and Doe, 2004; Huang et
al., 2007). Several observations suggest that in the telencephalon,
the bHLH transcription factors Neurog2 and Ascll form such a
genetic switch (Fig. 2C). First, Neurog2 and Ascll specify distinct
cell fates (Schuurmans and Guillemot, 2002). Neurog2 is neces-
sary and sufficient to specify a glu ™ neuronal fate, whereas AsclI
has multiple functions, either promoting proliferation or induc-
ing the differentiation of GABA * neurons or OPCs (Casarosa et
al., 1999; Horton et al., 1999; Fode et al., 2000; Nieto et al., 2001;
Parras et al., 2002; Schuurmans et al., 2004; Britz et al., 2006;
Mattar et al., 2008; Castro et al., 2011; S. Li et al., 2012; Kovach et
al., 2013). Second, Neurog2 and Ascll are repressive at the tran-
scriptional level, with the loss of Neurog2 leading to upregulated
Ascll expression in dorsal progenitors, converting these cells to
ventral cell fates (Fode et al., 2000; Schuurmans et al., 2004). We
thus conceive of Neurog2-Ascll as forming a central genetic
switch that controls the choice between different telencephalic
neuronal and glial cell fates (Fig. 2C). Here we investigated
whether this Neurog2-Ascll switch was regulated by RAS/ERK
signaling, and the significance of this switch in low-grade glial
and glioneuronal tumors (Fig. 2D).

RAS/ERK signaling is temporally activated in
telencephalic progenitors
Given previous associations between RAS/ERK signaling and ei-
ther increased gliogenesis or neurogenesis (Baron et al., 2000,
Chandran et al., 2003; Gabay et al., 2003; Hack et al., 2004; Kes-
saris et al., 2004; Abematsu et al., 2006; Aguirre et al., 2007; Samu-
els et al., 2008; Paquin et al., 2009; X. Li et al., 2012; Wang et al.,
2012), we asked whether this signaling pathway might select dif-
ferent neural cell lineages by controlling the proneural genetic
switch. We reasoned that if RAS signaling controlled Neurog2/
Ascll expression and/or function, that it should undergo tempo-
ral regulation, concomitant with the temporal changes in neural
cell output by telencephalic progenitors. To detect RAS pathway
activation, we analyzed the expression of pERK as well as the
Fgf-syn-expression group genes, Spry2, Etvl, and Etv5, all of
which are expressed in response to RTK signaling (Tsang and
Dawid, 2004). In E12.5 cortical progenitors, pERK expression
was negligible except in mitotic cells at the ventricular surface
(Fig. 2E). By E13.5, cortical progenitors in the lateral most corner
of the ventricular zone (VZ) began expressing pERK, and by
E15.5, pERK expression covered the entire cortical VZ (Fig.
2E,E"). EtvI (Fig. 2F-F"), Etv5 (Fig. 2G-G"), and Spry2 (data not
shown) transcription was also progressively initiated in the cor-
tical VZ, following a similar lateral-to-medial gradient between
E12.5 and E15.5. The initiation of RAS/ERK signaling in the lat-
eral VZ and subsequent medial progression parallels the neuro-
genic gradient, and is likely initially triggered by Egf and Fgf
ligands expressed in the cortical antihem, a lateral signaling cen-
ter (Assimacopoulos et al., 2003; Hasegawa et al., 2004; Sansom
and Livesey, 2009).

Finally, consistent with a normal in vivo requirement for RAS/
ERK signaling in repressing Neurog2 and inducing AsclI expres-
sion, we found that Neurog2 and pERK were expressed in an
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almost completely nonoverlapping subset of E15.5 cortical pro-
genitors (Fig. 2H-H"), while Ascll and pERK were frequently
coexpressed (Fig. 2I-I"). Together, these data are consistent with
the idea that RAS/ERK signaling is preferentially active in Ascll *
and not Neurog2 * cortical progenitors, and suggest that RAS/
ERK signaling may regulate the proneural genetic switch.

RAS functions through the ERK pathway to control the
Neurog2-Ascll proneural genetic switch in cortical
progenitors

To investigate whether increased RAS pathway activity was suffi-
cient to trigger the Neurog2-Ascll proneural switch in cortical
progenitors, we activated RAS signaling in Neurog2®™ ™" corti-
ces (Britz et al., 2006), taking advantage of the persistence of GFP
expression in Neurog2 ™ cortical progenitors and derivative neu-
rons to perform short-term lineage tracing (Fig. 2J). To activate
RAS/ERK signaling in E12.5 cortices, we used in utero electropo-
ration (Dixitetal., 2011) to introduce a constitutively active (CA)
form of RAS (RasV12; Chen et al., 2003), using an expression
vector with an IRES-mCherry cassette to identify transfected cells.
In this assay, GFP “mCherry © coexpression marked electropo-
rated cells in the Neurog2 * lineage, while mCherry single * cells
were not of the Neurog2* lineage (Fig. 2]). In E12.5—E14.5
electroporations of mCherry vectors alone, 43.5 * 3.6% and
95.4 = 0.6% of mCherry " VZ and subventricular zone (SVZ)/
intermediate zone (IZ) cells coexpressed GFP in Neurog2®™*/*
cortices, respectively (n = 4; Fig. 2K,K’,0). In contrast, electro-
poration of RasV12 and mCherry vectors blocked GFP expres-
sion in NeurogZGFPK”Jr cortical VZ cells (10.1 £ 3.2%,n = 2;p =
0.0045) and SVZ/1Z cells (38.2 £ 7.2%, n = 2; p = 0.0002; Fig.
2L,L',0). Thus, increased RAS activity not only represses Neu-
rog2 expression in cortical VZ progenitors, but also blocks
selection of this lineage in daughter cells that have moved to
the SVZ/1Z.

If our model of proneural gene regulation is correct, we would
also expect an aberrant increase in AsclI expression with activated
RAS. Indeed, in analogous short-term lineage traces performed in
Ascl1“"™PX/* embryos (Leung et al., 2007), RasVI2 promoted
GFP expression and Ascll lineage selection in transfected,
mCherry ¥ cortical VZ progenitors (mCherry: 24.1 = 2.6%, n =
3; RasV12: 62.3 = 3.5%, n = 3; p = 0.0009; Fig. 2M,M',N,N’,P).
Although GFP did not persist in RasV12-transfected Ascl1 <7+
cellsin the SVZ/IZ (mCherry: 22.5 £ 1.7%, n = 3; RasV12:24.8 +
2.2%, n = 3; p = 0.45; Fig. 2P), this is likely because as Ascll
progenitors exit the VZ and enter the SVZ/IZ, they differentiate,
turning off Ascll (and eventually GFP) and turning on glial
markers. Indeed, previous studies have shown that AsclI is down-
regulated in differentiating cells (Petryniak et al., 2007), and we
show evidence later that RasV12 induces OPC differentiation
(Fig. 5).

RasV12 activates several downstream signal transduction cas-
cades (Fig. 2D). To determine whether it was the ERK branch of
the pathway that repressed Neurog2 while increasing Ascll tran-
scription, we also performed E12.5—E15.5 cortical electropora-
tions of pCIG2 expression vectors (also carrying an IRES-GFP
cassette) for bRafV600E (Dias-Santagata et al., 2011) and MekCA
(Cowley et al., 1994), which selectively and constitutively activate
ERK. Note that misexpression of RasV12, bRafV600E, and Me-
kCA should mimic the overactivity of the RAS/ERK pathway ob-
served in gliomas and glioneuronal tumors. As expected,
overexpression of RasV12, bRafV600E, and to a lesser extent,
MekCA, all induced ectopic pERK expression in cortical progen-
itors (Fig. 3C,C',E,E',G,G"), and also induced Etv5 expression
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RAS functions through the ERK branch to regulate the Neurog2-Ascl1 genetic switch in cortical progenitors. E12.5—E15.5 electroporations of a pClG2 control vector (4, A’, B-B™),
H-H"),RasN17 (I, J-J"), or MekDN (K, K’ , L-L") vectors (expressing GFP). Transfected brains were analyzed for coexpression of

GFP with pErk (4,4",C,C',E, F',G,G',1,I', K, K'), or for transcripts for GFP (B, D, F, H,J, L), Etv5 (B', D', F', H'), Neurog2 (B", D", F",H",J' . J', L', L"), and Ascl1 (B", D"", F"", H""). Dashed lines
outline the transfected region in the neocortex. Red arrowheads mark ectopic pERK (C', E’, G’), Etv5 (D", F', H'), Neurog2 (H",J', J', L', L"), and Ascl1 expression (D", F”, "), whereas yellow
arrowheads mark transfected areas in which Neurog2 (D", F, H") or pERK (I, I, K, K") expression was extinguished. M, Schematic illustration of repression of Neurog2 expression and induction of
AsclT expression by RAS/ERK signaling. Scale bars: 250 um. CP, cortical plate; ctx, neocortex; str, striatum.

(Fig. 3D',F’,H') in the GFP ™ transfected patch (compare with
vector controls; Fig. 3A,A’,B’). Note that Etv5 is an Fgf-syn-
expression group gene that is normally transcribed in response to
RTK signaling (Tsang and Dawid, 2004). RasV12, bRafV600E,
and MekCA also repressed Neurog2 expression (Fig. 3D",F',H")
and induced ectopic Ascll expression in the VZ and SVZ/1Z (Fig.
3D",F",H") compared with vector controls (Fig. 3B",B"). In con-
trast, electroporation of pCIG2 vectors containing active forms of
AktCA, RalAV23, and RalBQ72L (Franke et al., 1997; Lim et al.,
2005; Sablina et al., 2007) into E12.5 cortical progenitors did not
alter the expression of pERK, Etv5, Neurog2, or Ascll (data not
shown).

Finally, to determine whether RAS/ERK signaling is normally
required to regulate proneural gene expression, we inhibited sig-
naling in cortical progenitors by introducing dominant-negative
(DN) RasN17 and Mek in pCIG2 expression vectors (Cowley et
al., 1994; Yoshimura et al., 2006). In E12.5—E15.5 cortical elec-
troporations, both RasN17 and MekDN reduced pERK expres-
sion, and promoted ectopic Neurog2 expression in GFP * cortical
cells (Fig. 3I-L). This is consistent with the previously observed
increase in Neurog2 expression in Fgf receptor 1 (Fgfrl);Fgfr2;
Fgfr3 triple knock-outs, in which signaling through the RAS/ERK
pathway is reduced (Rash et al., 2011).

RAS signaling is thus necessary and sufficient to trigger a
Neurog2-to-Ascll proneural lineage switch, which may alter sub-
sequent cell fate selection (Fig. 3M).

Increased RAS/ERK signaling diverts cortical cells away from
neuronal fates

Neurog2 promotes the differentiation of glu * pyramidal neurons
(Fode et al., 2000; Schuurmans et al., 2004; Mattar et al., 2008)
whereas Ascll promotes GABA™ neuronal as well as non-
neuronal fates (Casarosa et al., 1999; Britz et al., 2006; Berninger
et al., 2007; Geoffroy et al., 2009). We therefore examined the
expression of the neuronal markers NeuN (late pan-neuronal
marker), Tbrl (deep-layer glu * neuronal marker; Hevner et al.,
2001; Bedogni et al., 2010), and DIxI (GABA ™ neuronal lineage
marker; Anderson et al., 1997b) in cortical cells electroporated
with pCIG2 vectors containing CA forms of RAS and its major
effectors.

In E12.5—E15.5 electroporations of RasV12, bRafV600E, or
MekCA vectors (expressing GFP), the number of GFP * trans-
fected cells expressing NeuN was reduced 14.0-, 6.7-, and 2.7-
fold, respectively, when compared with pCIG2 controls (n = 3
for each construct; p < 0.0001 for all comparisons; Fig. 4A-D,A’-
D’,M). In contrast, AktCA, RalAV23, and RalBQ72L did not alter
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production of NeuN * neurons (Fig. 4M and data not shown).
We also coelectroporated E12.5 cortical progenitors with pCIG2
vectors for RasV12 together with pCIG2 vectors overexpressing
DN forms of Mek, Akt, RalA, and RalB (B. P. Zhou et al., 2000;
Lim et al., 2005; Yoshimura et al., 2006). Only MekDN partially
rescued RAS inhibition of NeuN ™ neurogenesis (n = 3 for each
set of constructs; p < 0.0001 vs RasV12 alone; Fig. 4M), further
supporting the role of ERK signaling in mediating RAS effects.
Similar results were obtained when examining Tbrl expression.
InE12.5—E15.5 electroporations, pCIG2 vectors overexpressing
RasV12 (p < 0.001), bRafV600E (p < 0.001), and MekCA (p <
0.05) reduced the number of Tbr1 * cells generated by 7.0-, 6.6-,
and 5.0-fold, respectively, compared with pCIG2 controls (n = 3
for each construct; Fig. 4E-H,E'-H',N). In contrast, electropo-
ration of pCIG2 vectors overexpressing AktCA, RalAV23, and
RalBQ72L did not alter Tbrl expression, and a partial rescue of

RasV12-mediated Tbr1 inhibition was only elicited by coexpres-
sion with MekDN (n = 3 for each set of constructs; p < 0.001
compared with RasV12 alone; Fig. 4N and data not shown). RAS
thus acts specifically through the ERK pathway to divert cortical
progenitors away from glu © neuronal fates.

Given the loss of Neurog2 expression in response to RAS/ERK
activation, a reduction in glu * neuronal differentiation was not
unexpected. The accompanying upregulation of AsclI expression
likewise suggested that some cortical progenitors might aber-
rantly select a GABA ™ interneuron fate. In E12.5—E15.5 elec-
troporations of our pCIG2-RAS signaling constructs, however,
DIx1 expression was unaltered (Fig. 4I-L,I'-L’ and data not
shown), with the exception of pCIG2 MekCA, which induced ec-
topic DixI in a small number of cortical cells (Fig. 4L")-a finding
that we return to below. We can, however, make the general
conclusion that strong RAS/ERK activation generally blocks neu-
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ronal differentiation, raising the question of what the transfected
cells had instead become.

Increased RAS/ERK signaling diverts cortical cells to
proliferating, glial cell lineages

In addition to promoting a GABA ™ neuronal fate, Ascll also
promotes progenitor proliferation and OPC fate specification
(Casarosa et al., 1999; Horton et al., 1999; Parras et al., 2007;
Castro et al., 2011). We thus asked whether the Ascll * progeni-
tors generated in response to hyperactivated RAS acquired a pro-
liferative, glioblast fate. Sox9 is an HMG-box transcription factor
thatis required to specify a glial identity (Stolt et al., 2003; Kang et
al., 2012), and is also a direct AsclI transcriptional target (Castro
etal.,2011). In control E12.5—E15.5 electroporations of pCIG2,
Sox9 was expressed in the VZ and in scattered cells outside the VZ
(Fig. 5A,A"). Notably, loss of apical ventricular contacts is a hall-
mark of glial precursors, which continue dividing after leaving
the VZ (Altman, 1966). In E12.5—E15.5 electroporations of
pCIG2RasV12, pCIG2bRafV600E, and pCIG2 MekCA vectors
(coexpressing GFP), Sox9 was ectopically expressed throughout
the cortex, indicating a marked increase in glioblast number

(Fig. 5B-D,B'-D'"). Indeed, electroporation of pCIG2RasV12,
pCIG2bRafV600E, and pCIG2 MekCA induced 40.5-, 37.5-, and
28.9-fold increases in the percentage of GFP ™ electroporated
cells that expressed Sox9, respectively (n = 3 for each construct;
p < 0.0001 compared with pCIG2; Fig. 5U). In contrast,
pCIG2 AktCA, pCIG2RalAV23, and pCIG2 RalBQ72L transfec-
tions had no influence on Sox9 expression (Fig. 5U and data not
shown). In addition, in rescue experiments, only pCIG2 MekDN
suppressed the ability of RasVI2 to induce the formation of
Sox9 * glioblasts in E12.5—E15.5 cortical electroporations (n =
3 for each set of constructs; p < 0.0001 compared with RasV12
alone; Fig. 5U).

To confirm that RAS/ERK signaling could induce a glial pre-
cursor fate in cortical progenitors, we also examined expression
of Nfia, a transcriptional target of Sox9 that regulates the switch
from neurogenesis to gliogenesis (Deneen et al., 2006; Kang et al.,
2012), as well as tenascin C and glutamine synthetase, which
are both expressed in glial precursors that give rise to OPC or
astrocytic lineages (Cammer, 1990; Wiese et al., 2012). In
E12.5—EI15.5 cortical electroporations, all three of these glio-
blast markers were induced by pCIG2 RasV12, pCIG2bRafV600E,
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and pCIG2 MekCA and not by pCIG2 AktCA, pCIG2 RalAV23, or
pCIG2 RalBQ72L (data not shown). Finally, given that glioblasts
are actively proliferating cells, we assessed whether activation of
RAS/ERK promoted ectopic proliferation, as detected by BrdU
labeling. In control E12.5—E15.5 control electroporations,
BrdU ™ cells were detected in an abventricular band in the VZ and
in a smaller number of scattered progenitors in the cortical layers,
which presumably are glioblasts (Fig. 5F,F'). In contrast, in
E12.5—E15.5 cortical electroporations of pCIG2RasVi2,
pCIG2bRafV600E, and pCIG2 MekCA vectors, large numbers of
cells incorporated BrdU outside of the VZ, indicative of ectopic
proliferation (Fig. 5G-1,G'-I").

Together, these studies suggest that activated ERK, and not
other downstream RAS effectors, promotes the rapid formation
of proliferative, glial precursor cells.

Increased RAS/ERK signaling promotes OPC and astrocytic
lineage selection

To determine whether the glioblasts induced by RAS activation in
E12.5 cortical progenitors would preferentially give rise to OPC or
astrocytic lineages, we examined glial lineage markers in the
E12.5—E15.5 electroporations of our signaling constructs. While
0% of pCIG2 (control), or pCIG2AktCA, pCIG2RalAV23, and
PCIG2 RalBQ72L-transfected cortical cells expressed Olig2, which is
required to specify an OPC fate (Zhou and Anderson, 2002), 95.3 +
1.0%, 969 * 0.7%, and 71.7 *= 7.4% of pCIG2RasVI2,
pCIG2bRafV600E, and pCIG2 MekCA-transfected cells expressed
Olig2, respectively (n = 3 for each construct; p < 0.0001 compared
with pCIG2; Fig. 5K-N,K’-N’,V and data not shown). Furthermore,
coexpression of pCIG2RasV12 with pCIG2 MekDN resulted in a
2.0-fold decrease in the number of Olig2 * cells formed compared
with RAS activation alone (n = 3 for each set of constructs; p <
0.0001 compared with RasV12 alone), whereas pCIG2AktDN,
pCIG2 RalADN, and pCIG2RalBDN had no ability to suppress
RasV12 induction of an OPC fate (Fig. 5V and data not shown).
These values were complementary to our NeuN counts (Fig. 4M),
and suggested that the majority of the RAS/ERK-activated cells ulti-
mately became either Olig2 * OPCs (predominant) or NeuN * neu-
rons. Similar results were obtained when examining additional OPC
markers, including Olig] and Pdgfra (Pringle et al., 1992; Zhou and
Anderson, 2002; Rowitch, 2004; data not shown). RAS thus acts via
the ERK pathway to promote OPC fate specification in cortical glio-
blasts.

In the spinal cord, Ascll is expressed in neuronal and OPC
lineages and not in astrocytic lineages (Battiste et al., 2007).
Moreover, Olig2 blocks astrocyte differentiation (Fukuda et al.,
2004). We thus speculated that the ability of activated RAS to
induce Ascll and Olig2 expression in a large number of cortical
cells would generally preclude the induction of astrocyte differ-
entiation. Indeed, a relatively small number of E12.5 cortical
cells electroporated with pCIG2RasV12, pCIG2bRafV600E, or
pCIG2MekCA vectors expressed the astrocytic marker glial
fibrillary acidic protein (GFAP) at 72 h postelectroporation (Fig.
5P-S,P'-S’). While the number of pCIG2RasV12-transfected
cortical cells expressing GFAP increased if analyzed 6 d postelec-
troporation, OPC marker expression remained predominant
(Fig. 70-T). Ascll ™ glioblasts are thus biased toward selecting
OPC fates upon RAS/ERK hyperactivation.

Activated RAS induces tumorigenesis in the embryonic cortex
To determine whether activated RAS indeed induced tumors in
the embryonic cortex, we compared proliferation, cell identity,
and histologic features induced following the expression of
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pCIG2 versus pCIG2-RasV12. In E12.5—E18.5 cortical electro-
porations, pCIGRasV12 induced the formation of GFP * lesions
that were densely cellular, expansile tumors with a locally infil-
trating border (Fig. 6A,B,D,E,E"). The tumor cells had a pre-
dominantly bipolar morphology and displayed occasional
mitotic figures. In some tumors, areas of microcystic change were
seen (data not shown). In contrast to the clear laminar organiza-
tion of pCIG2-control electroporated cortices (Fig. 6C), a distinct
cell-sparse IZ was not observed upon pCIG2 RasV12 transfection
(Fig. 6D). Based on the morphologic features of pCIG2 RasV12
tumors and their generally low proliferative rates, the tumors
most closely resemble a low-grade astrocytoma akin to human
pilocytic astrocytoma. Others have similarly observed generation
of pilocytic astrocytoma-like tumors when introducing activated
BRAF (Gronych et al., 2011), or have observed a range of low-
and high-grade astrocytomas when introducing RasV12 (Ding et
al., 2001). Notably, we have not determined whether the tumors
are benign or malignant in our studies, a distinction that would
require either transplantation into recipient mice or evidence of
continuous expansion over time.

To confirm that pCIG2 RasV12-transfected cortical cells con-
tinued to proliferate instead of undergoing neuronal differentia-
tion, we also examined expression of the proliferation marker
Ki67 and the neuronal marker Tujl in electroporated cortices. In
E12.5—E16.5 control pCIG2 electroporations, the GFP * cohort
of transfected cells had mostly migrated out of the VZ and into
the differentiation zones of the cortical plate, and accordingly,
most GFP ™ cells expressed Tuj1 instead of Ki67 (Fig. 6F-F"). In
contrast, RasV12-transfected, GFP ¥ cells formed proliferative
masses in which cells continued to divide as Ki67 * progenitors,
and for the most part, did not differentiate into Tujl * neurons
(Fig. 6G-G",H-H"). We also examined the effects of RasVI12 on
the expression of pan-neural progenitor markers Sox2 and nes-
tin, as well as the cortical-specific progenitor markers Pax6 and
Tbr2. While the germinal zone expression of each of these mark-
ers was maintained in E12.5—E15.5 pCIG2 control electropora-
tions, pCIG2RasV12 greatly expanded the expression of Sox2
(Fig. 61,1',],]') and nestin (Fig. 6 K,K',L,L") into the IZ and cor-
tical plate, whereas Pax6 (Fig. 6 M,M',N,N") and Tbr2 (Fig.
60,0',P,P') expression was dramatically reduced.

Together, these data are consistent with the idea that activa-
tion of the RAS pathway promotes a proliferative neural progen-
itor phenotype, but these progenitors acquire a ventral Ascll
identity, rather than a dorsal Neurog2 */Pax6 */Tbr2 * identity.

Loss of Neurog2 expression contributes to RasV12-

induced gliomagenesis

Neurog2 promotes the differentiation of glu* neurons either
when misexpressed in the embryonic telencephalon or in adult
SVZ neural stem cells (Mattar et al., 2008; Blum et al., 2011; Chen
et al., 2012; Heinrich et al., 2012; S. Li et al., 2012). Moreover,
overexpression of Neurog2, either alone or in combination with
other transcription factors, can induce neuronal differentiation
in other somatic cell types, and in glioblastoma-derived cell lines
(Meng et al., 2012; Zhao et al., 2012; Guichet et al.,, 2013). To
determine whether the loss of Neurog2 expression contributed to
the oncogenic effects of RasV12 in our in vivo system, we asked
whether Neurog2 could rescue RasVi12-induced tumorigenesis.
Strikingly, compared with the relatively uniform activation of
PERK (data not shown) and Spry2 transcription (Fig. 6Q) in
E12.5—E15.5 RasV12 single transfections, induction of pERK
expression (data not shown) and Spry2 transcription was signif-
icantly reduced when Neurog2/RasV12 were electroporated in
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RalBQ72L

Activation of RAS signaling in cortical progenitors results in tumorigenesis. A-E, E18.5 control (€) and E12.5—E18.5 brains electroporated with p(IG2 RasV/72 (4, B, D, E, E’) were

processed for H&E staining (B—E, E’), or GFP transcripts (A). F-H, E12.5—E16.5 electroporations of a pClG2 control vector (F~F") and p(IG2 RasV12 (G-G", H-H™). Transfected brains were
analyzed for coexpression of GFP (green), proliferation marker Ki67 (red), and pan-neuronal marker Tuj1 (blue). White arrowheads mark RasV/12 transfected cells expressing Ki67 instead of Tuj1
(H-H").1-P,E12.5—E15.5 brains electroporated with a pClG2 control vector (/, I, K, K',M,M’, 0,0") or p(lG2 RasV12 (J,J',L,L’, N, N’ P, P") were processed forimmunostaining of pan-neural
progenitor markers Sox2 (/,1",J,J’) and Nestin (K, K, L, L"), cortical-specific progenitor markers Pax6 (M, M’, N, N"),and Tbr2 (0, 0’, P, P'). Red arrowheads mark ectopic expression of Sox2 (J')
and Nestin (L"), while yellow arrowheads mark transfected areas with reduced expression of Pax6 (N') and Thr2 (P’). @-V, E12.5—E15.5 electroporations of p(IG2 RasV12 with (T-V, V') or
without Neurog2 (Q-S, S"). Transfected brains were analyzed for the transcripts of Spry2 (Q, T), Pdgfa (R, U), or coexpression of GFP and Tuj1 (S, S, V, V'). Red arrowheads mark ectopic expression
of Spry2 (Q, T) or Pdgfa (R). W-Z, E12.5—E15.5 electroporations of pCIG2 (W, W'), AktA (X, X"), RalAV23 (Y, '), and RalBQ72L (Z,Z') followed by analysis of BrdU incorporation. Red arrowheads
mark ectopic BrdU incorporation. Dashed lines outline the transfected region in the neocortex. Scale bars: IV, I'=V', F-F", G-G" 250 um; H—=H",67.5 um. (P, cortical plate; ctx, neocortex; str, striatum.

combination (Fig. 6T). Moreover, while RasV12 induced the for-
mation of Pdgfra™ OPCs within 72 h postelectroporation (Fig.
6R), in E12.5—E15.5 cotransfections, Neurog2 largely prevented
RasV12’s ability to induce the formation of Pdgfra © OPCs (Fig.
6U). Finally, Neurog2 also rescued the RasVI2-mediated
blockade of neurogenesis, restoring the differentiation of
Tujl * cortical neurons (Fig. 6S,5",V,V’). Neurog2 overexpres-
sion thus rescues several aspects of RasV12-induced tumori-
genesis, highlighting the importance of RasV12’s ability to
regulate the Neurog2-Ascll genetic switch.

RAS/ERK levels dictate whether Ascll-expressing cortical
progenitors undergo glial or neuronal differentiation

While activation of different branches of the RAS pathway in-
duced ectopic proliferation 3 d postelectroporation of the E12.5
cortex (including RalA and RalB, although not Akt; Fig. 6 W-
Z,W'-Z"), only the ERK pathway influenced neural cell fate se-
lection, preferentially biasing cortical progenitors toward glial/
OPC lineages. These results were unexpected given that (1)
activation of ERK in some contexts induces neuronal differenti-
ation (Ménard et al., 2002; Paquin et al., 2005) and (2) ERK
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RAS/ERK levels influence Asc/7’s fate specification properties and target gene selection. A—C, Western blot analysis of lysates from HEK293 cells transfected with pEFRasV/12 or

pClG2 RasV'12 and analyzed for pERK, ERK, and [3-actin expression (A). Expression levels were quantified by densitometry and normalized to 3-actin and total ERK (B, €). D-E, E12.5—E14.5 brains
electroporated with pEFRasV/12 and GFP were processed for the expression of GFP (D), pERK (D, D), and Asc/1 (E). F~K, E12.5— E14.5 electroporations of Neurog2°™** cortices with pEFRasV/12
and mCherry, analyzed for expression of mCherry (F, J, K, red), Neurog2 (G), DIx7 (H, H'), Tuj1 (I, K, blue), and GFP (J, K). Dashed red lines outline the transfected region in the neocortex. Red
arrowheads mark ectopic Dix7 (H, H') or Tuj1 (I). Yellow arrowheads mark transfected areas with reduced Neurog2 (G) and GFP (J) expression. Scale bars: D—H, 250 um; 1=K, H', 125 um. L-W,
E18.5 control (L, 0, R, U) and E12.5— E18.5 brains electroporated with pEFRasV12 (M, P, S, V) or p(1G2 RasV/12 (N, Q, T, W) were processed for H&E staining (L-N'), orimmunohistochemistry for
0lig2 (0-Q), GFAP (R—T), or TUJ1/pERK (U-W). Scale bars: 500 um. X=Z, Transcriptional reporter assaysin P19 cells using DIl 7 (X), DIx1/2 112bintergenic enhancer (¥), and Sox9 (2) reporters. *p <
0.05, **p << 0.01, ***p < 0.005. AA, Schematic representation of the effects of RAS/ERK activity levels on Asc/7 target gene selection. ctx, neocortex; str, striatum.

signaling is activated in some gliomas that have a substantive
neuronal content (e.g., GGs; Dougherty et al., 2010). One possi-
bility was that differing levels of RAS/ERK activation might alter
AsclD’s ability to specify either GABA * neuronal or OPC fates in
both the embryonic telencephalon and in adult SVZ neural stem
cells (Casarosa et al., 1999; Fode et al., 2000; He et al., 2001; Yung
etal., 2002; Parras et al., 2004, 2007; Britz et al., 2006; Heinrich et
al., 2012).

To test whether RAS signaling levels influenced its activity in
cortical progenitors, we reduced the amount of RasV'12 expressed by
changing promoters. All of the above electroporations were per-
formed with pCIG2 containing a strong CAGG promoter/enhancer.
When placed under control of the EF1a promoter, RasV12 had a
twofold reduced ability to induce ERK phosphorylation in trans-
fected cells compared with pCIG2 RasV12 (Fig. 7A-D, D’; data not
shown). In E12.5—EI15.5 electroporations, pEFRasV12 (cotrans-
fected with mCherry to trace transfected cells) still turned Neurog2
expression off (Fig. 7F,G), while Ascll expression was turned on
(Fig. 7E), and similar numbers of Sox9 ™ glioblasts were generated

compared with pCIG2 RasV12 (Fig. 5U). However pEFRasV12 had
a2.2-fold reduced capacity to induce the formation of Olig2 ~ OPCs
(Fig. 5V). Glioblast formation can thus occur at lower levels of RAS
activation than OPC fate specification.

An examination of neuronal fates also revealed differences
between higher and lower levels of RAS activation. Whereas
electroporation of pCIG2-RasV12 strongly repressed neuronal
fates, comparatively more NeuN * and Tbr1 ™ neurons formed
in pEFRasV12 electroporations (Fig. 4M,N). Moreover,
pPEFRasV12 induced ectopic VZ expression of Tujl, an early
neuronal marker, with a subset of these neurons expressing
the GABA ™ neuronal marker DixI (Fig. 7H-K,H'). Similarly,
MekCA, which has a reduced capacity to promote ERK phos-
phorylation compared with RasV12 and bRAFV600E (Fig. 3,
compare G',C’,E’; data not shown), also induced some ectopic
Dix1 (Fig. 4L") and Tujl (data not shown) expression in the
cortex. Neuronal differentiation was not complete, however,
as pEFRasV12 and MekCA caused 2.2- and 2.7-fold reductions
in the number of cells expressing the late neuronal marker NeuN,
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respectively (n = 3 for each construct; p < 0.0001 for each com-
pared with pCIG2; Fig. 4M). Nevertheless, the inhibition of
NeuN expression was significantly lower than that achieved by
pCIG2RasV12 (n = 3 for each construct; 14.0-fold reduction
compared with pCIG2; p < 0.0001; Fig. 4M). Our data thus
suggest that lower levels of RAS/ERK activation are permissive
for GABA * neuronal differentiation, while higher levels promote
gliogenesis.

To explore differences in tumor morphologies induced by
different RAS signaling levels, we examined proliferation, cell
identity, and histologic features induced by moderate
(pEFRasV12) and high (pCIG2RasV12) levels of RAS pathway
activation in E12.5—E18.5 cortical electroporations. Compared
with control transfections (Fig. 7L), pEFRasV12 induced lesions
that were mildly to moderately hypercellular, with increased local
mass and architectural disruption of the cortex and underlying
white matter (Fig. 7M ). pCIG2 RasV12 also induced the forma-
tion of tumors, but these had greater cellularity, nuclear atypia,
and mitotic activity (Fig. 7N and data not shown). Moreover, the
lineages of the pEFRasV12- and pCIG2 RasV12-transfected cor-
tical cells differed. Compared with control electroporations (Fig.
70,R,U), pEFRasV12-transfected (pERK ™) cells included ab-
normal Tujl ™ neurons interspersed with Olig2 * and GFAP*
glial cells (Fig. 7P,S,V). In contrast, pCIG2 RasV12-induced le-
sions were comprised virtually entirely of abnormal pERK " glial
cells expressing Olig2 and GFAP (Fig. 7Q,T,W). Overall, the fea-
tures of the lesions induced by low and high oncogenic RAS
signaling were analogous to two classes of benign human tu-
mors—glioneuronal tumors (i.e., GGs) and low-grade tumors
composed of astrocyte-like glia (i.e., PAs), respectively, support-
ing the notion that RAS/ERK activity levels may drive cellular
diversification in neoplasia in addition to normal development.

Together, these data suggest that RAS/ERK signaling not only
controls the Neurog2-Ascll genetic switch but also functions
downstream of this switch to bias AsclI fate decisions, depending
on signaling intensity (Fig. 7AA).

Ascll transcriptional activity is regulated by ERK
phosphorylation

RAS/ERK activity may influence neural cell fate selection by in-
fluencing Ascll’s selection of transcriptional targets, a possibility
we tested using transcriptional reporter assays in AsclI-
responsive P19 embryonic carcinoma cells (Farah et al., 2000).
We used reporters for three known Ascll target genes: DIlI,
which activates the Notch receptor to maintain neural progeni-
tors in an uncommitted state (Castro et al., 2006); Dlx1/2, which
is active in GABA ™ neurons (Poitras et al., 2007; Ghanem et al.,
2008); and Sox9, which is expressed in proliferative glioblasts
(Castro et al., 2011). Compared with pCIG2 controls, Ascl1 effi-
ciently transactivated the DIII reporter (n = 3; p < 0.0001; Fig.
7X; Castro et al., 2006), but this activity was reduced by cotrans-
fection with pCIG2RasV12 or pEFRasVI2 (n = 3; p < 0.0001;
Fig. 7X). Conversely, Ascll could only transactivate the DIx1/2
reporter above pCIG2 control levels when RAS/ERK levels were
moderately increased by pEFRasV12 (n = 3 for each construct;
p = 0.012; Fig. 7Y). Finally, Ascll’s ability to activate a Sox9
reporter was enhanced when cotransfected with pCIG2 RasV12
(n = 3 for each construct; p < 0.0001; Fig. 7Z), and not
pEFRasV12, indicating that high RAS/ERK signaling is required
to increase the transcriptional activity of Ascll on glial-related
genes. Notably, the transcriptional reporter data are consistent
with the in vivo gain-of-function data, where cell fates differed
depending on signaling intensity.
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The transcriptional activities of several bHLH proteins are
regulated by direct phosphorylation (Marcus et al., 1998; Moore
etal., 2002; Ma et al., 2008; Ali et al., 2011; Hindley et al., 2012; S.
Lietal.,2012). To determine whether ERK1/2, which are proline-
directed serine/threonine kinases (Roskoski, 2012), directly
phosphorylated Ascll, we generated a phospho-specific antibody
to an Ascll peptide encompassing phosphorylated S185, one of
six SP sites (Fig. 8A). To test antibody specificity, we generated
single, double, and triple (Ascl1-SA3) serine-to-alanine (SA) mu-
tations in S62, S185, and S218, all containing the same LSP se-
quence (Fig. 8A). The phospho-Ascll (pAscll) antibody
recognized wild-type Ascll expressed in HEK cells, with higher
phosphorylation levels detected when cotransfected with
RasV12, whereas Ascl1-SA3 was only detected by anti-Ascll and
not by anti-pAscll (Fig. 8B). Although a pAscll band was still
visible in the absence of RasV12, we ascribe this basal level of
Ascll phosphorylation to serum in the media activating RAS/
ERK signaling. Indeed, serum removal for 7 h reduced the
amount of Ascll recognized by the pAscll antibody (data not
shown). Next, we performed in vitro kinase assays using recom-
binant ERK and in vitro transcribed and translated versions of
wild-type Ascll and mutant versions containing single, double,
or triple SA mutations in S62, S185, and S218 (Fig. 8C). All ver-
sions of Ascll except Ascl1-SA3 were recognized by the pAscll
antibody (Fig. 8C), confirming that Ascll carries phosphoaccep-
tor sites for the ERK kinase.

To test whether phosphorylation modulates Ascl1’s function,
we conducted transcriptional reporter assays in vitro, using wild-
type Ascll and a mutant version in which all six SP sites were
mutated to alanines (Ascl1-SA6; Fig. 8A). In our functional stud-
ies, we used Ascl1-SA6 because the activity of the related bHLH
transcription factor, Neurog2, is regulated by the number of SP
sites phosphorylated, rather than their precise locations (a
rheostat-like model; Ali et al., 2011; Hindley et al., 2012). We
found that RasV12 inhibited the ability of both AsclI-wt and
Ascl1-SA6 to transactivate the DIII reporter, indicating that the
SP sites did not mediate this repression (Fig. 8D). In contrast,
Ascll-SA6 could not transactivate the DIx1/2 reporter above
background levels, even in the presence of pEFRasV12, suggest-
ing that the SP sites are essential for AsclI to turn on DIx1/2 (Fig.
8E). Finally, while AsclI-SA6 retained its capacity to induce Sox9
transcription, pCIG2RasV12 could only boost the transactiva-
tion strength of AsclI and not Ascl1-SA6 (Fig. 8F). Thus, Ascll’s
ability to efficiently transactivate DIx1/2 and Sox9 reporters re-
quires the SP sites, consistent with a critical role for ERK activity
in controlling Ascll target gene selection in specific cell lineages.

Ascll cell fate specification properties depend on SP sites

To assess the functional significance of Ascll phosphorylation in
vivo, we misexpressed AsclI-wt and Ascl1-SA6 using in utero elec-
troporation. In E12.5—E15.5 cortical electroporations, during
the period when pERK expression extends across the cortical VZ
(Fig. 2E-E"), only Ascli-wt induced a 2.7-fold increase in Sox9
expression (n = 3 for each construct; p = 0.003; Fig. 9A-C,A'—
C',S) and a robust increase in BrdU incorporation after a 30 min
exposure (Fig. 9D-F,D'—F"). In contrast, AsclI-SA6 did not in-
duce these changes—supporting the requirement of SP site phos-
phorylation in promoting a proliferative glioblast fate. However,
neither Ascll nor AsclI-SA6 could induce ectopic Olig2 expres-
sion (Fig. 9G-1,G'-I'), consistent with our demonstration that
the conversion of Sox9 ™ glioblasts to Olig2 ™ OPCs requires
higher levels of RAS/ERK signaling (Fig. 5).
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RAS/ERK regulates Ascl1 transcriptional activity via direct phosphorylation. 4, Distribution of the six SP sites within wild-type Ascl1 (AsclT-wt). Annotation of the serines mutated to

alanines in Asc/7-SA3 and Asc/7-SA6 (mutated sites in red). B, Characterization of a phospho-specific Ascl1 antibody in HEK293 cells transfected with AsclT or Ascl1-SA3 along with pClG2 or RasV/12.
€, Phospho-Ascl1 antibody recognizes in vitro-transcribed/translated Ascl1 (and not Ascl1-SA3) phosphorylated by recombinant ERK. D-F, Transcriptional reporter assays in P19 cells using D7 (D),
DIx1/2112b intergenic enhancer (E), and Sox9 (F) reporters, demonstrating that the effects of RAS/ERK activity levels on Asc/7 target gene selection are abrogated when all six SP sites in Ascl1 are

mutated. *p < 0.05, **p < 0.01, ***p < 0.005.

If our model of Ascll phosphorylation-dependent fate speci-
fication is correct, the number of glial cells produced by Ascli-
SA6 (compared with wild-type Ascll) should be accompanied by
an increase in the number of neuronal cells. Indeed, we saw a
small but significant increase in the number of NeuN * neurons
generated by Ascl1-SA6 compared with wild-type AsclI (n = 3 for
each construct; p = 0.02), and importantly, AsclI-SA6 induced
ectopic NeuN expression in the VZ in E12.5—E15.5 electropo-
rations (Fig. 9J-L,J]'-L’,T). However, these neurons were not
cortical glu " neurons, as both Ascll and Ascl1-SA6 reduced Tbrl
expression (Fig. IM-O,M'-0'",U). Instead, AsclI and to a lesser
extent Asc/I-SA6 induced ectopic DIx] expression in the cortex
(Fig. 9P-R,P'—R"), which was consistent with the reduced ability
of AsclI-SA6 versus Ascll-wt to transactivate the DIx1/2 tran-
scriptional reporter in vitro (Fig. 8E). Thus, while AsclI-wt can
induce a proliferative glioblast fate in E12.5 cortical progenitors,
mutation of the six SP sites results in a shift toward neuronal
fates.

Finally, we asked whether Ascll was required to promote a
glial cell fate in vivo by assessing whether RAS activation in the
Ascll mutant cortex could initiate OPC differentiation. In both
Ascll 7'~ and Ascll 7/~ cortices (note that the mutant allele is a
GFP knock-in), E12.5—E15.5 electroporations of pCIG2-
RasV12+mCherry and to a lesser extent pEF-RasV12+mCherry,

induced ERK signaling (data not shown) and Etv1/5 expression
(Fig. 10A—J). In addition, pCIG2RasV12 and pEFRasVI2 in-
duced the formation of similar numbers of Olig2 " GFP *mCherry *
OPCs from Ascll ™'~ and Ascll =/~ cortices (Fig. 10K=0). These
data indicate that while AsclI is sufficient to induce a glioblast fate in
response to RAS hyperactivation, it is not required for OPC differ-
entiation. Thus, other RAS-activated factors, such as Etv5, may
mediate the glial response (X. Li et al., 2012). Indeed, in
E12.5—E15.5 cortical electroporations, Etv5 induced the for-
mation of proliferative, Sox9 " glioblasts that incorporated
BrdU (Fig.5E,E',],]'). However, similar to Ascl1, Etv5 could not induce
the conversion of Sox9 * glioblasts into Olig2 * OPCs or GFAP * astro-
cytes (Fig. 50,0",T,T"), consistent with our finding that the OPC tran-
sition requires high levels of RAS/ERK activation.

We thus conclude that Ascl1 is sufficient, but not necessary, to
induce the formation of a proliferative glioblast cell fate, acting
redundantly with other factors, such as Etv5. However, the ability
of glioblasts to differentiate into OPCs also requires elevated
RAS/ERK signaling.

Discussion

RAS/ERK signaling has diverse functions in the nervous system—
promoting proliferation and gliogenesis in some contexts, while
inducing neuronal differentiation in others. Here, we found that
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Ascl1 fate specification properties depend on the six SP phosphoacceptor sites. A—I, E12.5—E15.5 electroporations of p(lG2 (4,4’,D,D’, G, G"), wild-type Asc/1 (B, B’ E, E' ,H,H'),

and Ascl1-SA6 (C, €', F, F', I, 1) vectors (expressing GFP). Transfections were analyzed for ectopic expression of the glioblast marker Sox9 (4-C, A’~C"), proliferation marker BrdU (30 min pulse;
D-F,D'-F'), and OPCmarker Olig2 (G-I, 6’—I"). Quantitation of GFP ™ cells coexpressing Sox9in the SVZ/IZ (S).J-R, E12.5—E15.5 electroporations of p(1G2 (J,J', M, M, P, P"), wild-type Asc/1
(K,K',N,N',Q,Q"),and Ascl1-SA6 (L,L’,0,0", R, R") vectors (expressing). Transfections were analyzed for expression of the pan-neuronal marker NeuN (J,J', K, K’ L, L"), cortical neuronal marker
Thr1 (M, M’, N, N’, 0,0"), or for transcripts for GFP (P-R) or Dix1 (P’~R’). Quantification of GFP ™ cells coexpressing NeuN (T) or Thr1 (U). Dashed lines outline the transfected region in the
neocortex. Yellow arrowheads mark ectopic expression of Sox9 (B'), BrdU (E’), NeuN (L"), or Dix7(Q", R'). Scale bars: 250 um. *p << 0.05, **p << 0.01, ***p << 0.005. ctx, neocortex; str, striatum.

RAS/ERK signaling influences neural cell fate specification in
cortical development and in a RAS/ERK model of gliomagenesis
(Fig. 11). First, activation of the RAS/ERK pathway is necessary
and sufficient to trigger a proneural lineage switch, turning Neu-
rog2 expression off and Ascll on. Second, ERK signaling levels
modify AsclI activity—at high levels converting AsclI to a proglial/

OPC transcription factor, while at lower levels, permissive for
the differentiation of GABA™ neurons. Our data show that
RAS/ERK signaling levels bias cell fate choice by regulating
proneural gene expression and function, highlighting a
unique role for the ERK branch of RAS signaling in cortical
development and gliomagenesis.
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Asc1™ (K=K"), Ascl 1P+ (L-L"), and AsclT*"*¥! (M=M") cortices with pEFRasV/12+mCherry imaged for the coexpression of mCherry (red), GFP (green), and Olig2 (blue). Quantitation of

percentage of double-positive cells (Olig2 *mCherry * cells/mCherry * cells; N) and triple-positive cells (Olig2 *mCherry * GFP * cells/mCherry *GFP ™ cells; 0) in Asc/
cortices. p > 0.05. Dashed lines outline the transfected region in the neocortex. Yellow arrowheads mark the cells with ectopic expression of Ftv1 (B-E), Etv5 (G-J), or Olig2 (K'-M").

Ascl76FPHRK
Scale bars: A-J, 500 m; K—M, K'=M’, K"-M", 250 pm. ctx, cortex; str, striatum.

RAS/ERK signaling regulates proneural gene expression and
function in cortical progenitors to control neuronal-glial cell
fate decisions

Extrinsic cues that control the Neurog2-Ascll genetic switch lie at
the crux of cortical progenitor cell transitions, ensuring that pro-
genitors differentiate into appropriate cell types in sequence and
on time. RAS/ERK signaling not only influences proneural gene
expression, but also neural cell fate specification—promoting glio-
genesis in some contexts and neurogenesis in others (this study
and Baron et al., 2000; Ménard et al., 2002; Chandran et al., 2003;
Gabay et al., 2003; Ito et al., 2003; Hack et al., 2004; Kessaris et al.,

14+ Ascl 1597+ and

2004; Paquin et al., 2005, Paquin et al., 2009; Abematsu et al.,
2006; Aguirre et al., 2007; Gauthier et al., 2007; Samuels et al., 2008;
Ohtsuka etal.,2009; X. Li et al., 2012; Pucilowska et al., 2012; Wang
et al., 2012). Building upon these concepts, we have now delin-
eated an important mechanism behind RAS/ERK’s ability to in-
fluence choice of alternative cell fates, providing evidence that the
answer may lie in differing RAS/ERK activity levels. At lower
levels of RAS/ERK signaling, such as those induced by pEF-
RasV12 or pCIG2-MekCA in our model, cortical neurogenesis is
initiated, but these neurons preferentially differentiate along
GABA ™ and not glu * lineages, consistent with the neuronal fate
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Neurog2-AsclT genetic switch in cortical progenitor cells, but also convert Asc/7 to a proglioblast molecule via direct phosphorylation, driving aberrant glioblast-like, and not neuronal differentiation,

resulting in the formation of astrocytomas.

specification properties of Ascll (Casarosa et al., 1999; Schuur-
mans et al., 2004; Britz et al., 2006; Berninger et al., 2007; Poitras
et al., 2007; Geoffroy et al., 2009). Ascll has, however, a broad
spectrum of activities, also promoting progenitor cell prolifera-
tion during the expansion phase of telencephalic development
(Castro et al., 2011), and OPC differentiation at later stages (Par-
ras et al., 2007). While we found that AsclI alone can initiate the
formation of proliferative glioblasts, the differentiation of these
cells into OPCs depends on high RAS/ERK signaling achieved by
PCIG2 RasV12 or pCIG2bRAF. 1t is perhaps not surprising that
Ascll alone cannot induce the generation of ectopic Olig2 ™
OPCs, given that AsclI induces DIxI expression (this study and
Britz et al., 2006), and DIxI represses Olig2 transcription and
oligodendrogenesis in ventral telencephalic progenitors (Petryn-
iak et al., 2007). While we interpret our data to suggest that levels
of RAS/ERK signaling control AsclI lineage selection, we cannot
exclude the possibility that other signaling properties, such as
the timing and/or duration of pathway activation, also influ-
ence cell fate.

Our data support the idea that RAS/ERK signaling regulates
Ascll function by direct phosphorylation. By site-directed mu-
tagenesis, we found that Ascll SP sites are required for the tran-
scriptional activation of DIx1/2, and for the RAS-responsiveness
of Ascll on the Sox9 reporter. Notably, AsclI-SA6 was not inac-
tive, as it an enhanced ability to induce the differentiation of
NeuN * neurons, similar to the enhanced proneural activity of
Neurog2 following the mutation of all nine SP sites (Ali et al.,
2011; Hindley et al., 2012). Phosphorylation of bHLH transcrip-
tion factors can modify transcriptional activity at several levels,
influencing events such as DNA binding, cellular localization,
dimerization, cofactor binding, protein stability, and chromatin
structure (Hand et al., 2005; Martindill et al., 2007; Vosper et al.,
2007; Ma et al., 2008; Li et al., 2011; Sun et al., 2011; S. Li et al.,
2012). Future studies will determine how the transcriptional ac-
tivity of Ascll is altered when phosphorylated by ERK1/2.

Other factors, in addition to Neurog2 and Ascll, undoubtedly
contribute to the RAS/ERK-regulated gliogenic switch. Indeed,

we found that while AsclI is sufficient to promote gliogenesis, it is
not required for OPC differentiation. The PEA3 subgroup of Ets
family transcription factors, and Etv5 in particular, is also in-
structive for gliogenic competence downstream of Mek (X. Li et
al., 2012). Accordingly, we found that Etv5 also induces the for-
mation of proliferative, Sox9 ™ glioblasts, but these cells fail to
differentiate into Olig2 * OPCs, similar to the effects of AsclI. The
transition from proliferative glioblast to OPC thus requires high
levels of RAS/ERK signaling, as revealed by our transcriptional
reporter assays and in vivo gain-of-function studies. How RAS/
ERK signaling and Ascl1/Etv5 functions are integrated will be an
important area of future investigation.

Intersection between RAS/ERK signaling and proneural genes
in gliomas

Tumor cells share many, but not all features of their normal
neural counterparts, suggesting that the rules governing develop-
mental programs may not be strictly followed in tumors. For
example, all astrocytomas contain some Olig2 ™ cells (Ligon et al.,
2004; Otero et al., 2011)—yet these tumors also contain GFAP ™
cells with an astrocytic morphology. Our findings echo this in
that we similarly saw the induction of some astrocytic markers in
response to pCIG2 RasV12 misexpression, in addition to OPC
markers such as Oligl/2 and Pdgfra. Notably, Olig2 normally
blocks astrocyte formation in cortical progenitors, and is turned
off in cells that differentiate into astrocytes (Gabay et al., 2003;
Fukuda et al., 2004). Coexpression of astrocyte and OPC markers
is thus not normally observed in development, highlighting the
abnormality of cellular transformation.

Our findings and others’” (Ding et al., 2001; Marumoto et al.,
2009; Gronych et al., 2011) demonstrate that elevated RAS/ERK
signaling is sufficient for the generation of tumors. Moreover,
hyperactive RAS/ERK signaling occurs in gliomas with diverse
cellular compositions that span the malignancy spectrum, yet this
pathway has primarily been ascribed a generic pro-proliferative
role in gliomas. Our data indicates that the level of ERK signaling
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may explain in part the existence of different cell types in BRAF-
driven gliomas such as PAs and GGs.

Our work speaks most directly to predominantly pediatric
types of RAS pathway-activated gliomas, and our model system
does not directly address the state of progenitors in the mature
brain nor does it address the question of the role of ongoing ERK
signals once a tumor is initiated. Nevertheless, our findings may
still have implications for the role of signaling in fate decisions
beyond neoplasia in the developmental period. Neurog2 and
Ascll mediate cell fate decisions in zones of adult neurogenesis
(Parras et al., 2004; Brill et al., 2009; Roybon et al., 2009; Blum et
al., 2011; Kim et al., 2011; Chen et al., 2012; Heinrich et al., 2012),
and extrinsic factors such as EGF and FGF are present and nec-
essary for maintenance of these progenitor populations (Shi et al.,
2008). Thus, it is reasonable to speculate that our findings could
reflect a more general relationship between RAS/ERK and the
Neurog2-Ascll genetic switch, in both normal pathways of neural
cell fate specification and in adult gliomas with constitutively
active RTK signaling or mutant NF1.

While some studies point to uncommitted neural stem cells as
cells of origin for gliomas (Sanai et al., 2005; Fomchenko and
Holland, 2006; Alcantara Llaguno et al., 2009), others indicate
that more committed cells, such as OPCs (Lindberg et al., 2009;
Persson et al., 2010; Liu et al., 2011), are the substrates for trans-
formation. OPC-like cells are also implicated in replication com-
petence and astrocytoma formation (Ligon et al., 2007; Barrett et
al., 2012). Yet it has been unclear whether gliomas arise directly
from OPCs or from progenitor cells that quickly acquire an OPC-
like identity. We found that high RAS/ERK signals rapidly induce
Ascll expression, block neuronal fates, and increase proliferation
of aberrant glioblasts predisposed to OPC-like differentiation.
Thus, while Olig2 * or NG2 * cells may be critical in the process
of glioma initiation or maintenance, the cell of origin may not
need to be an existing OPC. Instead, conversion of a normally
neurogenic progenitor to an OPC-favoring glioblast may be part
of the tumor initiation process induced by oncogenic RAS/ERK.
Collaboration from other RAS effectors such as AKT may further
modulate the cellular phenotype (Dai et al., 2005; Hu et al., 2005).
With respect to established glioblastoma multiforme (GBMs),
recent studies suggest that turning off Neurog2 is necessary for
self-renewal and tumorigenesis from glioblastoma stem cells
(Guichet et al., 2013). Conversely, Ascll is critical for GBM stem
cell maintenance and tumorigenicity (Rheinbay et al., 2013). Fu-
ture work will address RAS/ERK’s role in regulating these tran-
scription factors in GBM stem cells. A better understanding of the
unique contributions of distinct signaling pathways will be in-
creasingly important as more specific pathway-oriented thera-
pies are developed.

Opverall, we identified novel points of intersection between a
central signal transduction pathway and proneural transcription
factors, furthering our efforts to generate a comprehensive model
of the regulatory events that coordinate neurogenesis and glio-
genesis in health and disease.
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