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Microvibrissae-Based Texture Discrimination
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Rodents use their whiskers to detect a variety of tactile features of their environment. They do so by using two functionally distinct
whisker systems: the macrovibrissae and microvibrissae. To determine the functional role of unexplored microvibrissae, we recorded
from the cortical area representing the frontobuccal pad in anesthetized rats while presenting moving textures of varying coarseness. We
find that surface coarseness is coded by the discharge rates of frontobuccal pad cortical neurons. Cortical neurons can use this response
measure to robustly and reliably discriminate between the different textures. While neuronal discharge rates carry tactile information,
the highly reproducible firing patterns of these neurons suggest that a single spike train may contain sufficient information to encode the
stimulus. Together, these results indicate that rodents may use their microvibrissae to distinguish between surfaces having subtly

different textures and shapes.

Key words: frontobuccal pad; somatosensory; textures; whisker

Introduction
Rodents use their whiskers to detect and distinguish a variety of
tactile features in their environment (Kleinfeld et al., 2006), in-
cluding object position (Mehta et al., 2007; Knutsen and Ahissar,
2009), shape (Brecht et al., 1997; Harvey et al., 2001), aperture
and gap width (Krupa et al., 2001), and textures (Carvell and
Simons, 1990; Diamond et al., 2008; Lottem and Azouz, 2009;
Diamond, 2010; Jadhav and Feldman, 2010; Morita et al., 2011).
Rodent whiskers are able to gather such a rich variety of tactile
information by way of two functionally distinct whisker systems:
the long, moveable macrovibrissae, which are swept across ob-
jects and surfaces (Sachdev et al., 2001; Berg and Kleinfeld, 2003),
and shorter, nonmoveable microvibrissae. Most relevant studies
have focused on the macrovibrissae and have shown that rodents
can discriminate between different textures at high resolutions
(Moritaetal., 2011). However, this acuity cannot be explained by
differences in firing rates in cortical barrel neurons, since it has
been shown that they may account for detection of only large
texture differences (Arabzadeh et al., 2005; Jadhav et al., 2009).
Meanwhile, the functional role of the microvibrissae is only par-
tially understood, since it has been shown that they are capable of
mediating object recognition (Brecht et al., 1997), and since most
behavioral studies of texture discrimination involved contact
with both vibrissae (Carvell and Simons, 1990, 1995).

The present study explores whether the somatosensory cortex
can code for surface coarseness when rodents sense the world
through the microvibrissae. Our findings suggest that rodents
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may use their frontobuccal pad (FBP) to discriminate between
objects having different surface coarseness.

Materials and Methods

Whisker stimulation. Head angular velocities associated with rat explora-
tion were taken from Lottem and Azouz (2009). We replayed these pad
movements across different surfaces by covering a face of a rotating
cylinder with sandpaper of different grades of coarseness and rotating the
wheel against the pad (Fig. 1B; n = 11 animals; n = 19 neurons). The
wheel face was placed so that the microvibrissae rested upon it (Fig. 1B).
The wheel was placed to mimic rotational head movements. The angular
velocity was controlled using a DC motor driven at ~39 mm/s to repli-
cate median head velocity. The 30-mm-diameter wheel was driven by a
DC motor (Farnell). We used surfaces of eight different grades from
coarse grained to fine grained (the numbers in the parentheses indicate
the average grain diameter): P100 (162 wm), P320 (46 wm), P400 (35
wm), P500 (30 wm), P600 (26 pm), P800 (22 wm), P1000 (18 wm),
P1200 (15 wm). These grades were chosen in accordance with previous
studies (Arabzadeh et al., 2005; Hipp et al., 2006; Morita et al., 2011). For
each texture, we recorded 50 trials per texture of the rotating cylinder,
each lasting ~1s.

To measure surface coarseness, we used a calibrated noncontact opti-
cal displacement measuring system (resolution, 1 um; sampled region,
200 wm; LD1605-2, Micro-Epsilon). We rotated the texture-covered cyl-
inders at velocities corresponding to head movements (see above) and
measured the height of surface microfeatures at one point on the texture
over time as the surface rotates (Fig. 1 G, bottom). We then replayed these
diverse distance profiles through a galvanometer stimulator to the FBP
(Fig. 1C; n = 8 animals; n = 52 neurons). A plate (5 X 5 mm) was
attached to the end of a rod, which was attached to the axis of the galva-
nometer. The plate was lying close to the pad.

Surgical procedures and recording. Adult male Sprague Dawley rats
(n = 19; 250-350 g) were used. Animal surgeries and in vivo recordings
were performed as previously described (Lottem and Azouz, 2009). All
experiments were conducted in accordance with international and insti-
tutional standards for the care and use of animals in research.

After placing subjects in a stereotactic apparatus (TSE Systems), an
opening was made in the skull overlying the FBP cortex (mediolateral,
6.2-7.2 mm; anteroposterior, 0.8—2.5 mm), and tungsten microelec-
trodes (2 M{); We Sense) were lowered until units drivable by pad stim-
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Spike-triggered averaging (STA) of texture
distance profiles were calculated from DC-  Figure 1. The influence of surface coarseness on neuronal firing rates. A, Side view of the mystacial whisker fields. B, C,

subtracted texture signals. We calculated STA
signal for each texture for each neuron sepa-
rately. The STAs were calculated between £50
ms. Significance of an event preceding a spike
was determined by crossing a threshold (mean
+ 3 SD) and lies <15 ms before the spike.

The reliability measure (RM) is calculated
only on neurons that were stimulated with ran-
dom repeated parts of the textures (frozen, n =
10). The RM is based on Mainen and Sejen-
owski (1995). Briefly, we detected in each PSTH (bin size, 5 ms), peaks
that exceed a certain threshold. The threshold was calculated for each
neuron and texture separately. Threshold calculation is based on the
mean = SD of peak values of the PSTH. We then calculated the cumula-
tive sum of all the probability values within events that crossed the
threshold, divided by the cumulative sum of all the bins in total. To
calculate the significance level of RM, we created for each neuron a sur-
rogate dataset in which we shuffled the interspike interval. We defined a
neuron as reliable if, in response to at least one of its textures, RM was
above a significant level (8 of 10).

To determine the how well each neuron can decode the presented stimu-
lus, we created a prediction of the stimulus from the recorded responses. We
computed an STA for stimulus—response pairs recorded during the first half
of each texture stimulus. We then convolved this STA with each spike train
recorded during the second half of the stimulus to derive the prediction. We
estimated the accuracy of this prediction by computing the Pearson’s corre-
lation coefficient between the actual and the predicted stimuli. The results
are presented as the mean = SEM.

Results

Here, we test the ability of microvibrissae to mediate texture dis-
crimination, and quantitatively evaluate the neuronal mecha-
nisms underlying this discrimination (Fig. 1A4). To examine how

Magpnified schematic frontal view of the mystacial microvibrissae with the two types of stimuli: texture-covered rotating wheel (B)
and plate driven by a galvanometer (C). D, PSTHs of two cortical neurons to the different textures and influence of surface
coarseness of neuronal firing rates in rotating wheel configuration (left) and galvanometer (right). £, The influence of surface
coarseness on firing ratesin the neurons in D. The error bars indicate SEM. F, Influence of surface coarseness on firing rates in all the
neurons in the two stimulus paradigms. Error bars are SEM. G, Smoothed power spectra (moving mean) of distance profiles across
all textures of the textures shown in bottom. The right panel shows the relation between the cumulative power (CP; 50-500 Hz)
and surface coarseness. H, The influence of CP on firing rates in the neuron in D (left). The dashed horizontal line indicated
spontaneous activity. /, The influence of CP on normalized firing rates in all neurons.

surface coarseness is transformed into neuronal discharges, we
took two approaches in which we mimicked the interaction be-
tween different surfaces and the FBP while the animal is moving
freely (see Materials and Methods; Fig. 1B,C). In the first ap-
proach, we quantified pad velocity associated with head move-
ments (Lottem and Azouz, 2009). We then replayed these pad
movements across different surfaces by covering a face of a rotat-
ing cylinder with sandpaper of different grades of coarseness and
rotating the wheel against the pad (see Materials and Methods;
Fig. 1B). In the second approach, we scanned each of the surfaces
and transformed texture surface into a unique distance profile
(see Materials and Methods; Fig. 1G, bottom). We then replayed
these diverse distance profiles using a galvanometer stimulator to
the FBP (Fig. 1C). Cortical responses to these two types of stimuli
are shown in Figure 1 B,C. These results indicate that surface
coarseness is translated into neuronal discharge rates. Surface
coarseness reduction led to a reduction in discharge rates (Fig.
1E,F).

Instead of relying on an industrial measure of grit size, we
measured the actual surface coarseness of each surface. We did it
by measuring the distance profile of each surface and then calcu-
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shows that neuronal discharge rates are
discriminating between the two textures.
To assess the discrimination between all
textures pairs, we calculated the AUC for
all textures pairs. This is shown in the left
panel of Figure 2C. Each pixel in this ma-
trix represents an AUC value for a pair of
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textures. To reduce the dimensionality of
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which lack the texture-response correla-
tions, and calculate their AUC values. We
repeated this process for 1000 iterations,
from which we extract the value for the
90%. This value serves as the significance
level. We consider a neuron as possibly
discriminating one if at least one of points
in the discriminability plot values was
above significant level. Of 52 units, 44
(~85%) were found to be possibly dis-
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criminating. Figure 2D shows the mean
discriminability plot of these neurons.

As an extension of these results, we
sought to determine the temporal con-
straints on texture discrimination. We
examined the influence of response dura-
tion on texture discrimination by chang-
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Figure 2.

lating the fast Fourier transform of these profiles. We quantita-
tively defined surface coarseness by computing the cumulative
power of the distance profile power spectrum of all surfaces (Fig.
1E). The coarser the surface is, the higher the power. Our results
show that reducing surface coarseness resulted in an overall re-
duction of the 50—-500 Hz power, which will result in decreased
cortical neuronal firing rates and vice versa (Fig. 1 H,I).

To determine whether neuronal firing rates can encode for
surface coarseness, we used the ideal observer approach. We first
calculated the distribution of firing rates as a function of surface
coarseness (Fig. 2B, inset). We then used the ROC analysis (Green
and Swets, 1974) to assess the discriminative power of surface
coarseness-dependent firing rates. The ROC in Figure 2B, which
is used to discriminate between two stimuli (P100 and P1200),

0.56 = ——r—T—T1—T1—T7—1
p100 p320 p400 p500 p600 p80O0P1000p1200
Texture grit size

Texture discrimination using ROC analysis. A, An example of the influence of cumulative power on firing rates in a
single cortical neuron. B, ROC used to discriminate between the two textures (P100 vs P1200). The inset shows the distribution of
neuronal firing rates of the neuron in 4 to two textures. C, The area under the ROC values, using firing rates, for all pairs of textures.
Averaging all values along the diagonal results in a discriminability plot for the neuron in A. D, Discriminability plot for all neurons
in the study. The dashed horizontal line indicates the significance level (see corresponding text). E, The influence of stimulus
duration on texture discriminability and the number of significant neurons. The dashed line indicates the significance level. F, H,
The influence of head velocity and direction on texture discriminability. Normalized changes in firing rates as a function of head
velocity and head direction. G, /, The influence of changing the velocity and head direction on each of the textures, on the average
discriminability. The dotted line is the control conditions. The dashed line is significance level. The error bars indicate SEM.

nate between different textures, we calcu-
lated for each neuron the discriminability
based on the response occurring on differ-
ent time windows from stimulus onset.
We measured the discriminability be-
tween different time scales with jumps of
50 ms. The time-scale analysis was made
only on neurons we consider as possibly
discriminating neurons (n = 44, ~85% of
the total population). Significance values
were calculated separately for each time-
window discriminability measure. We
found that texture discrimination be-
comes significant after ~200 ms. At this point in time, the ma-
jority of the recorded neurons becomes significant (Fig. 2E).
These results suggest that this neuronal constraint may enable the
animal to discriminate between textures using a single pass of the
FBP.

Finally, one of the major limitations in sensing the environ-
ment is stimulus generalization. Specifically, what happens to
texture discrimination if the animal encounters several of the
textures at a different head velocity or direction? These types of
mutability may cause a change in neuronal discharge rates, which
may have critical detrimental effect on the quality of the discrim-
ination. We tested for the influence changes in pad velocity and
direction on neuronal discharge rate in cortical neurons by vary-
ing the velocity of the textured-covered wheel from ~40 to ~60
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Cortical neurons respond to texture stimuli with highly reproducible spike train. A, Raster (top), PSTH (middle), and the frozen segment texture stimulus, P100 (bottom). B, STA of

different textures. €, Proportion of neurons showing significant STA is not dependent on textures. D, Distribution of times between spike generation and peak of the STA. E, The influence of
cumulative power on STA amplitude. F, Different temporal response pattern to different textures. G, Response reliability is not dependent on texture. The dashed line indicates the significance
threshold. H, Global and local correlation coefficients are not dependent on texture. The upper trace shows a segment of the actual (blue) and predicted response (red). The error bars indicate SEM.

mm/s, and moved the wheel in the opposite direction. To test the
influence of changes in pad velocity and direction, we compared
the firing rates for three textures (p350, p600, and p1200) in the
four conditions (n = 17). For each texture, we determined for
each neuron whether changes in velocity or direction resulted in
significant changes in firing rates (two-sample t test, @ = 0.05,
one tailed). We found that an increase in pad velocity enhanced
firing rates significantly in 54% (p350), 65% (p600), and 83%
(p1200) in the neurons in the different textures, while a change in
direction resulted in a significant change in firing rates in 53% of
the neurons. For the neurons that show significant increase in
firing rates, rates scaled up by a factor of 1.24 * 0.46 (Fig. 2F),
while switching to null direction resulted in a decrease by a factor
of 0.65 * 0.23 in firing rates (Fig. 2H).

We used these factors to scale the responses to the galvanom-
eter stimulator. For each trial in response to each texture of each
neuron (only discriminating neurons), we scaled the firing rates
according to changes in pad velocity and direction for each tex-
ture. We then calculated the average value of all points on the
discriminability plot for control condition and for plots in which
the firing rates of each texture were scaled separately according to
the change in firing rates as a result of velocity or direction
change. The average value in relation to the control is shown in
Figure 2G,I. The results show that stimulus variation has both
detrimental and favorable effects on discrimination, depending
on the specific texture. Altogether, texture discrimination re-
mains mostly significant. Our results indicate that, within the

stimulus variation we have tested, cortical neuron resilience to
stimulus noise is important in relaying texture signals, thus mak-
ing the use of the FBP plausible for texture discrimination.
There is mounting evidence that sensory perception involves
temporal coding schemes in which the timing of individual spikes
encodes information (Zador, 1997; Dayan and Abbott, 2001). To
test for the plausibility of temporal encoding in our system, we
chose a random sequence of textures and repeated it multiple
times (Fig. 3A). Using STA of surface distance for all spikes in a
session reveals that action potentials in cortical neurons com-
monly arise from high-frequency changes in surface structure
(Fig. 3B). According to a significance criteria (see Materials and
Methods), 43 of the 52 (83%) neurons have at least one texture
that yields significant STA. In these neurons, 49% of the textures
on average have significant STA. We calculated the probability of
an STA event to occur in a specific texture. We found no corre-
lation between the texture and the probability of having an STA
event. Linear regression between the probabilities of the different
textures was flat (r> = 0.05; slope, 0.004; Fig. 3C). These events
occur 8—10 ms before spike generation and their amplitude is
highly dependent on surface coarseness (Fig. 3D, E), while the
proportions of neurons responding to these events are not de-
pendent on surface coarseness (Fig. 3C). These highly reproduc-
ible firing patterns suggest that a single spike train may contain
sufficient information to encode the stimulus. We first calculated
response reliability (Mainen and Sejnowski, 1995) and found that
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while reliability measure does not depend on texture coarseness,
a large proportion of the spikes respond reliably to the same
feature (Fig. 3G; see Materials and Methods). We then attempted
to predict the stimulus from the recorded responses. We com-
puted the STA for stimulus—response pairs recorded during the
first half of the stimulus. We then convolved this STA with each
spike train recorded during the second half of the stimulus to
derive the prediction. We estimated the accuracy of this predic-
tion by computing the Pearson’s correlation coefficient between
the actual and the predicted stimuli. This process is illustrated for
one neuron in Figure 3H (top). Since the neuronal firing rates are
relatively low, the original stimulus features (blue trace) are only
partially captured by the predicted stimulus (red). We therefore
created two measures of prediction: global and local. The global
prediction is the Pearson’s correlation coefficient between the
complete actual and the predicted stimuli (mean, 0.36), while the
local prediction is the Pearson’s correlation coefficient only dur-
ing spike occurrences (mean, 0.816). Together, our results show
for the first time that FBP neurons may be used to distinguish
between surfaces having subtly different textures and shapes.

Discussion

Our results show that rats can sense surface texture using their
FBP. They may do so by brushing their FBP against different
surfaces for relatively short durations, which may correspond to
touch duration with the macrovibrissae (von Heimendahl et al.,
2007). These sweepings of the pad against different textures
transform surface coarseness into neuronal discharge rates,
which can be used to discriminate between different textures as
well as sensation of object shape (Brecht et al., 1997). This and
previous studies suggest that microvibrissae can provide salient
texture information as good as the coarsely spaced macrovibris-
sae (Brecht et al., 1997; Diamond et al., 2008; Morita et al., 2011).
Texture discrimination is robust and can endure changes in head
velocity and direction. A third important finding in the study is
the high temporal precision of responses to repeated presenta-
tions of arbitrary texture segments. This suggests that a single
presentation of a stimulus provides sufficient information to en-
code complex stimulus features. Such a robust coding mecha-
nism may provide a parallel coding scheme that may enable
rodents to use their FBP to accurately discriminate between dif-
ferent textures (Arabzadeh et al., 2006).

Before discussing the implications of these findings, it is im-
portant to consider the set of assumptions upon which the inter-
pretations are based. A critical caveat in the current study
involves surface contact mimicry by using the galvanometer
stimulator. This was done because of technical limitation. To
validate the use of the two methods, in some of the neurons in the
study we compared the responses to the two configurations and
did not find any significant changes between the results. Finally,
we are using anesthetized animals. This method has several dis-
advantages and advantages. While the magnitudes and correla-
tions of cortical neuronal activity are significantly different from
behaving animals, certain characteristics of cortical sensory pro-
cessing, such as texture coding, are consistent across various
brain states, including anesthesia (Arabzadeh et al., 2005). In
contrast, the use of anesthetized animals offers the advantages
of greater control on stimulus presentation, better single-unit
separation, and more precision in placements for neuronal
recordings.
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Texture discrimination through microvibrissae

and macrovibrissae

Except for two studies (Brechtetal., 1997; Moritaetal., 2011), the
literature on how rats detect a variety of tactile features of their
environment concentrates mostly on the macrovibrissae (see In-
troduction). These two studies compared the functional signifi-
cance of these two systems and concluded that macrovibrissae
and microvibrissae both are capable of mediating high acuity
form discrimination, while other studies have shown that mac-
rovibrissae are also involved in detecting object position, shape,
aperture, and gap width (see Introduction).

The current study has several major implications on the dif-
ferent theories of neural coding of texture coding (Diamond,
2010; Jadhav and Feldman, 2010). In one model, surface coarse-
ness is related to the mean speed or total power of surface-
induced whisker vibrations, which is encoded in mean firing rate
of somatosensory cortex (S1) neurons (Arabzadeh et al., 2005;
von Heimendahl et al., 2007). While we cannot measure mi-
crovibrissae velocity in response to the different textures, the
increase in distance profile power as a function of texture coarse-
ness suggests a monotonic dependence of neuronal firing rates on
this power, an idea that contrasts with findings of previous mac-
rovibrissae studies (Arabzadeh et al., 2005; von Heimendahl et al.,
2007; Jadhav et al., 2009), which only show differences in firing
rates between smooth and rough surfaces. This suggests that the
mean speed model may account for detection of fine texture
differences. In an extension of this theory, surface coarseness is
encoded by the rate of high-velocity/acceleration “stick-slip”
whisker micromotion events (Arabzadeh et al., 2005; Lottem and
Azouz, 2008; Wolfe et al., 2008; Jadhav et al., 2009). Thus, surface
coarseness is expressed in the rate of stick-slip events, which are
encoded by the mean firing rate of S1 neurons. Again, our results
suggest that most of the neurons (83%) in the FBP cortex respond
precisely to high-velocity/acceleration events in ~50% of the tex-
tures. Hence, the high-velocity/acceleration whisker micromo-
tion model can also explain detection of relatively fine texture
differences. Thus, the current study has implications for the way
rodents sense their environment. By showing that the FBP cortex
can code for surface coarseness, our results support the proposal
put out by several studies that rodents may dynamically sense
their environment by using both vibrissae systems to optimize
their detection and discriminating strategies.
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