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Abstract

Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all 

eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, 

acetylation marks are now found on thousands of nonhistone proteins located in virtually every 

cellular compartment. Here we summarize key findings in the field of protein acetylation over the 

past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial 

compartments. Collectively, these findings have elevated protein acetylation as a major post-

translational modification, underscoring its physiological relevance in gene regulation, cell 

signaling, metabolism, and disease.
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1. INTRODUCTION

During the lifetime of a protein there are many points at which an acetyl group may be 

added to influence function. As early as during its translation, a protein may be N-terminally 

acetylated to preserve its stability, interactions, or subcellular localization.1 N-Terminal 

acetylation is a major covalent modification occurring on eukaryotic proteins, with >80% of 

human proteins bearing an acetyl group at the α-amino position of the first amino acid. Once 

a protein is properly localized, acetylation of key lysine residues can occur enzymatically or 

spontaneously to influence its intermolecular interactions, enzymatic functions, localization, 

and eventual degradation. Post-translational acetylation of lysine residues will be the 

primary focus of the current review.

Lysine acetylation describes the transfer of an acetyl group from acetyl-coenzyme A (acetyl-

CoA) to the primary amine in the ε-position of the lysine side chain within a protein, a 

process that leads to neutralization of the position’s positive electrostatic charge. Acetylation 

can occur nonenzymatically; however, in most known cases, the level of acetylation results 

from the balance of opposing enzymatic activities. Marks are “written” by lysine 

acetyltransferases (KATs) and “erased” by lysine deacetylases (KDACs). Acetylated lysine 

residues, amidst their many functions, can be functionally interpreted by a third group of 

proteins, the so-called “readers”, which harbor specific acetyl–lysine binding domains, most 

prominently bromodomains. The dynamic interplay between the writers, erasers, and readers 
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of acetylation regulates critical epigenomic and metabolic processes, in addition to other 

major cellular functions.

Historically, investigators have focused on acetylation in the nucleus, where this mark 

regulates histone biology and transcription.2-5 Advances in mass spectrometric technologies 

have since revealed relevant targets of acetylation in nearly all intracellular compartments.6,7 

Compartmentalization of cellular proteins and nutrients is essential for cell specialization 

and function. As such, cellular acetylation is driven by the localization of enzymes, 

metabolites, and cofactors required to balance acetylation and deacetylation levels. 

Importantly, mitochondria have emerged as organelles in which acetylation is more 

prominent than phosphorylation8 and plays a key role in integrating metabolic cues with the 

bioenergetic equilibrium of the cell.

In this review, we give an overview of the chemistry and biology underlying protein lysine 

acetylation in mammals, review recent developments in the understanding of lysine 

acetylation, and provide examples of its function and regulation in distinct cellular 

compartments.

2. CHEMISTRY OF REVERSIBLE LYSINE ACETYLATION

The transfer of the acetyl group from acetyl-CoA to the ε-primary amine of a lysine residue 

can occur spontaneously or enzymatically. In mitochondria, acetylation is regulated in part 

by chemical, nonenzymatic mechanisms due to the high pH and high local acetyl-CoA 

concentrations within this compartment.9 The mechanism of nonenzymatic acetylation 

proceeds first via deprotonation of the lysine primary amine by naturally occurring 

hydroxide ions, followed by attack of the acetyl-CoA terminal carbonyl by the nucleophilic 

amine. A putative tetrahedral intermediate is transiently formed and decomposes into the 

reaction products acetyl-lysine, coenzyme A, and hydroxide (Figure 1).10

2.1. Lysine Acetyltransferases

The human proteome contains 21 putative KATs that catalyze lysine acetylation (Table 1). 

The best characterized have been catalogued into three major families based on homology to 

yeast proteins but also on structural and biochemical features of catalysis: (1) GCN5-related 

N-acetyltransferases (GNAT), (2) the p300/CREB-binding protein (p300/CBP), (3) and the 

MOZ, Ybf2, Sas2, and Tip60 (MYST) family. A number of other proteins have 

acetyltransferase activity, such as TBP-associated factor 250kd (TAFII250 (KAT4)), 

αTubulin acetyltransferase (αTAT1), circadian locomoter output cycles protein kaput 

CLOCK (KAT13D), and nuclear receptor coactivator-1 (NCoA-1), but do not belong to any 

of the major acetyltransferase families.

The first cloned mammalian acetyltransferase was the GCN5 homologue PCAF (KAT2B). 

In this study, Nakatani and colleagues reported conserved sequence homology between 

PCAF and the GCN5 genes in yeast and human. The authors performed in vitro acetylation 

assays using recombinant proteins to demonstrate that PCAF (KAT2B) can acetylate whole 

nucleosomes while the function of human GCN5 (KAT2A) was limited to free histones.11 
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Using similar assays, the enzymatic activity was demonstrated for CBP/p300 (KAT3A/B),12 

TAFII250 (KAT4),13 TIP60 (KAT5),14 and NCoA-1 (KAT13A).15,16

Despite considerable divergence in primary sequence, KATs from distinct families exhibit 

structurally homologous acetyl-CoA binding regions, which generally adopt a globular α/β 
fold (Figure 2). Regions flanking the central acetyl-CoA-binding cleft are not generally 

conserved, and they may serve to guide substrate specific activities.84 Among the KAT 

subfamilies, three prevailing mechanisms have been identified. GNAT family members use 

an active site glutamate to deprotonate the lysine ε-amine, enabling nucleophilic attack of 

the acetyl-CoA carbonyl, followed by formation of a transient tetrahedral intermediate and 

its subsequent collapse into acetyl-lysine and coenzyme A (Figure 3).85 The same 

mechanism has been proposed for KATs of the MYST family.86 A two-step mechanism 

involving an active site acetyl-cysteine intermediate was originally proposed for MYST 

enzymes.87 However, mutagenizing this cysteine residue does not affect enzymatic activity 

within the context of a preassembled ternary complex.86 Mutagenesis of an active site 

glutamate, however, ablates activity without reducing levels of autoacetylation.62,88 

Collectively, these data suggest that the active site glutamate plays a particularly significant 

role for MYST family catalysis. However, acetyl-cysteine intermediates may still be relevant 

depending on cellular context for MYST family members with still undefined mechanisms.

The mechanism utilized by p300/CBP family members is categorized as a “hit and run” 

(Theorell–Chance) mechanism. It is ordered and rapid, and the ternary complex formed is 

kinetically irrelevant for catalysis.89 Instead of an active site basic residue, aromatic residues 

lining a shallow catalytic pocket steer the lysine substrate and allow for nucleophilic attack 

of acetyl-CoA by lowering its pKa.90 A tyrosine residue then acts as an acid to protonate the 

sulfhydryl of CoA, leaving as reaction products acetyl-lysine and CoA (Figure 4). This may 

partially explain the relative substrate promiscuity observed for p300.91 The mechanisms 

used by several KATs [i.e., KAT13D (CLOCK), KAT13A (SRC1), KAT13B (SRC3), KAT4 

(TAF1), KAT9 (ELP3), and KAT12 (GTF3C4), among others] have not been formally 

investigated.

The enzymatic activity of HAT proteins may vary depending on the cellular 

microenvironment. For example, the substrate specificity and therefore the catalytic activity 

of KAT2A/B (GCN5/PCAF) may be influenced by accessory proteins within this complex 

that help target the acetyltransferase to its substrates, thus enhancing activity. For example, 

using immunoprecipitation followed by gel filtration chromatography, KAT2A/B (GCN5/

PCAF) can be separated from a large macromolecular structure consisting of the TBP-free-

TAF complex (TFTC) and the SPT3-TAF9-GCN5-acetyltransferase (STAGA) module.92-94 

These complexes are large, up to 2 megadaltons, and likely vary in composition across the 

genome to transduce highly specific stimuli.95

Recent studies have identified two putative mitochondrial KAT enzymes, suggesting that 

acetylation in the mitochondria can be enzymatically triggered which raises interesting 

questions about the catalytic mechanisms of these proteins. GCN5-like protein 1 (GCN5L1) 

was proposed to act as a mitochondrial KAT and a counter-regulator to SIRT3, a 

mitochondrial lysine deacetylase. Notably, robust in vitro acetylation required the presence 

Ali et al. Page 4

Chem Rev. Author manuscript; available in PMC 2019 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of additional mitochondrial factors, suggesting that GCN5L1 activity may not be direct.70 In 

addition, KAT8 (MOF) localizes specifically to mitochondria in HeLa cells and its catalytic 

activity is required for appropriate mitochondrial gene expression.65 However, it remains 

unclear whether KAT8 (MOF) enzymatic activity regulates mitochondrial protein 

acetylation. It is important to note that environmental conditions in mitochondria are unique. 

Investigators must consider the especially oxidative conditions when assessing the potential 

catalytic mechanisms for mitochondrial KATs.

Autoacetylation is an important mechanism of HAT enzymatic regulation. In 2004, Cole and 

colleagues identified a cluster of key lysine residues within an activation loop motif of 

KAT3B (p300) that must be acetylated in order for the enzyme to have robust catalytic 

activity.96,97 In this model, the activation loop regulates KAT3B (p300) activity by 

competing with substrates for the active site. Upon hyperacetylation, the activation loop is 

displaced, allowing for substrates to interact with the active site.98,99 Active site 

autoacetylation appears to be a conserved process as RTT109, a yeast acetyltransferase, 

autoacetylates its active site at K290 to increase its affinity for acetyl-CoA.100 Similar to 

KAT3B (p300), KAT8 (MOF) also requires autoacetylation for its activity, shifting the 

structure of the protein to allow for better substrate binding and catalytic activity in vitro and 

in vivo.62 In contrast, KAT13D (CLOCK) acetylates its dimerization partner BMAL1, a 

modification that facilitates the assembly of a CRY1-CLOCK-BMAL1 complex and 

suppresses its activity in a negative feedback loop essential for circadian rhythmicity.101

2.2. Lysine Deacetylases and Sirtuins

The reversible nature of lysine acetylation is essential to its function in the regulation of 

critical cellular processes. The possible existence of enzymatic deacetylation was first 

suggested in 1978 when it was observed that n-butyrate treatment induced the differentiation 

of Friend erythroleukemic cells into hemoglobin-synthesizing normoblast-like cells, a 

phenotype that correlated with strong histone hyperacetylation.102 This early work 

characterizing n-butyrate and Trapoxin103,104 as KDAC inhibitors paved the way for 

Schreiber and colleagues to purify the first KDAC from bovine calf thymus lysates using a 

Trapoxin based affinity matrix.105 Following this, and in rapid succession, KDACs 2–11 

were discovered through sequence homology analyses to yeast deacetylases.106-112

At the same time, the silent information regulator (Sir) protein family, known to suppress 

gene expression at telomeres and rDNA,113,114 gained attention as potential deacetylase 

enzymes. Mutation of Sir proteins in yeast induced hyperacetylation of histones.115 In 1999, 

Frye and colleagues identified five human cDNAs with sequence homology to the yeast Sir2 

gene, and shortly after, Sir2 was identified as an NAD+ dependent histone deacetylase.
116,117 The family known as Sirtuins was completed using a phylogenetic classification 

scheme identifying the last two members, SIRT6 and SIRT7.118

KDACs and sirtuin proteins are mechanistically and structurally distinct (Figure 5). They are 

formally categorized into four distinct enzyme classes based on structural homology with 

yeast transcriptional repressors and unique catalytic mechanisms.119,120 (Table 2) Class I, II, 

and IV enzymes are Zn2+-dependent and are comprised by KDACs 1–11. Class I enzymes 

(KDAC1, 2, 3, 8) localize mainly to the nucleus, while class II (KDAC4–7, 9, 10) and Class 
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IV (KDAC11) enzymes generally shuttle between the nucleus and cytoplasm. The Sirtuin 

proteins 1–7 encompass the class III enzymes and are described in the text below (Table 3). 

Similar to KATs, KDACs are also often found in large, macromolecular complexes that 

function primarily in gene repression. For example CoREST, NuRD, and Sin3 complexes 

harbor a catalytic core composed of a KDAC1:KDAC2 dimer, and the NCoR complex 

contains KDAC3.121,122

Mechanistic insight into KDAC catalysis derives from studies of HDLP, a deacetylase 

homologue from the bacterium Aquifex aeolicus.156 Like HDLP, KDACs utilize an active 

site histidine to deprotonate a critical water molecule, enabling nucleophilic attack of the 

acetyl group carbonyl (Figure 6). Decomposition of the oxyanionic tetrahedral intermediate 

releases acetate and the deacetylated lysine as reaction products. The divalent cation (Zn2+) 

is important for positioning and polarizing a catalytic water molecule, and it is positioned 

itself by aspartic acid and histidine residues of a classical catalytic triad (charge-relay 

network). This Zn2+ is a critical target of inhibitors of the class I, II, and IV KDACs, which 

mainly function via chelation.

Class III KDACs function independently of an active site metal and, instead, rely on 

nicotinamide adenine dinucleotide (NAD+) as a cofactor for catalytic activity.158 Of the 

seven sirtuins in mammals, only SIRT1, 2, and 3 have robust lysine deacetylase activity. 

More limited deacetylase activity has been reported for SIRT5, SIRT6, and SIRT7, while 

SIRT4 has no reported deacetylase activity (Table 3).159-163 SIRT6 and SIRT7 localize 

primarily to the nucleus, SIRT1 and SIRT2 shuttle between the nucleus and cytoplasm, and 

SIRT3 is a bona fide mitochondrial matrix protein.164 Unlike class I, II, and IV KDACs, 

sirtuins are not found in large repressive macromolecular complexes. However, certain 

binding partners regulate their enzymatic activity. For example, the active regulator of sirtuin 

(AROS) has been shown to stimulate SIRT1-mediated deacetylation of p53,165 while deleted 

in breast cancer 1 (DBC1) negatively impacts SIRT1 activity.166,167

The sirtuin reaction mechanism proceeds by nucleophilic addition of acetyl oxygen to the 

anomeric (C1′) carbon of the nicotinamide ribose via SN1, concerted SN2, or dissociative 

SN2-like mechanisms, resulting in the formation of a C1′-O-alkylamidate intermediate 

(Figure 7). Next, a histidine residue extracts an electron from the 2′-hydroxyl group of the 

NAD+ ribose, which then attacks the C1′-O-alkylamidate carbon, generating a bicyclic 

intermediate. A base deprotonates a water molecule, enabling its attack of the bicyclic 

intermediate. Collapse of the bicyclic intermediate generates the deacetylated lysine and O-

acetyl-ADP-ribose.198 Sirtuins likely also have weak ADP ribosyltransferase activity via 

incomplete catalysis through this described mechanism. ADP ribosyltransferase activity has 

been formally reported for SIRT4 and SIRT6.199 The mitochondrial SIRT5 enzyme exhibits 

broad deacylase activity, accepting malonyl- and succinyl-lysine substrates.188,191,200 The 

biological function of this distinct activity is not yet clear.

2.3. Acetyl–Lysine Binding Modules

An important function of lysine acetylation is the generation of novel recognition surfaces 

for the binding of proteins harboring “reader” domains specific for the post-translationally 

modified residue. The best-characterized reader module of acetyl-lysines is a structurally 
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conserved protein domain called the bromodomain. The first reference to the bromodomain 

is traced to the characterization of the Drosophila gene brahma (brm), a regulator of 

homeotic genes now known to be a core catalytic component of SWI/SNF chromatin 

remodelers.202 The conserved structural motif discovered in the brm gene was termed a 

bromodomain, yet it is etymologically distinct from elemental bromine. Apart from the 

observation of its frequent occurrence in transcriptional regulators, the bromodomain was 

relatively uncharacterized from the time of its discovery in 1992 202 to the determination of 

its structure by Zhou and colleagues in 1999.33 NMR studies of the KAT2B (PCAF) 

bromodomain revealed that this domain binds acetyl-lysine residues on histones and 

described the structural details of this interaction.

The bromodomain is approximately 110 amino acids in length, and there are 61 distinct 

bromodomains encoded by 46 proteins (Table 4). The bromodomain is conserved from yeast 

to humans and are encoded in an increasing number of factors during eukaryotic evolution.
203 In mammals, bromodomains can be divided into several distinct subfamilies based 

mostly on structural homology.204,205 While most bromodomain-containing proteins encode 

one bromodomain, up to six bromodomains have been documented in a single protein 

(Polybromo-1). The so-called bromo- and extraterminal (ET) domain-containing (BET) 

proteins encode a characteristic double bromodomain motif and are implicated in recruiting 

the positive transcription elongation factor b (P-TEFb) and other factors to signal inducible 

genes, including those regulated by the transcription factor c-myc in several cancers.206-208 

Nearly all bromodomain-containing proteins are nuclear factors that bind chromatin to 

regulate its structure and function. They function mostly as transcriptional coactivators (i.e., 

KAT3B (p300), BRD4), but repressive functions of certain bromodomain-containing 

proteins are also known (i.e., BAZ2A, ZYMND11). Remarkably, many nuclear KATs harbor 

bromodomains. The KAT2A (GCN5) bromodomain is important for chromatin 

remodeling209 and regulation of sequential histone acetylation events.210 A recent structural 

analysis of the core catalytic domain of KAT3B (p300) showed an assembled configuration 

of the bromodomain and of PHD, RING, and KAT domains with the RING domain 

positioned over the KAT domain substrate-binding pocket, providing insight into how 

chromatin–substrate targeting and KAT regulation might be linked.42

The bromodomain structure is well characterized, with >400 high-resolution X-ray crystal 

structures available and near complete structural coverage across the protein family. The 

domain is composed of four left-handed α-helices (αZ, αA, αB, and αC) connected by two 

loops (ZA and BC loops, Figure 8).33 This structure forms a hydrophobic cavity that serves 

as the acetyl-lysine recognition site. A hydrogen bond mediated by a conserved 

bromodomain asparagine residue and the acetyl-lysine carbonyl serves as the ligand 

recognition mechanism. Tyrosine residues lining the bromodomain cleft also play a 

significant role in ligand positioning via π–π stacking and hydrogen bond formation with 

critical water molecules. Helical regions of bromodomains are moderately conserved, but the 

length and sequence of the loop regions vary considerably. Some bromodomains 

cooperatively bind multiply acetylated peptides, such as the testis-specific BET protein 

BRDT.235 Others are controlled by post-translational modifications on nearby proteins. In 
vitro, the bromodomain:acetyl-lysine interaction is relatively weak (Kd = low micromolar). 
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In vivo, the combined affinities of adjacent or proximal protein domains (i.e., helicase, 

SAND, distinct bromodomain) may modulate specificities and/or strength of binding.

Several other protein domains have been reported to accept acetyl-lysine residues as ligands. 

The plant homeodomain (PHD) finger domain is generally recognized as a methyl-lysine 

reader domain, but when present in tandem in the protein DPF3b, it binds acetylated lysine 

residues on histone H3 and H4 molecules (Figure 8).294 The tandem PHD:acetyl-lysine 

binding mode is mechanistically distinct from that of the bromodomain, utilizing aspartic 

acid within the first PHD domain to form a hydrogen bond with the acetyl amide of the 

ligand. Interestingly, this aspartic acid also serves to recognize N-terminally acetylated 

peptides in addition to acetyl-lysine residues. Notably, proteins other than DPF3b encode 

tandem PHD domains, such as the CHD4 chromatin remodeler and KAT6A (MOZ), both of 

which have been shown to bind acetylated histones.295,296

The YEATS domain also recognizes acetyl-lysine residues.297 YEATS domains are present 

in five human proteins (YEATS2, ENL, AF9, TFIIF, and GAS41). AF9 and ENL are both 

components of the so-called superelongation complex (SEC), a multimeric complex 

containing P-TEFb, AFF1/AFF4 scaffolds, and the ELL1/ELL4 elongation factors.298 

Structurally, the YEATS domain adopts an Immunoglobulin fold (Figure 8), and its 

interaction with acetyl-lysine is mediated by several hydrogen bonds in addition to aromatic 

residues important for ligand positioning.298 Acetylated H3K9 is a ligand for the AF9 

YEATS domain, and the ENL YEATS domain exhibits a preference for acetylated H3K27, 

although ENL correlates genome-wide with both acetylated H3K9 and H3K27 in acute 

myeloid leukemia (AML) cells.299 The two other YEATS domain-containing proteins, 

GAS41 and YEATS2, belong to chromatin-remodeling complexes. The AF9 YEATS domain 

has an expanded binding repertoire of acyl-lysine marks, and it can also accommodate 

modifications, such as crotonylation.300 Importantly, translocations between genes encoding 

ENL/AF9 and MLL methyltransferase occur frequently, and the resultant fusion proteins are 

oncogenic drivers.301 Specifically, the ENL YEATS domain is required for tethering the 

SEC to enforce oncogenic gene expression programs in AML.299

While the bromodomain and YEATS and tandem PHD domains specifically recognize 

acetyl-lysine residues, readers have recently been found that specifically bind unmodified 

lysine residues. The SET protein functions through its acidic-domain to bind the C-terminus 

of the transcription factor p53 only when p53 is not acetylated. The function appears to be 

conserved, as proteins with similar domains, such as VPRBP, DAXX, and PELP1, also 

bound preferentially to nonacetylated p53. In addition, the SET acidic-domain recognizes 

non-acetylated lysine-rich domains of histone H3, KU70, and FOXO1, suggesting broad 

implications for this mechanism of recognition.302

3. WIDENING SCOPE OF PROTEIN ACETYLATION

In 1997, over three decades after the discovery of acetylation on histones and tubulin, the 

transcription factor p53 was identified as a nonhistone KAT substrate.303 By 2000, 10 more 

nuclear proteins and transcription factors were found to be substrates of acetylation, leading 

to speculation that acetylation may rival phosphorylation as a post-translational 
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modification.304 Six years later, the first acetylome screen identified 388 acetylation sites in 

195 proteins, more acetylation sites than were identified in the previous 40 years.305 Since 

then, more than 155 systems-wide acetylome studies have revealed the existence of 

thousands of acetylation sites on many cellular proteins, connecting lysine acetylation to 

virtually every cellular function and most biological outcomes (Figure 9). Mass 

spectrometry analyses of acetylation have been conducted in a wide variety of species 

ranging from Gram-positive306,307 and -negative bacteria,308 to budding yeast,309 to plants,
310-312 to eukaryotic human pathogens,313,314 rodents, and humans. These have provided 

valuable insight into the stoichiometry and dynamics of lysine acetylation, as well as 

interactions with other PTMs.

Proteomic-based studies generally rely on an enrichment step in which pan-acetyl lysine 

antibodies are used to purify acetylated proteins from trypsin-digested lysates.305,315 

Notably, the use of an antibody raised against a single antigen can conceivably bias which 

proteins are purified from lysates, suggesting that most current studies only capture a subset 

of cellular acetylation sites.316,317 Stable isotope labeling of amino acids in culture 

(SILAC)318 and a label-free approach319 have been used to assess the dynamics of 

acetylated protein stoichiometry. These studies have revealed that in mammalian cells 

individual acetylation sites appear conserved across species but not across tissue types.4,5 A 

high degree of overlap is observed in human, rat, and mouse liver tissues, yet little overlap 

exists between rat liver and rat heart.320,321 Acetylation occurs in regions with defined 

secondary structure, such as α-helices and β-sheets, unlike phosphorylation.305,315

Nuclear protein acetylation levels are high in tissues with actively dividing cells and in 

tumors. Many acetylation sites are found on proteins related to DNA damage, cell-cycle 

control, and transcription (Box 1).305,322,315 Mitochondrial acetylation is primarily found on 

proteins related to cellular metabolic processes and is enriched in highly metabolically active 

tissues such as brown fat, heart, and liver, and it likely plays a role in other tissue types 

depending on their metabolic activity and capacity to respond to insulin.319-321 Cytoplasmic 

acetylation has been relatively understudied despite the fact that tubulin was the second 

protein discovered to be acetylated.323-325 Notably, it is difficult to exclusively study 

cytoplasmic acetylation because cellular fractionation methods are imperfect, and many 

proteins tend to shuttle between the cytoplasm and other subcellular compartments. With 

these caveats in mind, cytoplasmic acetylation is observed predominantly in liver, peri-renal, 

and testis fat, tissues with high cellular concentrations of acetyl-CoA.73

Several groups have taken genetic approaches to probe KAT-or sirtuin-specific acetylation 

sites. Examples include KAT2A/KAT2B knockdown studied in HeLa cells,326 KAT13D-

(CLOCK) knockout studied in mouse liver tissues,327 SIRT1 knockout studied in mouse 

embryonic fibroblasts328 or liver tissues,329 and SIRT3 knockout studies in mouse liver 

tissues319,330 (Box 2).

The first integrative studies provided evidence for coordinated regulation of PTMs.7 For 

example, one study noted coordination between acetylation and phosphorylation in the 

nucleus upon DNA damage, but most changes in phosphorylation occurred in the cytoplasm.
322 Surveys of acetylation and succinylation sites found substantial overlap between both 
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acylation sites in mitochondria, suggesting potential competition between these 

modifications.331,332 Environmental cues, such as caloric restriction, microbiome 

components, and viral infection, and drugs, such as KDAC inhibitors and aspirin, also affect 

global acetylation levels 318,333-336

4. NUCLEAR ACETYLATION REGULATES GENE EXPRESSION

4.1. Histone Acetylation

When nucleosomal histones are assembled with DNA, each subunit displays an N-terminal 

tail that can be post-translationally modified. Core nucleosomes are composed of pairs of 

histones H2A, H2B, H3, and H4; variants of these histones are important in chromatin 

regulation and gene expression. Histone H1 and its accompanying variants are regarded as 

“linker” histones as they connect core nucleosomes into denser 30 nm fibers.337 Acetylation 

sites have been observed on all histone subunits, including linker histones, and the occur in 

both the tail and globular domains (Summarized in Box 3). Acetylation occurs abundantly in 

the tail domains while acetylation in the globular domain appears less abundant.338 Tail 

acetylation sites are evenly spaced among the nucleosomal histone subunits and possess 

some functional redundancy.339 Acetylation sites are well conserved, in contrast to 

methylation, where species-specific differences exist.340 Together, the specific array of 

histone modifications, known as the “histone code”, may serve as a highly dynamic 

regulatory system for gene expression control in mammalian cells.

Acetylation of key lysine residues is generally thought to disrupt the electrostatic 

interactions between the phospho-diester backbones of DNA and lysine-rich nucleosomes to 

expose DNA to transcription machinery.342 Key advances in the analysis of histone 

acetylation come from the use of electron transfer dissociation and electron capture 

dissociation mass spectrometry.343,344 These methods allow for the analysis of long histone 

peptides (>20 a.a.) and therefore the identification of multiple modifications on individual 

histone proteins. Using this and other methodologies, several comprehensive studies have 

observed the combinatorial patterns of histone modifications on each subunit.338,345-348 

These analyses are essential to determine whether specific modifications are compatible on 

the same histone at the same time, potentially identifying important rules by the histone 

code.

The best-studied acetylation sites are found on histone H3 and H4, but acetylation of H2A 

and H2B tails has also been correlated with increased transcriptional activity.349,350 Histone 

3 lysine acetylation has been observed on 14 residues, six of which are located on the tail 

region and eight in the globular domain.341 H4 is acetylated at nine lysines, six in the tail 

region and three in the globular domain.341 In addition, lysine acetylation has been observed 

on H2A tails at four sites,338,351,352 and the globular domain at two sites Box 3.353 Turnover 

of histone acetylation is unequal at different sites.351 While acetylation of histone tails 

generally has a fast turnover (<30 min), with the exception of H3K4, H2AK13, and 

H2AK15, nearly all globular domain modifications were more stable with a half-life greater 

than 2 h.351
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Histone H1 is highly modified and was first identified to be acetylated in vivo in 20 

04.354,355 Multiple proteomic approaches have identified H1 acetylation sites at 11 lysine 

residues (K16, K33, K45, K63, K74, K89, K96, K105, K167, K168, K190), albeit at low 

frequency.191,338,348,356-358 Given its role in DNA condensation, histone H1 was originally 

thought to act primarily as a suppressor of gene expression, but its function is now 

understood to be more nuanced.359 For example, H1.4K34ac is detected in distal and 

proximal promoter regions of highly transcribed genes in induced pluripotent stem cells and 

cancer cancer cell lines, induced pluripotent stem cells (iPSCs), and testicular germ cell 

tumors.358 In addition, an inverse relationship between the presence of H1 on chromatin and 

acetylation marks on H3 and H4 has been described.360,361

4.2. Transcription Factor Acetylation

Notably, nuclear lysine acetylation is not restricted to histones but is also found on numerous 

transcription factors including p53, NF-κB, and STAT3. Mechanistically, acetylation 

modulates transcription factor activity at multiple steps. These include inducing nuclear 

translocation or protein stabilization, sterically preventing ubiquitination, modifying 

molecular complex composition, and facilitating chromatin binding specificities. Proteomics 

studies have identified many known acetylation sites on transcription factors, of which we 

only list those with additional functional studies (Table 5). We illustrate these phenomena 

using well-characterized case studies below (Figure 10).

Several excellent reviews have documented the functions of transcription factor acetylation.
6,454-456 Here we exemplify a few key principles (Figure 10). In the case of transcription 

factors such as NF-κB and STAT3 that are cytoplasmic when inactive, signaling begins with 

an extracellular stimulus that leads to a cascade of PTMs resulting in changes in dimer 

structures and translocation from the cytoplasm to the nucleus.457,458 STAT3 activation is 

marked by specific phosphorylation and acetylation events that allow for dimerization and 

subsequent nuclear localization.459 While phosphorylation is thought to be dominant for 

dimerization and DNA binding, several studies suggest a phosphorylation-independent 

mechanism of dimerization.460,461 Chin and colleagues demonstrate that acetylation at K685 

by KAT3A/B (CBP/p300) induces homodimerization and nuclear translocation of STAT 

proteins.462 RelA is a subunit of NF-κB generally sequestered in the cytoplasm through its 

interaction with its negative regulator IκBα. Upon cell stimulation, RelA is acetylated by 

KAT3A/B (CBP/p300) at several residues. Acetylation at K221 disrupts the RelA-IκBα 
interaction, allowing for nuclear translocation and increased DNA binding (Figure 10(A).
427,463

Changes in acetylation can also induce changes in protein stability, as is the case for the p53 

transcription factor. Acetylation can directly compete with ubiquitination at distinct lysine 

residues.464 It can also mediate structural changes to prevent ubiquitination by sterically 

hindering interaction with ubiquitin ligases.464,465 At homeostasis, p53 is maintained at low 

levels in the nucleus primarily through ubiquitin-mediated proteolysis.466 Upon DNA 

damage, p53 becomes highly acetylated at its carboxy-terminal domain (CTD), preventing 

MDM2-mediated ubiquitination and degradation.467,468 Acetylation of the p53 CTD is 

catalyzed primarily by KAT3B (p300), but KAT6A (MOZ) also acetylates p53 at K120 and 
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K382.418,467 Crosstalk exists between factor acetylation and other PTMs, notably lysine 

methylation. For example, lysine methyltransferase 7 (KMT7, SET7/9)-mediated 

monomethylation at K372 promotes acetylation and stabilization of p53 by disrupting its 

interaction with the deacetylase SIRT1 (Figure 10B).469-472 A similar phenomenon has been 

reported for RelA acetylation at K310 which prevents KMT7-mediated monomethylation at 

K314 and K315, thus stabilizing the protein.473 Furthermore, acetylation of p53 is 

recognized by KAT3A/B (CPB/p300) and KAT4 bromodomains to facilitate acetylation of 

histone H3 and histone H4 at p53 response genes, which induces cell-cycle arrest or 

apoptosis.474-476

Acetylation can further influence the DNA binding affinity and promoter specificity of 

transcription factors such as the T cell lineage master regulators RAR-related orphan 

receptor gamma (RORγ) and Forkhead box O proteins (FoxO). RORγ is acetylated by 

KAT3B(p300) and deacetylated by KDAC1 and SIRT1 at K69, K81, K99, and K112, with 

the latter activating DNA binding of this lineage-determining transcription factor.432,433 

Deacetylation of RORγ increases transcription of the interleukin-17 (IL-17) gene but 

decreases activation of IL-2 (Figure 10C).433 Similarly, acetylation of FoxO proteins by 

KAT3B (p300) facilitates dissociation from promoters of genes such as p27 and MnSOD, a 

process that is reversible upon SIRT1, SIRT2, or SIRT3 overexpression.477 Interestingly, 

acetylation of the Forkhead box P3 protein (FOXP3) enhances the stability and function of 

the transcription factor, a master regulator of regulatory T cell identity.478 FOXP3 

acetylation is regulated by a balance between KAT3B (p300) and KAT5 (TIP60) acetylation 

and KDAC7, KDAC9, and SIRT1 deacetylation at K31, K263, and K274.50,394,395,479 Of 

note, acetylation of KAT5 (TIP60) by KAT3B (p300) increases its ability to acetylate 

FOXP3, highlighting the multiple layers of KAT cooperation required for appropriate 

signaling and regulatory T cell function. 395,396,480

4.3. Acetylation of the Basal Transcription Machinery

In addition to transcription factors, a growing number of factors associated with the RNA 

polymerase II complex are acetylated. Basal transcription factor acetylation has been studied 

in less detail, and these data are summarized here. Choudhary et al. list eight TBP-associated 

proteins (TAFs) that are acetylated in the nucleus.315 These proteins compose the basal 

transcription factor TFIID and contribute to transcription initiation of the RNA polymerase 

II complex.481 The function of TAF acetylation in the TFIID complex remains largely 

unknown, but acetylation of TAF(I)68, the second largest subunit of the TATA box-binding 

protein-containing factor TIF-IB/SL1, enhances binding to rDNA and was linked to 

enhanced RNA polymerase I transcription.482 A more recent study highlighted the 

importance of CBP in RNA Pol II regulation at promoters in Drosophila. In this system, 

CBP was present at the promoters of nearly all expressed genes and was found to play a role 

in promoter-proximal pausing, especially at genes with CBP and GAF co-occupancy.483

Acetylation of the positive transcription factor b (P-TEFb) is studied in detail.369,371,378 P-

TEFb is composed of a cyclin T subunit, and the cyclin-dependent kinase CDK9. When 

assembled in an active elongation complex, is critical to phosphorylate negative elongation 

factors and the C-terminal domain (CTD) of the largest RNA polymerase II subunit at serine 
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2, activating transcription elongation by the polymerase complex.484,485 P-TEFb is stored 

predominantly in the nucleoplasm in a ribonucleoprotein complex (7SK RNP) but is 

released and activated upon increased transcriptional demand.486,487 This release is caused 

in part by acetylation of four sites in cyclin T1 (K380, K386, K390, K404), which 

dissociates acetylated cyclin T1/CDK9 from the 7SK RNP and activates CDK9 activity on 

negative elongation factors and the polymerase CTD.378 CDK9 also is subject to acetylation 

at two lysine residues (K44, K48).369,371 K48 acetylation disrupts ATP binding and inhibits 

CDK9 kinase activity directly,371,488 while K44 acetylation activates P-TEFb activity. 

Additional cellular elongation factors found to be acetylated by mass spectrometry include 

FACT members SUP16H and SSRP1, but also the RTF1 subunit of the PAF1 complex as 

well as SUB1 and the CTD phosphatase FCP1,315 but these marks have not yet been studied 

functionally.

The CTD of RNA polymerase II is acetylated. The CTD is a long and flexible domain 

structure composed of heptapeptide repeats with the consensus sequence YSPTSPS, which 

is conserved across eukaryotes. Interestingly, the CTD has expanded in metazoans to include 

a C-terminal region of heptad repeats that are less strictly aligned with the consensus 

sequence. In mammals, this region contains eight heptad repeats where the serine in position 

7 is replaced with a lysine.435 Acetylation of these lysine residues is mediated by 

KAT3B(p300) and is enriched downstream of transcription start sites in actively transcribed 

genes, linking this modification to polymerase pausing.434 Accordingly, activation of signal-

induced genes is inhibited when lysines are mutated to arginines in the CTD. However, the 

acetylated RNA polymerase II is not only found on signal-induced genes but also on many 

actively transcribed genes, implicating additional functions for CTD acetylation in 

transcription.434 Notably, both RNA polymerase I and III subunits are also acetylated.315 

PAF53, a regulatory subunit of RNA polymerase I, is acetylated by KAT3A(CBP) at 

K373.423 PAF53 acetylation is maintained at low levels by SIRT7, which facilitates robust 

rRNA transcription. Induction of stress by glucose deprivation suppresses SIRT7 activity, 

leading to hyperacetylation of PAF53 and repression of rRNA transcription.423

5. PROTEIN STABILITY AND AGGREGATION IN THE CYTOPLASM

5.1. Tubulin and HSP90 Are Regulated by KDAC6

Lysine acetylation in the cytoplasm is historically a very “old” concept, as tubulin was the 

first nonhistone acetylation substrate identified.323-325,489 Tubulin forms microtubules, a 

major structural element in the cytoplasm, composed of α/β tubulin dimers.490-492 

Acetylation of α-tubulin occurs on the luminal side of microtubules at K40 and is catalyzed 

predominantly by α-tubulin acetyltransferase αTAT1, a non-canonical KAT homologous to 

zebrafish or C. elegans MEC17.493-495 It is unclear whether acetylation is a cause or a 

consequence of tubulin stability, although this modification is generally considered a marker 

of protein stability. αTAT1 overexpression destabilizes microtubules; however, this is mainly 

attributed to enhanced αTAT1-tubulin interactions and not considered a consequence of 

increased acetyltransferase activity.495 Tubulin is deacetylated by KDAC6 112 and SIRT2.161 

KDAC6 is the major tubulin deacetylase, and KDAC6 overexpression increases the 

chemotactic motility of murine fibroblasts, possibly due to tubulin destabilization.112 SIRT2 
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plays an important role in tubulin deacetylation in response to macrophage and NLRP3 

inflammasome activation161,496 and also regulates tubulin acetylation on mitotic spindles.497

HSP90 gained considerable attention due to its potential as a therapeutic target in 

hematologic malignancies.498 HSP90 exists in two major isoforms: HSP90α, which is 

stress-inducible and tightly regulated, and HSP90β, which is constitutively expressed.498 

HSP90 acetylation is detected on up to 22 distinct residues on HSP90α, and 5 distinct 

residues HSP90β.315,498,499 KDAC6 deacetylates HSP90, influencing glucocorticoid 

receptor (GR) or mineralocorticoid receptor (MR) signaling.500,501 KDAC1 may also 

influence HSP90 acetylation,502 though the KATs responsible remain elusive. Acetylation 

predominantly occurs on the middle domain of HSP90, where it regulates intermolecular 

interactions and chaperone activity.501

5.2. Tau and Alzheimer’s Disease

Acetylation also regulates microtubule-associated proteins (MAPs) with Tau as a prominent 

example.503,504 Tau is highly expressed in neurons, and mutations in Tau serve as important 

markers for dementia and Alzheimer’s disease.505 These mutations are linked to 

microtubule-binding repeats causing neurological defects associated with the disruption of 

Tau–microtubule interactions. Tau aggregation produces paired helical filaments seen in 

neurofibrillary tangles present in the brains of individuals afflicted with neurodegeneration.
506

Acetylation was identified on more than a dozen lysine residues in Tau using in vitro, cell-

based, and mass spectrometric assays.507-509 Acetylation is a common feature across MAP 

family members as the microtubule-binding domains of MAP2 and MAP4 are also 

acetylated.510 Tau, like MAP2 and 4 proteins, possesses intrinsic acetyltransferase activity.
510-512 In addition, several KATs have been identified to modify Tau, including KAT3A/

B(CBP/p300) and KAT2B-(PCAF).507,508 Deacetylases that target Tau include SIRT1, 

SIRT2, and KDAC6 with robust activities by SIRT1 and KDAC6.508,513,514

Several acetylation sites on Tau are well characterized.515 These include K274, K280, and 

K281. Acetylation of these sites reduces Tau interaction with microtubules by interfering 

with functions of the microtubule-interacting domain.507,516 Acetylation of K274 and K281 

leads to mislocalization of Tau, while K280 acetylation promotes Tau aggregation.507,517 

Acetylation of a distinct site, K174, slows cellular turnover of Tau and contributes to 

cognitive defects in mouse models of Alzheimer’s disease. Notably, acetylation of specific 

RXGS motifs in Tau inhibit phosphorylation and aggregation of the protein, indicating 

opposing effects of different acetylation sites in Tau on neurogenerative pathogenesis.518 

These sites are also targeted by distinct KDACs: RXGS motifs are preferentially 

deacetylated by KDAC6, while SIRT1 targets K174, K274, K280, and K281.508,518 As Tau 

is decorated with many post-translational modifications, including lysine methylation and 

ubiquitination, these modifications can competitively inhibit Tau acetylation in vitro and in 
vivo.509,519,520
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6. MITOCHONDRIA

6.1. Mitochondrial Acetylation Regulates Cell Metabolism

Acetylation is widespread in mitochondrial proteins: 1/3 of mitochondrial proteins are 

acetylated,521 and many proteins carry multiple acetylated lysines.305,315 Mitochondrial 

acetylation is strongly conserved from Drosophila to humans.522 Not surprisingly, acetylated 

proteins are involved in major functions of mitochondria (e.g., TCA cycle, oxidative 

phosphorylation, β-oxidation of lipids, amino acid metabolism, carbohydrate metabolism, 

nucleotide metabolism, and the urea cycle).523,524 Mitochondrial metabolism results from 

high concentrations of acetyl-CoA from aerobic catabolism of pyruvate, β-oxidation of long-

chain fatty acids, and decarboxylation of malonyl-CoA.525

Three of the seven class III deacetylases (SIRT3, 4, and 5) are mitochondrial.526 SIRT3 has 

robust NAD+-dependent protein deacetylase activity, and mice lacking SIRT3 show 

significant hyperacetylation of mitochondrial proteins,527 while mice lacking SIRT4 or 

SIRT5 do not. Proteins that become hyperacetylated in the absence of SIRT3 control the 

shift to a fasting metabolism when the source of energy switches from glucose to lipids and 

amino acids. Thus, SIRT3 is linked to the energy status of the cell,528-532 and it is expressed 

at the highest levels in metabolically active tissues (e.g., liver, kidney, and heart).533,534 

SIRT3 expression is also increased in glucose-poor, fasting states, including calorie 

restriction in liver and kidney.535-539

An important unresolved question regarding mitochondrial protein acetylation is the 

mechanism of acetylation itself. Is a mitochondrial KAT required? Mitochondria contain 

high concentrations of acetyl-CoA in millimolar amounts,540 and therefore, a nonenzymatic 

mechanism could account for the high level of mitochondrial protein acetylation.541 Indeed, 

increased mitochondrial protein acetylation is associated with physiological conditions that 

result in higher levels of acetyl-CoA (e.g., fasting, calorie restriction, high-fat diet, and 

ethanol intoxication).
535,542-545

Three mitochondrial KATs have been reported. One is GCN5L1, which is homologous to a 

prokaryotic acetyltransferase.70 Mitochondrial protein acetylation is lower when the enzyme 

is lacking and increased when it is overexpressed.546 The second is the nuclear MYST 

family acetyltransferase KAT8 (MOF). It controls nuclear and mitochondrial respiratory 

genes by regulating oxidative phosphorylation.65 KAT8 (MOF) is important in tissues that 

are energetically demanding. For example, conditional knockouts of this gene result in 

hypertrophic cardiomyopathy and cardiac failure in mouse. However, the function of KAT8 

(MOF) mediated mitochondrial acetylation in these cell types is not yet clear. Third, is 

acetyl-CoA acetyltransferase 1 (ACAT1), a regulator of the pyruvate dehydrogenase 

complex in mitochondria. ACAT1 was reported to influence acetylation of two 

mitochondrial proteins: PDHA1 and PDP1.547 ACAT1 knockdown led to a decrease in 

acetylation of PDHA1 and PDP1, inhibiting their function and leading to changes in glucose 

homeostasis that could contribute to the Warburg effect. It is critical to note that none of the 

studies of mitochondrial KATs use in vitro methodologies to show that acetylation of 

mitochondrial substrates is direct. This leaves a possibility that GCN5L1, KAT8 (MOF), or 
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ACAT1 may modulate mitochondrial Acetyl-CoA levels or pH, influencing the efficiency of 

spontaneous acetylation in this cellular compartment.

SIRT3 is also important to the respiratory chain. Mice without SIRT3 use 10% less O2 and 

make 50% less ATP than wild-type mice.534,548 SIRT3 deacetylates and activates 

mitochondrial respiratory chain complexes (e.g., NDUFA9 (complex I)534 and SDHA 

(complex II))549,550 and regulates ATP synthase.551

6.2. Metabolic Targets of SIRT3

SIRT3 is a key enzyme in metabolism, necessary for efficient fatty acids utilization in the 

liver and for utilization of lipid-derived acetate and ketone bodies in peripheral tissues 

during fasting. The first identified target of SIRT3 is acetyl-CoA synthetase 2, which 

generates acetyl-CoA from acetate in extrahepatic tissues during fasting.552,553 During 

fasting, acetate is made by the liver from acetyl-CoA and can be used as energy by other 

tissues.554 SIRT3 regulates fatty acid oxidation by deacetylation and activation of long chain 

acyl-CoA dehydrogenase during fasting.535 β-Oxidation intermediates (e.g., long chain fatty 

acids) accumulate in mice that lack SIRT3.535 SIRT3 also regulates ketone body production 

by deacetylating and activation of 3-hydroxy-3-methylglutaryl-CoA synthase 2, a key step in 

the synthesis of ketone bodies.

In amino acid metabolism, SIRT3 regulates the aminotransferase that forms glutamine by 

transferring an α-amino to α-ketoglutarate. Another enzyme, glutamate dehydrogenase 

(GLUD1), regenerates α-ketoglutarate from glutamate and releases nitrogen as ammonia in 

the urea cycle.525 SIRT3 accelerates the urea cycle by activating ornithine trans-

carbamoylase (OTC). Humans with urea cycle disorders and mice without SIRT3 have 

similar metabolic profiles, including increased levels of serum ornithine and reduced levels 

of citrulline.537

Other pathological conditions exhibit lower levels of SIRT3. Tumors often have reduced 

levels of SIRT3. As a result, glucose use is enhanced because of increased levels of reactive 

oxygen species (ROS) that activate hypoxia-inducible factor 1 alpha (HIF1α), which, in 

turn, activates glycolytic genes.549,555,556 SIRT3 also deacetylates and activates isocitrate 

dehydrogenase 2 and increases ROS levels as a byproduct of oxidative phosphorylation.557 

SIRT3 deacetylates and activates the ROS-scavenging enzyme manganese superoxide 

dismutase to reduce oxidative damage in the liver.558-560 Mice without SIRT3 show greater 

oxidative stress,558 particularly on a high-fat diet,543 and have higher ROS levels than 

normal under calorie restriction.557

7. THERAPEUTIC TARGETING OF LYSINE ACETYLATION

7.1. KDAC Inhibitors

The manipulation of lysine acetylation using small molecules now known to be KDAC 

inhibitors was instrumental in the discovery of this modification. N-Butyrate was known to 

control gene expression and to induce differentiation of acute erythroid leukemia cells.
102,561,562 Trichostatin A and tetrapeptide trapoxin are potent KDAC inhibitors.103,563,564 

Suberoylanilide hydroxamic acid (SAHA) induces terminal differentiation and apoptosis in 
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transformed cells and inhibits KDAC1 and KDAC3.565 SAHA (also known as Vorinostat) 

was approved by the Food and Drug Administration (FDA) to treat cutaneous T cell 

lymphoma. The antiepileptic drug valproic acid also inhibits KDACs566 and is in clinical 

trials for various indications. Other KDAC inhibitors are approved by the FDA (some of 

which are displayed in Figure 11), while others remain in clinical development.567,568

Several hypotheses may explain the mechanisms of action of KDAC inhibitors. These small 

molecules might induce DNA damage and cell cycle interruption, cause ROS to accumulate, 

or activate apoptotic pathways.569 Most likely, in some way, these small molecules 

encourage apoptosis or hinder proliferation.570 Hyper-acetylation from small-molecule 

KDAC inhibitors has been observed at the tumor suppressor gene CDKN1A571 and in 

reactivation of latent HIV.572 Thus, acetylation-mediated transcriptional disruptions might 

explain the effects of KDAC inhibition on cellular proliferation and other phenotypes.

KDAC inhibitors targeting class I/II/IV enzymes generally chelate the divalent metal ion 

required for catalysis, although not all inhibitors exploit this mechanism.149 Available small 

molecules mostly target class I and II KDACs with limited selectivity for individual KDACs.
573 However, emergent small molecules are active against a more restricted range of 

KDACs. Preclinical examples include specific inhibition of the cytoplasmic KDAC6 by 

Tubastatin A and of KDAC8 by PCI-34051.574,575 Importantly, the subset of differentially 

acetylated proteins differs depending on the KDAC inhibitor used.335

7.2. Sirtuin Modulators

SIRT1 is an attractive target for modulation given early connections between Sir2 and 

replicative lifespan in yeast.528,576 Indeed, as discussed, sirtuin activity closely ties key 

metabolic and epigenomic processes. However, specific targeting of sirtuins, while exciting, 

has proven difficult. Adding to this challenge, initial clinical studies with sirtuin activators 

have been inconsistent. While it is clear that sirtuin genetic deletion results in large changes 

in acetylation substrates and gross chromosomal abnormalities that lead to DNA damage,
351,569 more extensive work is required to understand this family of genes and their 

therapeutic potential.

Polyphenolic compounds, namely the phytochemical resveratrol, were originally shown to 

activate sirtuin activity by enhancing cofactor and substrate binding via engagement of the 

SIRT1 N-terminus.577,578 These polyphenols lack potency in sirtuin binding, have low 

retention times in humans, and likely have considerable off-target effects.579,580 More recent 

high-throughput screening methodologies uncovered other SIRT1 activators, such as 

SRT1720, with interesting biological effects that lead to extended lifespan and improved 

health in mice and some efficacy against xenografted tumor growth models.581-583

Controversy has erupted about the action of resveratrol and SRT1720 (Figure 12). Two 

studies demonstrated in vitro that resveratrol-mediated SIRT1 activation required the 

presence of a fluorophore conjugated to substrate peptides,584,585 an observation that was 

supported by structural data.174 In vivo, resveratrol induces hypoacetylation for a subset of 

non-fluorophore labeled peptides, but also induces hypteracetylation of other substrates 

while leaving a large proportion of genes unchanged.586,587 These contradictory effects in 
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global protein acetylation could be due to off target effects, such as inhibition of SIRT3 or 

activation of SIRT5.187 Importantly, they also may be explained by significant sequence 

specificities of resveratrol-mediated SIRT1 activation due to allosteric mechanisms.

A number of specific inhibitors of sirtuin activity have been identified (Figure 13). Examples 

include indols, such as EX-527 targeting SIRT1, along with compounds such as sirtinol and 

tenovin derivatives.175,588-590 A growing number of SIRT2-specific inhibitors have been 

tested, including AGK2,591-593 SirReal inhibitors,594 and most recently 33i.595 Due to the 

high degree of conservation among sirtuin active sites, not surprisingly, several inhibitors 

bind to two or more sirtuins: cambinol with an IC50 ~ 60 μM for SIRT1 and SIRT2,596 

salermide targeting SIRT1 and SIRT2,597,598 and suramin that inhibits SIRT5 but also 

strongly inhibits SIRT2 and SIRT1.190,599 Inhibitors that target SIRT3 are also being tested.
600,601 Not much is known about the mechanism behind sirtuin inhibitors; however, in some 

cases, they likely function by interfering with NAD+ engagement.175

7.3. KAT Inhibitors

KAT3A/B(CBP/p300) has emerged as a potential therapeutic target for respiratory diseases, 

HIV infection, metabolic diseases, and cancer.602 However, the relatively shallow substrate-

binding site in p300 is a challenging drug target, and most compounds to date target the 

acetyl-CoA binding site in the enzyme.603 Early KAT inhibitors include several 

phytochemicals, such as curcumin,604 garcinol,605 and anacardic acid.606 Chemical 

inhibitors were originally developed as bisubstrate acetyl-CoA mimics,607 pioneered by the 

Cole laboratory, and later replaced by smaller, more selective synthetic compounds, such as 

C646.608 C646 is a pyrazolonefuran (Figure 14) that was discovered via virtual ligand 

screening. It efficiently reduces histone acetylation levels within cells and displays cytotoxic 

properties toward certain cancer cells.608 Notably, a recent study characterized A-485, the 

most potent and specific p300 inhibitor identified to date.609 A-485 was found to be 1000-

fold more potent than other cell permeable HAT inhibitors, including C646, and highly 

specific to the KA3A/B(CBP/p300) BHC (bromodomain HAT-C/H3) domains. A-485 was 

also found to suppress proliferation in 61 cancer cell lines with an EC50 < 2 μM, indicating 

the compound may have some therapeutic potential, especially against hematological 

malignancies and prostate cancer.609 Importantly, further characterization of the potential off 

target effect and studies in preclinical animal models are likely necessary prior to moving 

forward in any clinical setting.

Another study used naturally occurring acyl-CoA derivatives conjugated to biotin to affinity-

purify KATs. Palmitoyl-CoA was recovered and found to inhibit GCN5 (KAT2A). This 

metabolite, among other acyl-CoA derivatives, was also able to bind PCAF (KAT2B) and 

MOF (KAT8) and modestly reduce levels of histone acetylation, underscoring that Acyl-

CoA cofactors may act as endogenous regulators of lysine acetyltransferase activities.610 

Interestingly, some long chain fatty acid metabolites such as myristic acid (required to 

produce myristoyl-CoA) have also been reported to activate deacylation activity in sirtuins, 

especially SIRT6.611

Salicylate inhibits KAT3A/B(CBP/p300) acetyltransferase activity by directly competing 

with acetyl-CoA and down-regulates the specific acetylation of histones and nonhistone 
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proteins in cells.612 Furthermore, diflunisal, an FDA-approved drug containing a salicylic 

acid substructure, inhibited KAT3A/B(CBP/p300) more potently than salicylate. Both drugs 

are orally bioavailable and inhibited p300-dependent myelogenous leukemic cell growth in 
vitro and in vivo, pointing to a potential new clinical application. In addition, p300-induced 

Tau acetylation was inhibited by salicylate or its derivative salsalate, which enhanced Tau 

turnover and reduced Tau level.613 In a mouse model of Alzheimer’s disease, administration 

of salsalate after disease onset rescued Tau-induced memory deficits and prevented 

hippocampal atrophy, underscoring the clinical potential of KAT inhibitors in Alzheimer’s 

disease.

7.4. Bromodomain Inhibitors

Small-molecule inhibition of bromodomains is the most recent advancement in efforts to 

pharmacologically target the protein acetylation network. Rather than disrupting enzymatic 

catalysis, these compounds target protein:protein interactions by inhibiting bromodomain 

recognition of its acetyl-lysine residue-containing ligand. The first bromodomain drug 

discovery attempts were described in the HIV field targeting the interaction of the acetylated 

form of the viral transactivator Tat (acK50) with the bromodomain of KAT2B/PCAF, a 

critical step in transcription from the integrated HIV provirus.614-616 The structure-based 

approach led to the discovery of a class of N1-aryl-propane-1,3-diamine compounds that 

selectively inhibited the acTat:PCAF interaction, albeit with relatively low potency. Also, the 

intracellular introduction of acetylated histone H4 peptides induced dissociation of BRD4 

from chromatin and reduced cell growth.617 A year later, a patent from Mitsubishi 

Pharmaceuticals indicated that thienodiazepines bind BRD4 bromodomains.618 This patent 

report spurred the discovery of a lead compound, JQ1, with therapeutic activity against a 

rare squamous epithelial cancer called the NUT midline carcinoma.619 The NUT midline 

carcinoma is cytogenetically defined by a translocation of the BRD4 gene that results in an 

in-frame fusion with the nuclear protein in testis (NUT), a tissue-specific acetyltransferase.
620

At the same time as the initial report of JQ1, the laboratory of Alexander Tarakhovsky in 

collaboration with GlaxoSmithKline reported the discovery of I-BET, a synthetic compound 

mimicking acetylated histones and disrupting chromatin complexes responsible for 

expression of inflammatory genes in activated macrophages, thus conferring protection 

against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis.621 

Interestingly, BET inhibitors also support immunotherapeutic applications by suppressing 

expression of Programmed Cell Death Protein Ligand 1 (PDL1),622 which increases 

cytotoxic T-cell activity and limits tumor progression in mice. Since the characterization of 

BET inhibitors and their preclinical application in cancer and immunology disease models, 

their potential utility in modulating male fertility,233 neurocognitive function,623 

cardiovascular disease,624 and viral infections625 has been described.

JQ1, I-BET, and related compounds are powerful inhibitors of both bromodomains of the 

BET protein BRD4, with similar activity also against bromodomains of BRD2, BRD3 and 

the testis-specific BET protein BRDT.619 They function primarily by competing with acetyl-

lysine binding by forming a hydrogen bond with a critical asparagine residue that otherwise 
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engages the acetyl-lysine. The pharmacophore is a methyltriazole that is common to most 

available BET inhibitors (Figure 15). Recently, second generation BET inhibitors have been 

described, including bivalent compounds that target both BET bromodomains and achieve 

potency orders of magnitude above that of JQ1.236 Phthalimide-conjugated BET inhibitors 

that function as heterobifunctional small molecules have also been reported, which direct 

BET proteins to E3 ligase activity of cereblon, allowing for rapid and exquisitely specific 

destruction of BET proteins within the cell.626

More than 20 early clinical trials are in process with BET inhibitors.619,627 Their focus is 

primarily on the treatment of various hematological malignancies, as BET proteins are 

coactivators of several critical oncogenes, including MYC,206 in addition to important 

regulators of cell proliferation and fate, such as MYB,628 BCL2, and FOSL1.629 

Transcriptional disruption of these genes is linked to antineoplastic phenotypes observed 

under BET inhibition, likely operating via local removal of BRD4 and associated 

transcription factors (i.e., P-TEFb) from acetylated chromatin or acetylated transcription 

factors (i.e., TWIST,630 GATA-1,622,631 and ERG628) in addition to indirect effects on 

transcription and the cell cycle. Several BET inhibitor trials have completed Phase I or 

reported tolerability and partial clinical outcomes.632,633 Thus far, BET inhibitors appear 

well-tolerated with dose-limiting side effects such as diarrhea, fatigue, and reversible 

thrombocytopenia.634

As BET inhibitors are rapidly advancing into clinical trials, inhibitors of non-BET 

bromodomains are also being developed.269,635 Current non-BET bromodomain inhibitors 

have been described mainly for bromodomains of acetyl-transferases (i.e., p300/CBP) and 

chromatin remodeling components (i.e., BRD7, BRG1). Most non-BET targeting small 

molecules are at the stage of being chemical probes,636 and it has emerged that druggability 

varies among individual bromodomains.

8. CONCLUSIONS AND PERSPECTIVES

Lysine acetylation has moved from being a specialized mark on histones to a critical 

modification controlling cell fate, proliferation, and metabolism. The modification causes a 

change in the electrostatic charge of its cognate lysine residue, recruits reader proteins, and 

is tightly linked to fluctuations in key cellular metabolites, such as NAD+ and acetyl-CoA. 

In respective cellular compartments, lysine acetylation regulates diverse molecular 

outcomes, such as gene-specific chromatin processes, enzymatic regulation, protein 

multimerization, localization, and stability. Reader protein domains, including the 

bromodomain, tandem PHD, YEATS, and acidic domains, have evolved to specifically bind 

to acetylated or nonacetylated lysine residues, thus coordinating the acetylation response. 

Our understanding of other acylation marks is rapidly evolving; examples include lysine 

crotonylaton, succinylation, and malonylation, with shared enzymes that place and remove 

the marks, such as KAT3A/B and sirtuins, respectively.637,638 Pharmacological targeting of 

lysine acetylation is an established and briskly advancing field, starting from KDAC 

inhibitors, moving to sirtuin activators, and now including KAT and bromodomain 

inhibitors. The effects and mechanisms underlying these compounds are still being 
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uncovered, and future studies must consider the role of newer acylation marks in drug 

action.

Other open questions concern the issue how partitioning of critical metabolites contributes to 

the function of lysine acetylation in distinct cellular milieus. A considerable degree of 

diversity of nonhistone acetylation has emerged in metazoans, especially in mammals. This 

could be due to a more discrete compartmentalization of acetyl-CoA in lower eukaryotes. In 

yeast, acetyl-CoA is 20–30-fold enriched in mitochondria as compared to other cellular 

compartments.639 In this context, acetyl-CoA does not permeate past the mitochondrial 

membrane and allows for distinction between acetyl-CoA as a metabolic intermediate and a 

cofactor for lysine acetylation. In mammals, this distinction is not as clear, and the question 

how other acyl group donors such as succinyl-CoA or malonyl-CoA compartmentalize 

remains yet unexplored. The opening of the lysine acetylation field to nutrition, exercise, 

and aging as well as its growing influence on disease pathogenesis and treatment of cancer, 

neurodegeneration, and HIV is exciting and signals far-reaching significance. Lysine 

acetylation may be key to the understanding of how such processes are molecularly defined. 

In the future, lysine acetylation and its directed intervention hold promise and are aimed at 

significantly improving health- and lifespan in humans.
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Box 1.

Acetylated proteins identified in proteomic studies: compartmentalization, 
tissue enrichment (*in rodent), and related biological processes as 

described in refs 315, 319, and 320
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Box 2.

Genetic approaches to identify acetylation sites, tissue type, and biological 
process as described in refs 319, 326, 327, 328, 329, and 330

ENZYME
Δ ACETYLATED
PROTEINS∣SITES

TISSUE OR
CELL TYPE BIOLOGICAL PROCESS

KAT2A
KAT2B

398∣1569 HeLa cells Chromatin organization, Pol II transcription 
elongation, histone lysine methylation, cell 
cycle, actin-mediated cell contraction

KAT13D 179∣306 Mouse liver Glycolysis, TCA cycle, amino acid 
metabolism, fatty acid metabolism

SIRT1 1800∣4623
114 ∣ 807

MEFs
Mouse liver

DNA repair, signaling, transcription factor 
assembly, transcription elongation, 
spliceosome assembly, fatty acid 
metabolism, TCA cycle, small molecule 
metabolism

SIRT3 1791 ∣ 306 Mouse liver
Mitochondria

Fatty acid metabolism, TCA cycle, amino 
acid catabolism, ketone body metabolism, 
electron transport chain
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Box 3.

Histone lysine acetylation sites and their domain location341

HISTONE LYSINE MODIFICATION

Tail Domain Globular Domain

H2A K5,K9, K13, K15 K36, K118

H2B K5, K11, K12, K15, K16, K23, K24 K46, K57, K120

H3 K4, K9, K14, K18, K23, K27 K36, K37, K56, K64, K79, K112, K115, K112

H4 K5, K8, K12, K16, K20, K31 K77, K79, K91

H1
*
K16, K33 K45, K63, K74, K89, K96, K105, K167

Each histone has additional isoforms not listed in this table.
*
Histone H1 N-terminal domain is structurally distinct from tail domains found in histone H2-4
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Figure 1. 
Proposed reaction mechanism of spontaneous acetylation in the mitochondria.10
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Figure 2. 
Structures of catalytic KAT domains from GNAT (human GCN5, blue, PDB: 1Z4R), MYST 

(human MOZ, orange, PDB: 2RC4), and KAT3A/B(CBP/p300) (human KAT3B(p300), 

gray, PDB: 3BIY) families. Acetyl-CoA is shown in cyan. Images rendered in Chimera 

(UCSF).
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Figure 3. 
Proposed reaction mechanism for GNAT family KATs.85
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Figure 4. 
Proposed reaction mechanism for p300 family KATs.89
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Figure 5. 
Structures of catalytic KDAC domains from KDAC (human KDAC2, red, PDB: 4LXZ) and 

Sirtuin (human SIRT1, purple, PDB: 4I5I families). KDAC zinc and Sirtuin NAD are shown 

in yellow. Images rendered in Chimera (UCSF).
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Figure 6. 
Proposed reaction mechanism for class I, II, and IV KDACs.157

Ali et al. Page 68

Chem Rev. Author manuscript; available in PMC 2019 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Proposed reaction mechanism for class III KDACs/sirtuins. Reprinted with permission from 

ref 201. Copyright 2010 The Royal Society of Chemistry.
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Figure 8. 
Structures of acetylation reader domains: Bromodomain (human BRD4, black, PDB: 

3UVW), double PHD (human DPF3, blue, PDB: 2KWJ), and YEATS (human AF9, yellow, 

PDB: 4TMP). Acetyl-lysine ligands shown in pink. Images rendered in Chimera (UCSF).
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Figure 9. 
Acetylome studies reveal the scope of biological functions regulated by acetylation in 

mammalian cells.
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Figure 10. 
Mechanisms driving acetylation dependent regulation of transcription factors.
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Figure 11. 
Selected chemical structures of KDAC inhibitors.
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Figure 12. 
Selected chemical structures of sirtuin activators.
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Figure 13. 
Selected chemical structures of sirtuin inhibitors.
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Figure 14. 
Selected chemical structures of KAT inhibitors.
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Figure 15. 
Selected chemical structures of BET inhibitors.
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