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Abstract

We participated the Cathepsin S (CatS) sub-challenge of the Drug Design Data Resource (D3R) 

Grand Challenge 3 (GC3) in 2017 to blindly predict the binding poses of 24 CatS-bound ligands, 

the binding affinity ranking of 136 ligands, and the binding free energies of a subset of 33 ligands 

in Stage 1A & Stage 2. Our submitted predictions ranked relatively well compared to the 

submissions from other participants. Here we present our methodologies used in the challenge. For 

the binding pose prediction, we employed the Glide module in the Schrodinger Suite 2017 and 

AutoDock Vina. For the binding affinity / free energy prediction, we carried out molecular 

dynamics (MD) simulations of the complexes in explicit water solvent with counter ions, and then 

estimated the binding free energies with our newly developed model of Extended Linear 

Interaction Energy (ELIE), which is inspired by two other popular end-point approaches: the 

Linear Interaction Energy (LIE) method, and the Molecular Mechanics with Poisson-Boltzmann 

Surface Area solvation (MM/PBSA) method. Our studies suggest that ELIE is a good trade-off 

between efficiency and accuracy, and it is appropriate for filling the gap between the high-

throughput Docking & Scoring methods and the rigorous but much more computationally 

demanding methods like free energy perturbation (FEP) or thermodynamics integration (TI) in 

computer-aided drug design (CCAD) projects.
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Introduction

Drug Design Data Resource (D3R) [1] is an NIH founded organization based at the 

University of California San Diego (UCSD). D3R collects high-quality, unpublished crystal 

structures and affinity data of protein-ligand binding complexes donated by pharmaceutical 

companies, and uses these data to organize challenges of blind prediction of ligand binding 

poses and protein-ligand binding affinities [2, 3]. The purposes of such blind prediction 

challenges are to test the state-of-the-art computational methodologies and protocols in the 

field of computer-aided drug design/discovery (CADD), and advance the development of 

CADD technologies. The D3R Grand Challenge 3 (GC3) was held from Aug. 31st 2017 to 

Dec 15th 2017 and involved 5 subchallenges: Subchallenge 1 Cathepsin S; Subchallenge 2 
Kinase Selectivity; Subchallenge 3 Kinase Activity Cliff JAK2_SC3; Subchallenge 4 Kinase 

Activity Cliff TIE2; Subchallenge 5 Kinase Mutants [4]. Participants from the computational 

chemistry community worldwide were asked to complete the subchallenges in the order they 

were listed, i.e., to complete the Subchallenge 1 first if the time and resource were limited, 

then complete Subchallenge 2 if their time and resource were allowed, and so on. We only 

participated in the Subchallenge 1 (the Cathepsin S set) due to limited computing resource.

The cathepsins are a very important family of cysteine proteases in humans. They are in 

various functions, such as bulk intracellular proteolysis in the endolysosomal system, cell 

death and inflammation signaling in the cytoplasm, cell-cycle regulation in the nucleus, 

signaling in the extracellular environment, etc [5–8]. They are involved in a wide range of 

diseases such as cancers, chronic inflammation, infections, cardiovas-cular, and bone-related 

diseases [5–8]. Therefore, they have been investigated as drug targets for more than 2 

decades by pharmaceutical companies and academic institutions. There are 11 sub-types of 

cathepsins: B, C, F, H, K, L, O, S, V, W, and X [5, 6]. Among these sub-types, the cathepsin 

S (CatS) has drawn special attentions, and its unique roles in the following diseases have 

been heavily investigated: rheumatoid arthritis, atherosclerosis, bronchial asthma, psoriasis, 

wound healing, myasthenia gravis, cancer, etc [7–18].

The data set of Subchallenge 1 of GC3 was composed of 141 CatS ligands, among which 24 

ligands had the protein-ligand co-crystallized structures determined with resolution < 3.0 Å, 

and 136 ligands had their bio-assay data (IC50) measured [4]. However, all of the 24 crystal 

structures were not revealed at the beginning of the challenge, and all of the binding affinity 

data were blinded during the whole challenge time. This subchallenge was split into in 3 

stages. In Stage 1A (Aug. 31st 2017 to Oct. 3rd 2017), participants were invited to: (a) 

predict the crystallographic poses of 24 ligands (the Binding Pose Set), (b) predict the 

affinity ranking of 136 ligands (the Affinity Ranking Set), and (c) predict the absolute or 

relative binding affinities for a subset of 33 compounds (the Free Energy Set). After Stage 
1A was done, the pseudo-apo crystal structures of 24 complexes (with corresponding ligand 

coordinates removed) were released, and participants were invited to re-predict the binding 

poses of the 24 ligands in their own corresponding receptor structures (Self-Docking). No 

affinity calculations were involved in this stage called Stage IB (Oct. 9th, 2017 – Oct. 23rd, 

2017). In the last stage, Stage 2 (Oct. 24th, 2017 – Dec. 15th, 2017), full coordinates of the 

24 protein-ligand co-crystal structures were released and participants were invited to re-
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calculate the binding affinities for the Ranking Set & Free Energy Set, with or without usage 

of the 24 released crystal structures.

Our group participated the three predictions in Stage 1A and two predictions in Stage 2, but 

did not participate in the Self-Docking Stage IB. According to the evaluation results done by 

the GC3 organizers in terms of root-mean-squared-deviations (RMSD) for pose predictions, 

correlations coefficients (Kendall’s τ and Spearman’s ρ) and root-mean-squared-errors 

(RMSE) for affinity predictions [19], our performances were relatively well compared to 

most of the other participants.

In the next section, we provide a detailed description of the methods and protocols which we 

employed for the predictions of binding poses and affinities of CatS subchallenge in D3R 

GC3. Especially, we focus on a new model named the Extended Linear Interaction Energy 

(ELIE) method, which were developed during our participating time in GC3. Then we 

present the results of applying the ELIE method to the CatS subchallenge in GC3, and 

discuss the advantages, shortcomings and future research plans with respect to the ELIE 

method.

Computational Methods

Theory Background

It has become a consensus that many docking methods can successfully predict near-native 

binding poses (position, conformation and orientation) of drug-like molecules in 

macromolecular receptors, but the corresponding scoring functions have poor abilities of 

estimating the binding free energies [2, 3], due to the usage of only static conformations of 

the receptor protein in prior docking procedures. On the other end, physics-based alchemical 

free energy calculation methods apply molecular dynamics (MD) or Monte Carlo (MC) 

simulations to sample the dynamic conformations of the receptor, the ligand and the 

complex in explicit solvent, and can accurately describe the flexibilities of receptor-ligand 

binding and the solution. The free energy perturbation (FEP) and thermodynamic integration 

(TI) are examples of such rigorous methods [20–25]. For instance, the FEP+ protocol 

implemented by Schrodinger Inc. (USA) have become the de facto standard metric for 

industrial drug modeling practice [22]. However, FEP and TI need to run on a series of 

unphysical intermediate states along the pathways of alchemical changes. The slow 

convergence problem and extensive sampling needed make FEP/TI too computationally 

demanding to be routinely used in real drug design projects. Consequently, some 

approximate end-point methods such as linear interaction energy (LIE) [26–29], molecular 

mechanics (MM) combined with Poisson–Boltzmann (PB) or generalized Born (GB) and 

surface area (SA) continuum solvation (MM/PBSA or MM/GBSA), have been developed 

[30–32]. They are in the intermediate position in terms of efficiency and accuracy between 

empirical scoring functions and the FEP/TI methods.

The LIE approach estimate the binding free energy according to the following equation:
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ΔGbind
LIE = α Uelec

L − S
PL

− Uelec
L − S

L
+ β Uvdw

L − S
PL

− Uvdw
L − S

L
+ γ (1)

where the subscripts PL and L indicate two states on which the MD/MC simulations are 

running: the state of protein-ligand complex in solution (PL), and the state of ligand free in 

solution (L), correspondingly. The < > brackets indicate ensemble averages from MD/MC 

simulations. The superscript L-S indicates that the LIE approach only considers the 

interactions between the ligand and the surroundings (S), which refers to protein and 

solution in the PL state, and solution only in the L state. The scale factor α was originally 

set as 0.5 according to the linear-response approximation (LRA), and β is taken to be 0.18. 

Later α was treat as adjustable between 0.33 and 0.5, depending on the charge and number 

of hydrogen-bond (H-bond) donors of the ligand [26–29]. In many later applications, 

different α and β values were adjusted and adopted to get better results. An optional 

constant γ can also be added to improve the estimations.

The MM/PBSA and MM/GBSA methods calculate a free energy from:

ΔG = ΔEinter + ΔEelec + ΔEvdw + ΔGsolv_ pl + ΔGsolv_np − TΔS (2)

where ΔEinter is the change of internal bonded MM energy from the bonds, angles and 

torsions/dihedrals, ΔEelec is the change of MM electrostatic energy, ΔEvdw is the change of 

MM van der Waals energy, ΔGslov_pl is the polar solvation free energy, ΔGsolv_up is the 

nonpolar solvation free energy, T is the absolute temperature, and ΔS is the entropy change. 

ΔGsolv_pl can be calculated by any continuum-solvation method such as PB or GB. 

ΔGsolv–np is obtained from a linear relation to the solvent-accesssible surface area (SASA). 

The entropic contributions can be estimated from normal-mode analysis on a set of 

conformational snapshots obtained from MD/MC simulations.

In principle the binding free energy in Eq. 2 should be computed from the differences in PL, 

P and L states. But in real application, a much more common approach is to simulate only 

PL complex state, whereas the P or L conformations are approximated by simply removing 

other particles and only keeping the protein or ligand coordinates, respectively. This 

approach not only require fewer simulations, but also leads to an exact cancellation of 

ΔEinter. Hence,

ΔG = ΔEelec + ΔEvdw + ΔGsolv_ pl + ΔGsolv_np − TΔS (3)

The LIE approach only considers contributions from the electrostatic and van der Waals 

interaction energies, and scale them by fitted coefficients. The MM/PBSA method considers 

contributions not only from the electrostatic and van der Waals interaction energies but also 

from the polar and nonpolar contributions of solvation, but no scale factors are applied to 

these terms. Inspired by both the LIE and the MM/PBSA methods, we developed a new 

method to estimate the binding free energies of protein-ligand complexes, which we named 
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as the Extended Linear Interaction Energy (ELIE) method. In our ELIE approach, different 

scale coefficients are applied to each of energy terms in the MM/PBSA free energy equation 

(Eq. 3):

ΔG = c0 + c1 * ΔEelec + c2 * ΔEvdw + c3 * ΔGsolv_ pl + c4 * ΔGsolv_np − c5 * TΔS (4)

where c0, c1, c2, c3, c4 & c5 are scaling coefficients, which need to be adjusted by fitting 

calculated binding free energies to measured values of ligands in the training set. Once 

optimum values are obtained for these scaling coefficients, they can be used to test sets to 

predict the binding free energies. The target receptor in the training set should be the same 

as in the test set.

Protein Preparation

At the beginning of Stage 1A, D3R provided two crystal structures of pseudo-apo CatS, in 

which the originally bound ligands were removed. We conducted literature search and 

retrieved co-crystal structures for CatS from the RCSB Protein Data Bank [33], and found 

20 holo structures of CatS bound with different ligands (PDB IDs: 1MS6, 1NPZ, 1NQC, 
2F1G, 2H7J, 2HHN, 2HXZ, 2OP3, 2R9M, 2R9N, 2R9O, 3IEJ, 3KWN, 3MPE, 3MPF, 
3N3G, 3N4C, 3OVX, 4P6E AND 4P6G). Among these holo proteins, 3IEJ is particularly 

interesting because its ligand has a tetrahydropyrido-pyrazole core which is similar to the 

ligands in the Challenge Set, and this crystal structure has a good resolution of 2.18 Å [10]. 

Therefore, we decided to use it as starting point for Glide docking and MD simulations. The 

choice was also validated by the fact that the CαRMSDs between the two pseudo-apo CatS 

crystal structures provided by D3R and 3IEJ are very low (0.35 Å).

After D3R released all 24 crystal structures in the CatS challenge set at the end of Stage 1B, 

we aligned them to 3IEJ and measured the CαRMSDs. All of the newly released crystal 

structures of CatS have very low CαRMSDs compared to 3IEJ. The CatS-14 complex 

(structure code GABJ) has the largest CαRMSD (0.39 Å). We took GABJ as another 

starting point and repeated the procedures of MD simulations and binding affinity 

calculations with the ELIE model.

Selected crystal structures, including 3IEJ from Protein Data Bank, 

CatS_SO4_structure_D3R_GC3.pdb provided by organizers at the beginning of Stage 1A 
gabj-CatS.pdb provided by organizers after Stage 1B, were prepared using the Protein 

Preparation Wizard [34] in Maestro [35]. Missing hydrogen atoms were added. Missing side 

chains were filled using Prime [36]. All ionizable residues were assigned their protonation 

states using Epik [37] assuming a pH of 5.0, which was employed in the binding assay [18]. 

All crystallographic water and ions were removed. In order to avoid steric clashes, 

hydrogens of remaining protein (with or without ligand) structures were minimized using 

OPLS3 force field [38] while the heavy atoms were restrained using an RMSD cutoff of 0.3 

Å.
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Ligand Preparation

For the CatS subchallenge in GC3, D3R organizers provided participants with SMILES 

strings of 141 ligands, among which 24 ligands (from CatS_1 to CatS_24) have co-crystal 

structures, and 136 ligands have measured IC50 data between 3 to 8500 nM. These ligand 

molecules are referred as the Challenge Set in this article.

Most of the Challenge Set ligands share a common core scaffold of tetrahydropyrido-

pyrazole, except for two ligands (CatS_4 and CatS_6) which have a pyridinone-like core 

(Figure S1 in Support Information). Through literature search, we collected structure 

information of approximately 130 ligands which also have a tetrahydropyrido-pyrazole core 

scaffold and which have corresponding IC50 data experimentally measured [9–13]. These 

ligand molecules are referred as the Training Set in this article.

The 3D structures of all ligands in both the Training and Challenge Sets were constructed by 

manually modifying the native ligand of a crystal structure (PDB ID 3IEJ) [10]. Ligand 

protonation states were manually assigned. According to the reference [18] listed by the 

D3R organizer, the bio-assay measurements were performed at pH = 5.0 [18]. Therefore, we 

protonated all nitrogen atoms which are not in or connected to a double bond or aromatic 

bond. As a consequence, all of the ligand molecules have +1 or +2 net charges. The ligands 

were geometrically optimized in vacuum by Maestro using OPLS3 force-field [38]. The 

stereochemistry in all ligands were visually inspected against the descriptions in the 

provided SMILES strings for the Challenge Set or in the literature for the Training Set [9–

13].

Pose prediction

Two docking approaches were used: Glide XP (extended precision) [39, 40], and AutoDock 

Vina [41]

For the Glide XP method, the prepared X-ray structure from PDB ID 3IEJ was selected as 

the receptor template, because its co-crystallized ligand has the same scaffold core as in 

most of the challenge set, and it has a very low CαRMSD compared to the two pseudo-apo 

CatS crystal structures provided by D3R. Glide grid was generated with default options: van 

der Waals radius scaling factor 1.0, partial charge cutoff 0.25, centroid of workspace ligand, 

dock ligands similar in size to the workspace ligand, no constraints, no rotatable groups. The 

3D ligand conformations as prepared above were used as the starting geometries. Each of 

the 24 ligands was docked against the same grid, using extra-precision (XP) sampling, 

reward intramolecular hydrogen bonds, post-docking minimization, and outputting a 

maximum of 5 poses per docking. All poses were ranked using Glide’s XP docking scoring 

function. The best docking pose for each ligand was selected and submitted as our pose 

prediction.

The open source docking program Autodock Vina (version 1.1) was also employed. The 

CatS_SO4_structure_D3R_GC3.pdb provided by organizers was used as the receptor 

template. To prepare the input structures for the docking, the 3D structures in mol2 format of 

the 136 ligands were generated by Maestro from their SMILES format with considering all 

possible protonation and chirality. The MGLTools 1.5.4 was used to prepare the PDBQT 
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files for the receptor and ligands [42]. The dimensions of the docking rectangular box were 

37 Å × 50 Å × 40 Å, to make sure the minimum distance between any atoms of the aligned 

ligands in the aforementioned 20 known co-crystallized CatS complexes to the box’s walls is 

larger than 8 Å. The “exhaustiveness” of the global search was set 150 which is 

approximately 18 times larger than the default value 8, in order to increase the probability of 

finding the global minimum. Twenty binding modes were generated with random starting 

positions of each ligand, which had fully flexible torsion degrees of freedom. The maximum 

energy difference between the best and the worst binding modes was set 7.0 kcal/mol.

MD Simulation.

The Antechamber tool [43] integrated in AmberTools16 was utilized to generate topologies 

for use in MD. The protein-ligand complexes were all solvated in a cubic box with water 

extending at least 10 A from the complexes. Each system was neutralized adding Na+ /Cl− 

ions to a final concentration of 0.15 M. Disulfide bonds in CatS were specified.

Atom types and parameters for ligands were assigned by the General Amber force field 

(GAFF) [44]. The partial charges for ligands were derived using the AM1-BCC method 

[45], which was developed to resemble the partial charges derived by the restrained 

electrostatic potential (RESP) method [46] to fit the HF/6-31G* electrostatic potential 

generated using the GAUSSIAN 16 software package [47]. The ff14SB force-field [48] was 

adopted for CatS. Water molecules were treated with TIP3P water model [49].

The MD simulations were carried out using the PMEMD.mpi and PMEMD.cuda modules in 

the AMBER16 package [50–52]. A set of 5 steps of energy minimization were performed to 

remove possible steric crashes, first on water and ions, followed with the protein and ligand 

complex. The harmonic restraint force constants decreased from 20 to 10, 5, 1 and 0 

kcal/mol/Å2, progressively. After the minimization stages, each system was gradually heated 

from 0 K to 300 K and then the temperature was kept at 300 K. The time step of 1 fs was 

used for the heating and first part of equilibrium stage, then a 2 fs time step for the rest part 

of equilibrium and following production stages. The periodic boundary condition was 

employed to produce a constant temperature and pressure (NPT) ensemble. The pressure 

was controlled at 1 atm with a pressure relaxation time of 1 ps. The temperature was 

regulated using Langevin dynamics [53, 54] with a collision frequency of 5 ps−1. The 

Particle Mesh Ewald (PME) method [55, 56] was adopted to handle the long-range 

electrostatics and a 10 Å cutoff was set to treat real-space interactions. All of the covalent 

bonds involving hydrogen atoms were constrained with the SHAKE algorithm [57]. The 

simulation time for each system was 10 ns. The first 5 ns was treated as equilibration and the 

last 5 ns was used for production run.

MM/PBSA & ELIE Calculations.

For each system, 50 snapshots evenly extracted from the last 5-ns trajectory were used to 

calculate the MM/PBSA energy contribution terms (ΔEelec, ΔEvdw, ΔGsolv_pl, ΔGsolv–np, 

TΔS). The water molecules and ions were removed first. The Poisson Boltzmann 

calculations were performed with the Delphi program [58]. The calculations employed the 

Parse radii for all atoms, a grid spacing of 0.5 Å, a fill ration of 90%, and a probe radius of 
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1.4 Å. The value of the exterior dielectric constant was set to 80. The solute interior 

dielectric constant was set to 1. The nonpolar solvation energy was calculated with the 

SASA approach, following rescaling using the equation ΔGnonpol = γ*dSASA + β, where 

γ=0.00542 kcal/mol/Å2 and β=0.92 kcal/mol. The NMode module in AMBER16 was 

applied to derive the entropy loss during protein-ligand binding. After MM/PBSA 

calculations, the energy contributions in Eq. 3 were extracted using in-house programs and 

scripts and fed to Eq. 4 for ELIE analysis. The Training Set from literature was used to fit 

the scaling coefficients in Eq. 4, and then the fitted coefficients were directly applied to the 

Challenge Set to predict the binding free energies.

Metrics for Analysis

Several measures were used in the coefficient calibrations and posteriori analysis, including 

mean unsigned error (MUE), root-mean-square error (RMSE), predictive index (PI) [59, 60] 

and Pearson’s r.

The experimental binding free energies were estimated from measured IC50 data [3, 22]:

ΔGbind
expt ≈ RTln(IC50) (5)

Results and Discussion

Pose prediction

The performances of our pose predictions in GC3 are shown in Fig. 1. The submitted 

prediction with the Glide protocol (submission ID rm4m2) is displayed in red color, and 3 

submissions with the AutoDock Vina protocol are colored in blue. Fig. 1 demonstrates that 

Glide yielded a much better result than AutoDock Vina. The mean over all pose RMSDs of 

24 CatS ligands for our Glide prediction is 3.70 Å (Fig. 1a) and the median over all pose 

RMSDs is 2.84 A. The mean and median RMSDs for the three predictions with the 

AutoDock Vina protocols are all approximately 11.0 Å.

The submission rm4m2 contains only one predicted pose for each ligand, and the pose 

RMSDs for individual ligands are presented in Fig. 2 in red squares. Most of the ligand 

compounds were docked reasonably well. As a summary 5 ligands have pose RMSDs <= 2.0 

Å, 13 ligands have pose RMSDs between 2.0 Å and 4.0 Å, and 6 ligands have pose RMSDs 

> 4.0 Å. Fig. 3a shows the superposition of predicted pose of CatS-19 to its native pose, 

which has the lowest RMSD (1.09 Å) in submission rm4m2, and the predicted pose overlays 

with the native pose very well. Fig. 3b shows CatS-5 which has the largest RMSD (9.89 Å) 

in rm4m2, and the predicted pose has a flipped orientation comparing to its native pose. 

CatS-5 is the only etrahydropyrido-pyrazole co-crystallized ligand which does not have a 

bottom-arm substitution, as shown in Fig. S1 and S2 in the Supplementary Material. Among 

the high RMSD ligands, CatS-4 & CatS-6 are the only two which do not contain a 

tetrahydropyrido-pyrazole core but a pyridinone instead (Fig. S1).
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The RMSD results for one of the AutoDock Vina predictions (fibez) are also presented in 

Fig. 2. The submission fibez contains 5 predicted poses for each ligand. The RMSDs of Pose 

1 series are displayed with green circles in Fig. 2, and the RMSDs of the Closest Pose series 

are displayed wtih blue triangles in Fig. 2. Most of the Pose 1 series are not the closest poses 

for corresponding ligands, and most of them have RMSDs higher than 6.0 Å except for 

CatS-5 (5.16 Å), CatS-8 (5.66 Å), CatS-12 (4.64 Å), Cats-18 (5.47 Å) and CatS-20 (2.77 Å).

Affinity Prediction by Docking Scores

In Stage 1A, we adopted the scoring functions by Glide and AutoDock Vina to predict the 

affinity ranking of 136 CatS ligands. The performances of our submissions are shown in Fig. 

4. Our Glide prediction w83jw and one of the Vina prediction ppyff have comparable 

performances and both among the top submissions in terms of mean and median Kendall’s τ 
and Spearman’s ρ, whereas Glide obviously outperforms Vina in pose predictions 

aforementioned (Fig. 1).

Affinity Prediction by ELIE

Due to the limited time and computing resource, in Stage 1A we only managed to complete 

MD simulations for the Training Set ligands and the 33 ligands in the Free Energy Set with 

3IEJ structure as the starting conformation. We fitted the ELIE scale coefficients in Eq. 4 

using the Training Set experimental data, and then applied the fitted coefficients to blindly 

estimate the binding free energies of these 33 ligands in Free Energy Set. As demonstrated 

in Fig. 5, our submission pcy3r is at the top place in terms of mean and median correlation 

coefficients among all submissions to Free Energy prediction in Stage 1A.

In Stage 2, we completed MD simulations for all 136 ligands in the Affinity Ranking Set 

with the 3IEJ protein structure and estimated their binding free energies with ELIE model. 

We also took the GABJ (complex of CatS-14) protein structure and conducted 

corresponding MD simulations for all the Training Set and Challenge Set and then did the 

same procedures of coefficient fitting and binding free energy prediction. Fig. 6 shows the 

retrospective analysis for the intermediate and final results for our submission ju2xy for 

ranking prediction in Stage 2.

Fig. 6a & 6c present the MM/PBSA calculated binding free energies for all the Training Set 

ligands. Comparing to the experimental binding free energies, the MM/PBSA result of 3IEJ 
series leads to MUE of 2.33 kcal/mol, RMSE of 3.19 kcal/mol, PI of 0.38, Pearson’s r of 

0.29, and the MM/PBSA result of GABJ series leads to MUE of 3.37 kcal/mol, RMSE of 

4.21 kcal/mol, PI of 0.27 and Pearson’s r of 0.22. After applying ELIE method, the 3IEJ 
series (with coefficients c1=0.9, c2=1.2, c3=1.2, c4=1.0, c5=0.4) leads to MUE of 1.10 kcal/

mol, RMSE of 1.32 kcal/mol, PI of 0.54 and Pearson’s r of 0.54 (Fig. 6e), and the GABJ 
series (with c1=1.1, c2=0.9, c3=1.1, c4=1.3, c5=0.3) leads to MUE of 0.95 kcal/mol, RMSE 

of 1.15 kcal/mol, PI of 60, and Pearson’s r of 0.60 (Fig. 6g). Taking an exponential average 

of ELIE results of Fig. 6e and Fig. 6g leads to Fig. 6i (MUE = 0.97 Å, RMSE = 1.17 Å, PI = 

0.60 and Pearson’s r = 0.59).
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Similar trend can be found in the results of the Challenge Set. Fig. 6b & 6d present the MM/

PBSA calculated binding free energies for all the Challenge Set ligands. Comparing to the 

experimental binding free energies, the MM/PBSA result of 3IEJ series leads to MUE of 

5.70 kcal/mol, RMSE of 7.56 kcal/mol, PI of 0.15, Pearson’s r of 0.13, and the MM/PBSA 

result of GABJ series leads to MUE of 4.79 kcal/mol, RMSE of 5.86 kcal/mol, PI of 0.20 

and Pearson’s r of 0.17. After applying ELIE method with the coefficients fitted from the 

Training Set, the 3IEJ series (with c1=0.9, c2=1.2, c3=1.2, c4=1.0, c5=0.4) leads to MUE of 

1.22 kcal/mol, RMSE of 1.64 kcal/mol, PI of 0.40 and Pearson’s r of 0.40 (Fig. 6f), and the 

GABJ series (with c1=1.1, c2=0.9, c3=1.1, c4=1.3, c5=0.3) leads to MUE of 1.36 kcal/mol, 

RMSE of 1.89 kcal/mol, PI of 0.35, and Pearson’s r of 0.32 (Fig. 6h). Taking an exponential 

average of ELIE results of Fig. 6f and Fig. 6h leads to Fig. 6j (MUE = 1.32 kcal/mol, RMSE 

= 1.85 kcal/mol, PI = 0.40 and Pearson’s r = 0.38).

The performances of our ELIE protocol for the ranking prediction and the free energy 

prediction in Stage 2 are displayed in Fig. S3 and S4, respectively. The performances of our 

submissions (shown in red) are above average in terms of mean and median Kendall’s τ and 

Spearman’s ρ. Actually 8 submissions (m6yb2, e4emg, nmwas, ouj30, fugpp, 3pj6r, e3r6j, 
pi5ne) which are better than or similar to our ju2xy in Fig. S3, and 11 submissions (66qqk, 

tw62k, jk3no, uch2m, rjnyn, vc0p5, feofk, fizwc, 2e2e3, bcfd0, 47ka6) which are better than 

or similar to our 6xwau and wdgzp are from the same participant group with the same 

method.

Discussion

One common problem and task in real drug design projects is to pre-select which 

compounds to synthesize and further test with experimental assays which are expensive in 

terms of both time and cost. Computational methods are expected to be useful in the lead 

identification and lead optimization stages.

Docking methods have evolved from single rigid receptor conformation – rigid ligand 

docking to multiple flexible receptor conformations – flexible ligand docking. Even though 

the state-of-the-art docking protocols are adequate in predicting the correct poses, they are 

still weak at predicting binding affinities due to the limitations in the scoring functions and 

ability of sampling. At the same time, alchemical free energy methods like FEP/TI are too 

computationally demanding to be used routinely for high-throughput screening.

The ELIE method can fill the gap between docking methods and the alchemical free energy 

methods, so that a more reasonable multi-step workflow can be constructed: firstly docking 

methods are used to screening millions of compounds for a target and narrow down the 

number of compounds to thousands or tens of thousands, and then methods like ELIE can be 

employed to further narrow down the pool of candidates to hundreds or thousands, and then 

alchemical free energy methods like FEP/TI can kick in to further reduce the candidate 

quantities to hundreds or tens or even less, before sending to experimentalists. We do not 

expect the ELIE method to achieve the same accuracy as the rigorous alchemical free energy 

methods, but we believe that it can be utilized in both lead identification and optimization 

stages in drug design projects for its balance between efficiency and accuracy.
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In D3R GC3 Subchallenge 1 the ELIE method achieved reasonable accuracy for predicting 

binding free energies comparable to alchemical free energy calculations. Since ELIE is a 

newly developed method and the participation of this blind challenge is its first application, 

we think there should exist significant room for further improvement in the future which we 

plan to explore.

(1) As aforementioned, MD simulations before ELIE analysis in this practice were started 

from manually generated initial conformations. In order to be suited for routine usage in real 

drug design projects, initial conformations can be automatically generated from best 

predicted binding poses by molecular Docking.

(2) For each tautomer/protonation states of each ligand, multiple MD simulations from 

different initial structures of both receptors and ligands can be carried out to sample more 

conformational space. And correspondingly, various average algorithms can be explored.

(3) In this challenge, the ELIE coefficients were obtained by coarsely testing. Better fitting 

algorithms like regressions, gene algorithm, and even machine learning will be explored.

(4) ELIE coefficients need to explicitly trained and calibrated to specific target receptors. 

The possible common ranges of optimum coefficients for various targets will be searched 

and verified in the future.

(5) Various conditions that can affect the precision, speed, and accuracy of ELIE results need 

to be explored, such as the length of MD simulations, etc.

(6) Manual preparation and intervention should be reduced as much as possible and a fully 

automated pipeline from beginning to end should be set up.

(7) The possibility of merging some of the five energy contribution terms in Eq. 4 can be 

explored. For example, the ΔEelec and ΔEvdw terms can be merged into one term ΔEMM and 

share the same coefficient, or the ΔEelec and dΔEsolv_pl terms can be merged into one term 

dΔEpolar and share one same coefficient, or the ΔEvdw and dEsolv_np can be merged into one 

term ΔEnonpolar and share one coefficient. By these ways, the five energy contribution terms 

in Eq. 4 can be merged to four terms to reduce the efforts for coefficient fitting.

(8) The possibility of adopting GBSA continuum solvent model instead of PBSA can be 

explored.

Conclusion

We developed and utilized the ELIE method when participating in the D3R GC3 in 2017. 

This is an end-point methodology for calculating binding free energies. It takes snapshots 

from regular MD simulations of a protein-ligand complex, and then calculates the various 

energy contributions just like regular MM/PBSA or MM/GBSA. Then we fit the scaling 

coefficient of energy terms using training set ligands for which the binding affinities were 

measured, and apply the derived coefficients directly to query ligands of the same receptor 

target. In principle the ELIE protocol can introduce more accuracy on predictions of protein-

ligand binding affinities than simple molecular Docking & Scoring because MD simulations 
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can imitate the dynamics of protein-ligand interaction in reality. At the same time, it requires 

much less computing resource and time compared to alchemical free energy calculations.

We thank D3R for the opportunity to test the usefulness of ELIE in a blind challenge which 

is like a real drug discovery project. The promising performance achieved by ELIE for the 

CatS subchallenge in GC3 suggests that ELIE could be a good choice for both the lead 

identification and lead optimization in drug discovery. Our ELIE method is still in the 

developmental phase and potential improvements have been discussed in this article. We 

expect a more widespread use of ELIE in prospective drug discovery projects in industry and 

academia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Performance of all pose prediction submissions in GC3 Subchallenge 1 analyzed by pose 

RMSDs from Pose 1 of all submissions: mean RMSD over all 24 ligands (upper panel), and 

median RMSD over all 24 ligands (lower panel). Our submission by Glide protocol is 

displayed in red, and our submissions by AutoDock Vina are displayed in blue. The error 

bars show the standard error which is equal to the standard deviation (STD) divided by the 

square root of sample size (24). The data of median, mean and STD RMSDs were evaluated 

by the challenge organizers [61].
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Fig. 2. 
The pose RMSDs for 24 CatS ligands of our predictions rm4m2 (Glide XP) and fibez 
(AutoDock Vina) comparing to the corresponding crystal structures. The submission rm4m2 
contains only 1 pose for each ligand, and corresponding RMSDs for individual ligands are 

shown with red squares. The submission fibez contains 5 poses for each ligand, and 

corresponding RMSDs of Pose 1 series are shown with green circles, and the RMSDs of the 

Closest Pose series are shown wtih blue triangles.
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Fig. 3. 
Superposition of the predicted binding poses (submission ID rm4m2, shown in purple) on 

the native crystallized poses (C in cyan, N in blue and O in red) for CatS-19 (RMSD = 1.09 

Å, left) and CatS-5 (RMSD = 9.89 Å, right).
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Fig. 4. 
Performance of our ranking predictions in Stage 1A of GC3 Subchallenge 1. Our submission 

by Glide scoring is displayed in red, and our submissions by AutoDock Vina scoring are 

displayed in blue. The evaluation data were provided by the challenge organizers [62].
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Fig. 5. 
Performance of predictions for the CatS Free Energy set in Stage 1 A. Our predictions with 

ELIE methods are displayed in red color. The evaluation data were provided by the 

challenge organizers [63].
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Fig. 6. 
Estimation of binding free energies for the Training Set (a, c, e, g, i) and Challenge Set (b, d, 

f, h, j). The calculation method is either MM/PBSA or ELIE as shown in the label of each 

panel. The initial protein structure is either 3iej or gabj as indicated by the labels of a to h, 

and “combine” by the labels of i & j stands for taking averages from the results of 3iej and 

gabj series as described in the main text.
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