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Local Entrainment of Alpha Oscillations by Visual Stimuli
Causes Cyclic Modulation of Perception
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Prestimulus oscillatory neural activity in the visual cortex has large consequences for perception and can be influenced by top-down
control from higher-order brain regions. Making a causal claim about the mechanistic role of oscillatory activity requires that oscillations
be directly manipulated independently of cognitive instructions. There are indications that a direct manipulation, or entrainment, of
visual alpha activity is possible through visual stimulation. However, three important questions remain: (1) Can the entrained alpha
activity be endogenously maintained in the absence of continuous stimulation?; (2) Does entrainment of alpha activity reflect a global or
a local process?; and (3) Does the entrained alpha activity influence perception? To address these questions, we presented human subjects
with rhythmic stimuli in one visual hemifield, and arhythmic stimuli in the other. After rhythmic entrainment, we found a periodic
pattern in detection performance of near-threshold targets specific to the entrained hemifield. Using magnetoencephalograhy to mea-
sure ongoing brain activity, we observed strong alpha activity contralateral to the rhythmic stimulation outlasting the stimulation by
several cycles. This entrained alpha activity was produced locally in early visual cortex, as revealed by source analysis. Importantly,
stronger alpha entrainment predicted a stronger phasic modulation of detection performance in the entrained hemifield. These findings
argue for a cortically focal entrainment of ongoing alpha oscillations by visual stimulation, with concomitant consequences for percep-
tion. Our results support the notion that oscillatory brain activity in the alpha band provides a causal mechanism for the temporal
organization of visual perception.
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Introduction
It has been well established that prestimulus neural activity cor-
relates with visual perception. In particular, both the power and
the phase of prestimulus occipital alpha oscillations (8 –12 Hz)
can determine whether a near-threshold target is detected or not
(Hanslmayr et al., 2007; van Dijk et al., 2008; Busch et al., 2009;
Mathewson et al., 2009; Thut et al., 2012). These oscillatory pro-
cesses are likely under top-down control from higher-order brain
regions (Capotosto et al., 2009, 2012). Typically when an effect of
oscillatory activity on perception is shown, the analysis is correl-
ative. However, it is desirable to go beyond such correlative anal-
yses and ask: Is there a causal relationship between oscillatory
neural activity and perception?

One potentially fruitful avenue of research is the manipula-
tion of endogenous oscillations by external stimuli through en-
trainment. For instance, transcranial magnetic stimulation
(TMS) at alpha frequencies has been shown to affect oscillatory

activity as measured by electroencephalography (EEG; Thut et
al., 2011) and perceptual performance (Romei et al., 2010). The
entrainment of endogenous oscillations by visual stimulation has
also been investigated. It has been shown that the human visual
cortex shows the strongest resonance to 10 Hz visual flicker
(Herrmann, 2001). Furthermore, a perceptual aftereffect in the
form of a rhythmic modulation of hit rate after 10 Hz visual
stimulation has been reported (de Graaf et al., 2013), as well as
phase-locking of neural oscillatory activity during such stimula-
tion (Mathewson et al., 2012). Finally, although there are indica-
tions in the literature that neural activity following rhythmic
stimulation is similar to neural activity observed during stimula-
tion (Halbleib et al., 2012), persistent poststimulus entrainment
effects in terms of increased phase-locking or power modulation
has not yet been demonstrated.

Summarizing, three important open questions remain con-
cerning the entrainment of endogenous alpha oscillations using
visual stimulation. First, can the entrained alpha activity be en-
dogenously maintained in the absence of continuous stimula-
tion? Second, does entrainment of alpha activity reflect a global or
a local process? And third, does the entrained alpha activity in-
fluence perception? The present study addresses these three ques-
tions, using a paradigm involving bilateral visual flicker
stimulation and difficult-to-detect visual targets, as well as con-
tinuous recording of neural activity using magnetoencephalog-
raphy (MEG). These techniques enabled us to investigate the
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effect of visual flicker on both behavioral performance and brain
oscillations simultaneously.

Materials and Methods
Participants. Twenty-two subjects (7 female; age range, 18 –51 years) with
no history of neurological or psychiatric disorders (based on self-report)
participated in this experiment. All subjects gave written informed con-
sent according to the Declaration of Helsinki. The study was approved by
the local ethics committee (CMO region Arnhem/Nijmegen). Data for
two subjects had to be excluded because of excessive eye movements, and
a further subject was excluded because detection performance was at
chance level. This leaves a total of 19 subjects on which all analyses are
based.

Experimental design. During the entire experiment, a fixation cross was
presented against a gray background. During the intertrial interval (1.5
s), the fixation cross was dimmed, indicating to the participant that
blinking or making saccades was allowed. At the beginning of each trial,
a bright fixation cross was presented for 1 s, instructing the participant to
refrain from blinking or making saccades. After this baseline interval, a
1.5 s train of visual flashes was presented (Fig. 1A) in the form of white
squares. Each flash lasted 17 ms (one frame refresh of our projector), the
sides of each square measured 6° (visual degrees), and the squares were
placed at 3° eccentricity. At each trial, either the left or the right visual
field was presented with a 10 Hz periodic stimulus train (interflash inter-
val, 83 ms; total number of flashes per hemifield per trial, 16) while the
other hemifield was presented with a jittered stimulus train. The timings
of the jittered stimulus train were generated randomly, subject to the
constraint that no two flashes could occur in subsequent frame refreshes
(i.e., there always was at least one blank frame between two flashes). The
number of flashes in both hemifields was kept the same, as was the timing
of the first and last flashes. This controls for possible nonentrainment-
specific effects of the final entrainment flash, such as forward visual
masking or a transient-evoked response in the MEG data. After a variable
delay of 17–340 ms (in steps of 17 ms, uniform probability across differ-
ent possible delays), a circular aperture near-threshold sine-wave grating
target (duration, 17 ms; diameter, 1°) was presented in either of the two
hemifields at the location of the flashing stimulus trains. The subjects’
task was to identify, by a right-hand index or middle-finger button press,
in which hemifield they detected this target (forced choice). After the
left/right response, subjects had to indicate whether they were sure or
unsure about their response. We do not report any results related to the
confidence rating here, as this rating did not correlate with the alpha
entrainment phenomenon under investigation.

To acquaint the subject with the task, each experimental session
started with 40 practice trials with easy-to-detect targets. Next followed
60 trials in which we estimated the subjects’ perceptual threshold to
achieve an overall performance of 80% correct. To this end we used the
Bayesian Quest procedure (Watson and Pelli, 1983) to adjust the contrast
of the target such that the desired performance level was achieved. Next
followed four blocks of 90 trials each. All analyses are based on the trials
from these four blocks. The target grating contrast was kept constant
throughout each block, but was updated between blocks (by updating the
Quest distribution estimated after each trial) to accommodate effects of
fatigue, habituation, or sensitization. In this way the performance of each
subject was kept at the desired 80%.

Experimental equipment. Stimuli were presented by back-projection
onto a semitranslucent screen by an Eiki LC-XL100L projector. The pro-
jection measured 46 cm in width, and had a resolution of 1024 � 768
pixels. Subjects were seated in a magnetically shielded room, at a distance
of 80 cm from the projection screen. Throughout the experiment, the
MEG was recorded at a sampling rate of 1.2 kHz using a 275-channel
axial gradiometer CTF MEG system. In addition, we continually re-
corded subjects’ gaze position using an SR Research Eyelink 1000 eye-
tracking device. Whenever the fixation cross was white, subjects could
not blink or saccade further than 1.7° from the fixation center. If they
failed to maintain fixation, the trial was aborted and subjects were in-
formed of their eye movement by a bright red cross on the screen. After
the MEG experimental session, structural magnetic resonance imaging

(MRI) images were obtained from all subjects using a 1.5 T Siemens
Magnetom Avanto system.

Behavioral analysis. Statistical significance of the sinusoidal fit to the
hit rate data (Fig. 1C) was assessed by using a Wald test (Fox, 1997). This
test controls for the increase in degrees of freedom of the complex model
(line plus sinusoid) when compared with the simpler model (line only).
In addition, we performed a permutation test: the amplitude of the sinu-
soidal fit to the observed hit rate data was compared with the amplitudes
of sinusoidal fits to randomized data. Randomized data were generated
by randomly permuting the hit rate time course 1000 times. Finally, to
rule out the possibility that the periodicity was driven by a single subject,
we performed a bootstrap procedure: we sampled randomly, with re-
placement, from our subjects, 5000 times to obtain a 95% confidence
interval on the circular-to-linear correlation between delay and hit rate.

To quantify the rhythmic entrainment effect observed in the hit rate
profile in a single quantity, we defined an “entrainment index” (EI).
Trials could have the target either in-phase or anti-phase with the en-
training stimuli. Also, the targets could be either ipsilateral [entrained
(E)] or contralateral [nonentrained (NE)] to the rhythmic stimuli. The
ratio between hit rate (HR) for anti-phase and in-phase entrained trials
was defined as the variable of interest. We normalized this variable by the
corresponding ratio in the nonentrained trials, to account for the non-
phase-specific hit rate increase with delay. This yielded the following
expression for the entrainment index:

EI �
HRE,anti/HRE,in

HRNE,anti/HRNE,in

The EI thereby reflects the amount to which the rhythmic stimulus train
caused a rhythmic effect in the hit rate.

MEG data preprocessing. All MEG data were analyzed using Matlab
R2012a, either using custom-written scripts or the FieldTrip toolbox
(Oostenveld et al., 2011; http://www.ru.nl/neuroimaging/fieldtrip/). As
judged by visual inspection, excessively noisy sensors were removed from
the data (on average, 0.8 sensors were removed per session), as were trials
containing strong muscle or movement artifacts (on average, 5.8 trials
were removed per session). All trials were demeaned and a linear trend
was fitted and removed. Data were downsampled to 300 Hz to speed up
processing. An independent component analysis was performed to iden-
tify and remove activity caused by cardiac activity. For each session, two
components reflecting the QRS complex were removed, and the decom-
posed data were backprojected to sensor space.

We computed an approximation of the MEG planar gradient, using
FieldTrip’s ft_megplanar function. Considering planar, rather than axial,
gradient data facilitates the interpretation of MEG results, as planar gra-
dient maxima are located above neural sources (Hari and Salmelin, 1997;
Bastiaansen and Knösche, 2000). For the event-related fields, we com-
bined the resulting horizontal and vertical planar gradients by singular-
value decomposition per channel, projecting the data along the strongest
direction. For the spectral analyses, we computed metrics separately for
the horizontal and vertical planar gradients, and combined the two by
computing the sum.

Before the event-related averaging (Fig. 2), the data were bandpass
filtered in the range of 2–30 Hz using a finite impulse response filter. The
filter order was set to three cycles of the lower bound of the passband.

Whenever plots and results of sensor-space analyses (Figs. 2, 3, 5) refer
to a particular selection of sensors (left/right, ipsilateral/contralateral),
we always refer to the posterior sensors overlying the left and right hemi-
spheres, as defined by the CTF MEG manufacturer.

Spectral analysis. To get a time-frequency representation (TFR) of
power and intertrial coherence (ITC), we used a sliding time window fast
Fourier transform (FFT) approach. Frequencies of interest ranged from 2
to 30 Hz in steps of 1 Hz. The time window was always such that it fit
exactly four cycles of the frequency of interest, and it slid over the time
axis in steps of 50 ms. Each instance of the sliding time window was
multiplied by a Hanning taper and Fourier-transformed, thus yielding a
time-resolved complex Fourier spectrum. Power values pown(f,t) for
trial n, frequency f, and time point t were computed by squaring the
absolute value of the Fourier coefficients cn(f,t), i.e., pown(f,t) � �cn(f,t)� 2,
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and were averaged over trials. Intertrial coherence was defined as the
absolute value of the complex mean of the Fourier values, after normal-
izing them to unit length, as follows:

ITC� f, t� � � 1

N �
n�1

N cn� f, t�

�cn� f, t���
Source analysis. To obtain an estimate of the sources of the observed 10

Hz activity, we applied a beamforming spatial filtering technique known
as dynamic imaging of coherent sources (DICS; Gross et al., 2001) to our
10 Hz power data. This step used the data recorded from the axial gradi-
ometers. The DICS algorithm computes a spatial filter from the cross-
spectral density matrix (CSD) of the data and a lead field matrix. To
compute the CSD, we used a multitaper FFT approach. Data were sub-
selected between 0.9 and 1.5 s after entrainment stimuli onset, separately
for data with entrainment in the right and left hemifield. Slepian tapers
were applied to obtain a �2 Hz spectral smoothing, thus yielding an
estimate of activity in the 8 –12 Hz band. The CSD was estimated using
the combined data of the left-entrained and right-entrained trials. To
obtain the lead fields for each subject, we constructed a realistically
shaped single-shell head model based on the individual anatomical MRI
(Nolte, 2003), after spatially coregistering the MRI to sensor space MEG
data by identifying fiducials in the nasion and the two ears. Each brain
volume was divided into a grid of points spaced 8 mm apart, and warped
to the template Montreal Neurological Institute (MNI) brain. The lead field
was calculated for each grid point (Nolte, 2003). The estimated power in
source space was averaged over trials. For visualization purposes, the grand-
average grid was interpolated onto the single-subject MNI template brain
(Fig. 4).

The above approach yielded an estimate for the neural sources respon-
sible for the alpha band power increase during the entraining stimuli. To
get an estimate of the postentrainment active neural sources (Fig. 4B), we
applied the filter, which was computed based on the 0.9 –1.5 s time win-
dow, to the CSD estimated during the time window 1.5–2 s, i.e., after the
entraining stimuli offset.

Cluster-based permutation statistics. To statistically quantify the time–
frequency results of power and ITC, and the source analysis results, we
performed cluster-based permutation tests (Maris and Oostenveld,
2007) across subjects. Specifically, for each voxel (either time/frequency/
channel voxels for sensor space TFR analyses or x/y/z voxels for source
space analysis) we computed the normalized difference between condi-
tions: (A � B)/(A � B). This metric was computed both for the observed
data and for 1000 (in the case of sensor space analysis) or 1500 (in the case
of source space analysis) permutations of the conditions. Based on the
per-voxel permutation distribution of descriptives thus obtained, we
thresholded the observed values with the 95th percentile of this distribu-
tion to obtain cluster candidates. For each permutation, the cluster can-
didate with the highest sum of voxel-level descriptives was added to the
permutation distribution of cluster statistics. The sum of descriptives for
each observed cluster candidate was compared with this permutation
distribution to assess significance for each cluster. For the source-level
analysis, we used the maximum value of voxel-level descriptives per clus-
ter (rather than the sum of all descriptives) as the cluster statistic to test,
since spatial extent of clusters in beamforming typically is not closely
related to the reliability of the source reconstruction (i.e., beamforming
tries to make sources as small as possible; in the ideal case neighboring
voxels are independent). For the sensor-level analysis, using the sum of

B

C D

A

Figure 1. Experimental design and behavioral results. A, Subjects were presented with 1.5 s stimulation trains composed of bilateral flashing white squares against a dark gray background. One
of the squares flashed periodically at 10 Hz. The other had a jittered interflash interval. The hemifield of random versus jittered stimuli was randomized over trials. After the offset of the stimulus
trains, a near-threshold target appeared in either of the two hemifields after a brief random delay. Subjects were instructed to indicate whether they saw the target on the left or right (forced choice).
B, Hit rate as a function of the delay between entrainment stimuli and target. A clear improvement in performance was observed with increasing delay, both for the entrained and nonentrained trials.
C, The difference in hit rate between entrained and nonentrained trials, as a function of delay. Dashed lines indicate grand average observed values. The green curve indicates the best fit 10 Hz
sinusoid. D, Hit rates computed for only in-phase (100, 200 ms) or anti-phase (150, 250 ms) delays, separately for the entrained and nonentrained trials. Repeated-measures ANOVA revealed a
significant interaction between the two factors, and post hoc t tests reveal that there is an effect of delay (i.e., phase) only when the target was presented at the entrained hemifield. Error bars reflect
unbiased within-subjects corrected SEM (Cousineau, 2005; Morey, 2008). *p 	 0.05.
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descriptives makes more sense, as cluster extent is informative as to the
reliability of the finding (i.e., neighboring time/frequency/channel points
are likely to be highly correlated).

Results
Subjects were presented with trains of 16 flashes that were tem-
porally spaced over a 1.5 s period against a gray background (Fig.
1A). Each flash lasted 17 ms. Either the left or the right visual field
was stimulated by 10 Hz periodic flashing, while the other hemi-
field was stimulated by a jittered flash train. After a variable delay
(17–340 ms), a near-threshold target (duration, 17 ms) was pre-
sented in one of the two hemifields. The subjects’ task was to
detect in which hemifield the target was presented (two-
alternative forced choice).

Rhythmic visual stimulation results in hemifield-specific
periodic modulation of perception
The target stimulus could appear either at the side of the periodic
stimulation (an “entrained” trial), or at side of the arhythmic
stimulation (a “nonentrained” trial). Our main question was
whether the delay between the last flash of the stimulation train
and the target modulated perception rhythmically. First, we ob-
served similar hit rates and reaction times for the entrained and
nonentrained trials across subjects [hit rates: entrained trials,
80.5 � 1.0%; nonentrained trials, 80.0 � 0.9% (mean � SEM);
paired-samples t18 � 0.54, p � 0.60; reaction times: entrained
trials, 362 � 55 ms; nonentrained trials, 356 � 55 ms; t18 � 0.96,
p � 0.35], indicating that there was no difference in attention to
an entrained versus a nonentrained hemifield. Hit rates strongly
increased with longer delays (Fig. 1B), both for the entrained and
nonentrained trials (Pearson correlation between delay and hit

rate: entrained, r � 0.84; nonentrained, r � 0.89, both p 	 10�5).
This is expected because of the forward masking effect of the
stimulus trains.

The hit rate difference between entrained trials and nonen-
trained trials revealed a clearly periodic pattern (Fig. 1C), indi-
cating that the periodic stimulation resulted in a rhythmic
modulation of detection performance matching the stimulation
in frequency. We tested this periodicity by fitting a 10 Hz sinusoid
to the hit rate data (Fig. 1C, green curve). The sinusoid plus a
linear trend fitted the data significantly better than a linear trend
only. This was assessed using a Wald F test (F(2,15) � 6.73, p �
0.008), which controls for the increase in degrees of freedom. To
alleviate possible concerns regarding a bias of the Wald test, we
verified this observation by performing a permutation test, ob-
taining similar results (p � 0.01). Finally, to rule out the possi-
bility that this result was driven by a small number of subjects, we
performed a bootstrap procedure, obtaining a 95% confidence
interval on the circular-to-linear correlation between delay (ex-
pressed as 10 Hz phase) and hit rate of r � 0.46 – 0.91, thus
confirming a robust periodicity in the hit rate profile. Interest-
ingly, we observed this periodicity after the offset of the rhythmic
stimulation, indicating that the rhythmicity is maintained by an
endogenous mechanism. Also note that the hit rate profile went
both above and below the zero line (Fig. 1C). This means that
perception was impaired at certain phases relative to the entrain-
ing stimuli, while it was enhanced at others.

Because the above analysis was based on the difference be-
tween the entrained and nonentrained trials, we cannot yet be
certain that the periodicity in hit rate is exclusively explained by
the rhythmic entrainment. To address this issue, we conducted a

Figure 2. ERFs during rhythmic stimulation. The MEG planar gradient shown separately for the sensors overlying the left (bottom) and right (top) occipitoposterior hemispheres (as defined by
the CTF MEG manufacturer). Red and blue curves correspond to rhythmic stimulation in the right and left visual fields, respectively. A periodic pattern is clearly visible as a consequence of the
stimulation. Amplitude was higher over the contralateral sensors. Importantly, the rhythmicity in the ERFs persisted for several cycles after the end of the rhythmic stimulation (second vertical dotted
line). The MEG planar gradient in the direction of most power was used, as computed by singular value decomposition. Error bounds reflect unbiased within-subjects corrected SEM (Cousineau, 2005;
Morey, 2008).
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2 � 2 repeated-measures ANOVA, with
entrained versus nonentrained and in-
phase versus anti-phase as factors (Fig.
1D). In-phase trials are here defined as
those trials in which the target appeared
precisely 100 or 200 ms after the entrain-
ment; while anti-phase trials are those
with a delay of 150 or 250 ms. We found a
significant interaction between entrain-
ment and phase (F(1,18) � 6.28, p � 0.02).
Post hoc t tests revealed that there was a
significant difference between in-phase
and anti-phase hit rate for the entrained
trials (t18 � 2.75, p � 0.01), but this dif-
ference was not significantly present for
the nonentrained trials (t18 � 0.65, p �
0.53). These results demonstrate that the
periodic modulation of detection perfor-
mance is present only in the visual hemi-
field that received rhythmic visual
stimulation.

Rhythmic visual stimulation causes
persistent alpha activity in early
visual cortex
We next asked whether the rhythmic
stimulation entrained the alpha activity as
detected in the MEG signal. We first re-
port the event-related fields (ERFs) time-
locked to the onset of the stimulation
trains (Fig. 2). All ERFs are presented as
planar gradient (two planar gradient
orientations were combined using a
singular-value decomposition approach,
which preserves phase information). The
periodic stimulus trains were accompa-
nied by clear rhythmic temporal dynam-
ics in the ERFs (Fig. 2). As expected, the
ERFs with the highest amplitude oc-
curred in the sensors contralateral to the
rhythmic stimulation (occipital/posterior
channels, as defined by the CTF MEG
manufacturer; mean rectified ERF be-
tween 1.55 and 2 s, contralateral vs ipsilateral sensors: t18 � 3.39,
p � 0.003). Some rhythmic activity was also observed contralat-
eral to the jittered stimulation trains. This effect is best explained
by field spread from the other hemisphere (Lütkenhöner, 2003).
Importantly, we found that the phase-locked rhythmic brain ac-
tivity persisted after the offset of the rhythmic visual stimulation
(Fig. 2, second vertical dotted line). These results do not change
qualitatively when we compute the ERF only for trials where the
target appeared �200 ms after the rhythmic stimuli offset (data
not shown). We therefore conclude that the effects are not driven
by target processing in the poststimulation interval. Statistical
assessment of the phase-locking evident in the ERFs is more
straightforward when based on the time–frequency representa-
tion of ITC; this is described below.

Next we identified the effects of the rhythmic stimulation in
the frequency domain. The time–frequency representations of
power averaged over trials showed a clear effect in the alpha band
(Fig. 3A). Considering the power difference between sensors con-
tralateral and ipsilateral to the entrained hemifield, we found that
the alpha activity was strongest in the contralateral sensors

[cluster-based permutation test (Maris and Oostenveld, 2007),
p � 0.004], confirming the entrainment of alpha activity. We also
found a clear reduction in low-frequency activity in the contralat-
eral sensors (cluster-based permutation test, p � 0.001). The 10
Hz power in ipsilateral sensors is best explained by magnetic field
spread of activity from the other hemisphere (as confirmed by
source analysis below; Lütkenhöner, 2003). A similar pattern was
observed when considering the ITC (Fig. 3A, right): alpha band
ITC is significantly higher for the contralateral sensors (p �
0.001). From Figure 3 (bottom left), it seems clear that the en-
trained activity persists after the stimulus train. To exclude effects
from the temporal smoothing introduced by the spectral analysis,
we also computed the alpha power and ITC for the MEG in the
postentrainment interval only (1.5–2 s). We found a significantly
greater 10 Hz power (t18 � 3.32, p � 0.004) and ITC (t18 � 5.01,
p � 9.1 � 10�5) postentrainment for the sensors contralateral to
the entrainment hemifield than for the ipsilateral sensors. Similar
results are obtained when we test alpha power and ITC in a nar-
row time window starting 200 ms after the stimulation (1.7–1.8 s;
power: t18 � 2.06, p � 0.054; ITC: t18 � 2.88, p � 0.01). Finally,

Figure 3. Frequency-domain analysis results. Time–frequency representations of power (left) and ITC (right), shown for sen-
sors contralateral (top) and ipsilateral (middle) to the rhythmic stimulation. The bottom plots show the difference between
contralateral and ipsilateral sensors. A persistent alpha power and ITC increase was visible for contralateral sensors, which out-
lasted the rhythmic stimulation.
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we also calculated ITC from Hilbert-transformed, bandpass-
filtered data. This analysis confirmed a sustained elevation of ITC
after the stimulus train. The ITC increase was sustained for 
200
ms longer in the hemisphere contralateral to the entraining stim-
uli than in the ipsilateral hemisphere (data not shown). We con-
clude that the rhythmic stimulation resulted in increased
endogenous phase-locked alpha activity persisting after the
stimulation.

To identify the neural sources corresponding to the alpha en-
trainment, we performed a beamformer analysis (DICS; Gross et
al., 2001) on the MEG data at 10 Hz in the interval 0.9 –1.5 s.
Figure 4A shows the contrast between left and right entrainment
in the left panel, and the reverse contrast in the right panel. We
show only the significant clusters (p 	 0.05) arising from a
cluster-based permutation test (Maris and Oostenveld, 2007),
controlling for multiple comparisons. For both the left and the
right entrainment, there were clear peaks in the occipital cortices
contralateral to the entrained hemifield, around the calcarine
sulci. When we apply the spatial filter computed during the stim-
ulation to the activity in the time window after stimulation, 1.5–2
s, the same neural sources are significantly activated (Fig. 4B;
masked with cluster-permutation p 	 0.05). These results indi-
cate that early visual regions are responsible for the alpha power

increase observed both during and after the rhythmic 10 Hz
stimulation.

Periodic modulation of perception is mediated by entrained
alpha activity
We next asked whether variability in alpha entrainment over tri-
als as observed in the recorded MEG signal predicted the period-
icity found in the detection performance. We quantify this
periodicity by an entrainment index (EI), which reflects the
amount to which the rhythmic stimulus train caused a rhythmic
effect in the hit rate (see Materials and Methods). We separated
the trials for each subject into four bins corresponding to quar-
tiles of alpha power during the periodic stimulus trains, and com-
puted the EI separately for trials belonging to each of those bins
(Fig. 5). The alpha power used to sort the trials was estimated
either from the sensors contralateral to the entrainment stimuli
(where, as shown, the strongest alpha effect was observed), or
from the ipsilateral sensors. We found a significant interaction
between the alpha-providing hemisphere and alpha quartile
(F(3,18) � 2.86, p � 0.045). Subsequent t tests revealed that higher
alpha quartiles corresponded to a higher EI, but only when alpha
power was estimated from the sensors contralateral to rhythmic
stimulation (fourth quartile vs first quartile: t18 � 2.29, p � 0.03).

A

B

Figure 4. Source analysis results. A, Grand-average results for DICS beamformer source analysis of entrained 10 Hz activity during stimulation, interpolated onto a single-subject MNI template
brain. Values are masked with cluster-based permutation test p 	 0.05, controlling for multiple comparisons. The left and right panels show the sources for the 10 Hz activity during left and right
rhythmic stimulation, respectively. B, Same, but with activity estimated during the postentrainment window.
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This was not the case when alpha power was estimated from the
sensors ipsilateral to rhythmic stimulation (fourth quartile vs
first quartile: t18 � 0.71, p � 0.49). We conclude that higher
locally entrained alpha power predicts a stronger phasic effect in
detection performance.

To rule out the possibility that this correlation between per-
ceptual rhythmicity and alpha power entrainment is trivially ex-
plained by effects of vigilance (which could be reflected in a
general alpha power increase or decrease), we also computed the
ITC separately for the different alpha power quartiles. We find a
significant effect of alpha power quartile on ITC (F(3,18) � 7.22,
p � 4 � 10�4), with higher alpha power quartiles corresponding to
higher ITC (fourth quartile vs first quartile: t18 � 3.11, p �
0.006). We can therefore conclude that the rhythmic modulation
of hit rate is due to entrainment of endogenous oscillations in the
alpha band.

Discussion
We have demonstrated that 10 Hz rhythmic visual stimulation
induces alpha-band rhythmicity in ongoing neuronal activity.
The entrained rhythm was intrinsic to the brain, since it outlasted
the stimulation train by several cycles. Furthermore, the stimula-
tion caused a subsequent rhythmicity in subjects’ perceptual abil-
ity. Importantly, the degree of rhythmic entrainment of the MEG
signal predicted the rhythmicity in perceptual performance. The
rhythmic modulation of both the brain activity and the detection
performance was limited to the hemisphere contralateral to the
stimulated hemifield, suggesting local neuronal entrainment.
This was confirmed by source localization demonstrating the in-
volvement of early visual cortical areas.

Previous work has convincingly demonstrated that trains of
TMS pulses and visual stimuli can entrain brain activity detected
in the EEG (Thut et al., 2012). It has been shown that 
10 Hz
visual stimulation results in the strongest neural entrainment
compared with other frequency bands (Herrmann, 2001). Fur-
thermore it has been shown that 10 Hz entrainment can produce
a cyclic modulation of perceptual performance; however, the
brain dynamics underlying this phenomenon are still unclear
(Mathewson et al., 2012; de Graaf et al., 2013). We now directly
link the measured entrainment to behavior: the entrained brain
activity is correlated over trials with the rhythmicity in the peri-
odic hit rate profile. Another important insight from our findings
is that the entrainment is local; i.e., it reflects the rhythmic en-
gagement of spatially specific visual regions rather than a more
global signal. This claim is based on the fact that the effect on
target perception was only seen in the rhythmically stimulated
hemifield. The MEG data corroborated this finding: the sources
reflecting the entrained activity were localized in the hemisphere
contralateral to the rhythmic stimulation. This result is consistent
with studies using TMS to entrain respectively the left or right
hemispheres (Romei et al., 2010); we now provide evidence that
local entrainment of brain activity in the visual cortex can be
obtained using visual stimulus trains [similar results seem to hold
for frequency modulation of sound entraining the auditory cor-
tex (Henry and Obleser, 2012)]. An interesting hypothesis is that
the alpha entrainment by visual stimulation we report here is
responsible for the phenomenon known as the “attentional
blink”; recently, evidence for this hypothesis has been reported
(Zauner et al., 2012).

A recent study (Jaegle and Ro, 2014) also reported entrain-
ment of alpha activity (as measured by EEG) using TMS to either
occipital or parietal cortex. Interestingly, however, they report a
behavioral effect of their entrainment only when TMS was ap-
plied to the parietal cortex. This is in line with another TMS study
reporting alpha entrainment after parietal stimulation (Thut et
al., 2011). We report strong, behaviorally relevant, occipital alpha
entrainment. Although the studies cited above (and others, e.g.,
Hanslmayr et al., 2013) show convincing evidence for the exis-
tence of a parietal alpha source, there is ample evidence that early
visual cortex also contains alpha generators (Lopes Da Silva and
Storm Van Leeuwen, 1977; Bollimunta et al., 2008; Spaak et al.,
2012) that are modulated with attention (Yamagishi et al., 2003;
Bollimunta et al., 2011). It is conceivable that intrinsically occur-
ring alpha modulations, such as those occurring in response to
attentional cues, are top-down controlled by parietal cortex,
while the consequences of this modulation are expressed in oc-
cipital areas. Given the medial and deep location of the primary
visual cortex, it might not be easily entrainable by TMS, while the
dorsal and lateral location of the parietal areas associated with
alpha generation (surrounding the intraparietal sulcus) is ana-
tomically ideal for transcranial stimulation. Entrainment using
visual flashes as reported here is of course not subject to such
anatomical constraints, as the stimulation is relayed directly by
existing endogenous pathways.

The hit rate profile we observed was clearly periodic. It might
be argued that these behavioral effects are not due to low-level
entrainment of endogenous oscillators, but instead reflect tem-
poral expectation. However, temporal expectation cannot ex-
plain our results, because it would predict the opposite pattern:
subjects performed worse at in-phase delays (100/200/300 ms;
Fig. 1C,D) than at anti-phase delays. Since the entraining stimuli
were presented at 0, �100, �200, . . . ms, the temporal expecta-
tion hypothesis would predict an increased performance at in-

Figure 5. Relation between entrained alpha activity and perception. The entrainment index,
i.e., the amount to which the rhythmic stimuli resulted in a rhythmic hit rate modulation, shown
separately for four quartiles of alpha power. Alpha power was estimated either from the sensors
ipsilateral (bottom) or contralateral (top) to the rhythmic stimulation. Importantly, the hit rate
was strongly phasically modulated for trials during which contralateral entrained alpha power
was high, but not for trials with low power. No such effect was observed for the ipsilateral alpha.
Error bars reflect unbiased within-subjects corrected SEM (Cousineau, 2005; Morey, 2008).
*p 	 0.05.
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phase delays (Rohenkohl and Nobre, 2011; Rohenkohl et al.,
2012; Cravo et al., 2013). Presumably temporal expectation is
associated with different neural mechanisms than those reflecting
the entrainment we observed.

This brings us to an important point: it seems that (at least)
two connotations of “entrainment” are used in the literature.
Temporal predictions and expectations are typically associated
with entrainment of low-frequency neural oscillations (Lakatos
et al., 2008; Schroeder and Lakatos, 2009; Cravo et al., 2013). This
sense of “entrainment” likely reflects an active mechanism by
which the brain extracts temporal regularities from the environ-
ment. In contrast, the entrainment of alpha activity that the cur-
rent paper (and the cited papers on visual and TMS entrainment)
is concerned with, is believed not to reflect such an active mech-
anism. Instead, this form of entrainment is likely a lower-level
process that taps into kinetics of the neural system not specifically
evolved to extract temporal information; this latter form of en-
trainment is more akin to resonance of endogenous neural
oscillators.

Is the entrainment specific to 
10 Hz stimulation, or would
stimulation at other frequencies have worked equally well? Im-
portantly, since the entrained 10 Hz activity was sustained after
the stimulus train for �300 ms, it is clear that the induced rhythm
is maintained by endogenous mechanisms. Given the large am-
plitude of spontaneous alpha oscillations, we argue that the sus-
tained entrained oscillations rely on the same mechanisms as the
natural alpha oscillators. In support of this notion, previous en-
trainment studies targeting the visual system have shown that
perceptual entrainment is maximal at 
10 Hz (Romei et al.,
2010; de Graaf et al., 2013), and that even nonrhythmic input can
result in cortical 10 Hz resonance (VanRullen and Macdonald,
2012). Also, rhythmic stimulation at frequencies other than 10
Hz was shown to induce a 10 Hz rhythmicity in perceptual per-
formance (de Graaf et al., 2013, their Experiment 2). Further-
more, an exhaustive test of many different visual stimulation
frequencies has revealed that 10 Hz activity in the visual system
shows by far the strongest resonance (Herrmann, 2001). Finally,
although it has convincingly been argued that steady-state re-
sponses during stimulation are largely explained by a superposi-
tion of transient responses (Capilla et al., 2011), we note that our
arguments in favor of entrainment are based primarily on effects
observed after stimulation offset, when the superposition of tran-
sients would have already disappeared. We conclude that the 10
Hz visual stimulation used in the present study most likely en-
trains the neuronal generators responsible for creating the spon-
taneous alpha activity.

Our results provide evidence for the hypothesis that percep-
tion unfolds not in a fully continuous manner, but is instead at
least partly discrete (VanRullen and Koch, 2003; Schroeder and
Lakatos, 2009; Schroeder et al., 2010). The discrete sampling of
visual stimuli has been proposed to be clocked by an internal
oscillatory rhythm (Busch et al., 2009; Landau and Fries, 2012;
Romei et al., 2012; Fiebelkorn et al., 2013), and we here add
evidence indicating that alpha oscillations are involved in this
clocking of perception. Previous work has found that oscillatory
EEG activity with a frontocentral topography is most predictive
of perception (Busch et al., 2009), yet here we report occipital
alpha to be the critical factor. The frontal versus posterior com-
ponents might reflect complementary mechanisms of temporal
sampling, or they might interact to result in the observed percep-
tual modulation. Alternatively, since the study by Busch et al.
(2009) did not perform source analysis, it could also be the case
that the observed EEG topography does not reflect the engage-

ment of frontal sources. Further research is needed to shed light
on the relation between a possible global rhythmicity in percep-
tion or attention, and the strongly localized oscillatory sampling
we report here.

Most studies concerning the role of brain oscillations in per-
ceptual and cognitive processes have relied on external cognitive
cues to modulate the oscillations under scrutiny; e.g., a cue to
covertly shift attention to one visual hemifield reliably induces a
hemispheric lateralization in alpha band activity (Worden et al.,
2000; Kelly et al., 2006; Rihs et al., 2007). Typical research ques-
tions have investigated how changes in neural oscillations affect
cognitive performance. While these studies have provided im-
portant insights, claims made in this manner about the functional
relevance of oscillations are correlative: the observed oscillations
could be a consequence of some unobserved factor (which was
the result of the cognitive cue), while this unobserved factor was
also the cause of the cognitive change. A direct manipulation of
endogenous brain oscillations allows researchers to make causal
claims. We have here demonstrated that such a manipulation in
the visual system is feasible by using visual stimulation.

Through using the technique of visual alpha entrainment, our
findings show that cortically highly localized alpha activity mod-
ulates visual perception in a phase-specific manner. It has been
demonstrated that alpha oscillations are under strong top-down
control when attention is allocated (Haegens et al., 2011; Händel
et al., 2011; Bonnefond and Jensen, 2012). They may therefore
function as a mechanism for rhythmic gain control of neuronal
processing (Arnal and Giraud, 2012; Jensen et al., 2012; Kli-
mesch, 2012), possibly through interaction with gamma activity
(Spaak et al., 2012; Lisman and Jensen, 2013). We show here that
local alpha oscillations indeed are doing causal work; they are not
an epiphenomenal consequence of some other attentional pro-
cess. In future work, it would be of great interest to investigate
how the allocation of attention interacts with the entrained alpha
oscillations.
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