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Abstract

The propensity score (PS) method is widely used to estimate the average treatment effect (TE) in 

observational studies. However, it is generally confined to the binary treatment assignment. In an 

extension to the settings of a multi-level treatment, Imbens proposed a generalized propensity 

score which is the conditional probability of receiving a particular level of the treatment given pre-

treatment variables. The average TE can then be estimated by conditioning solely on the 

generalized PS under the assumption of weak unconfounded-ness. In the present work, we adopted 

this approach and conducted extensive simulations to evaluate the performance of several methods 

using the generalized PS, including subclassification, matching, inverse probability of treatment 

weighting (IPTW), and covariate adjustment. Compared with other methods, IPTW had the 

preferred overall performance. We then applied these methods to a retrospective cohort study of 

228,876 pregnant women. The impact of the exposure to different types of the antidepressant 

medications (no exposure, selective serotonin reuptake inhibitor (SSRI) only, non-SSRI only, and 

both) during pregnancy on several important infant outcomes (birth weight, gestation age, preterm 

labor, and respiratory distress) were assessed.
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1. Introduction

Although randomized clinical trials (RCTs) are the widely accepted gold standard to 

estimate the causal effects of treatments and interventions, RCTs are not feasible in 

situations when it is unethical or impractical to randomize subjects into treatment groups 

[32]. Observational studies, on the other hand, allow studying the real-world impact of 

various clinical interventions and treatments [26]. It is challenging, however, to derive causal 

inferences from observational studies as there are often systematic differences between 

treatment groups [13]. Therefore, proper statistical methods to remove or minimize such 

confounding bias are necessary before valid inferences of TE can be drawn from 

observational studies [29].

Propensity score (PS) methods are a popular methodology used in observational studies to 

address limitations of confounding bias, classification bias, and failure to abide by the 

intention to treat principle [29]. The PS is the conditional probability of subjects receiving a 

particular treatment given all measured potential confounders. It is an effective summary 

score that incorporates multiple variables that may influence the treatment decision. There 

are four ways of applying PS to reduce confounding: covariate adjustment with the PS, 

stratification on the PS, matching on the PS, and inverse probability of treatment weighting 

(IPTW) using the PS [5,14,28–30].

Until recently, the PS methods have been mostly used in studies of two treatment groups. 

Treatment with more than two groups, however, is often of interest in the medical research. 

Rubin proposed to create separate PS models for each paired treatment comparison [22,31]. 

However, the sum of the probabilities of choosing all treatment arms can be greater than 1 as 

these models are not constrained [39]. Imbens developed the generalized propensity score 

(GPS) by extending Rosenbaum and Rubin’s work, in which the GPS was defined as the 

conditional probability of receiving a particular treatment given the pretreatment covariates 

and was estimated using a multinomial logistic regression model [11]. Similar application 

methods, covariate adjustment, subclassification, matching and IPTW that are designed for 

binary treatments, have been developed for GPS to accommodate treatment with more than 

two groups [7,8,10,18–21,38].

Despite its utility, evaluation of the performance of GPS derived from a multinomial 

regression model is limited [7,24,38,40]. Using multi-level treatment clinical trial data, Feng 

et al. 7] applied and compared GPS covariate adjustment and IPTW in assessing the relative 

effectiveness of individual treatments. When the sample size is moderate or large, GPS 

covariate adjustment and GPS IPTW show satisfactory performance in estimating the 

individual TE. In a separate study, Yang et al. [ 38] demonstrated and applied GPS matching 

and subclassification in a multi-level treatments case. To the best of our knowledge, there is 

no literature currently evaluating and comparing the performance of all four commonly used 

GPS methods simultaneously.
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The objective of this study was to apply, evaluate and compare the performance of GPS 

methods, covariate adjustment, subclassification, matching and IPTW in bias reduction 

when treatment was multi-level with no particular ordering using the multinomial logistic 

regression to estimate GPS. We examined and applied the four GPS methods using both 

Monte Carlo simulations and a motivating study comparing different types of the 

antidepressant use during pregnancy on related outcomes.

The paper is organized as follows. In Section 2, we provide a detailed description of the 

motivating study. In Section 3, we review the GPS approach and describe the four methods 

using GPS to estimate TEs. In Section 4, we present an extensive simulation study to 

examine the performance of the four GPS methods. In Section 5, we re-visit the motivating 

study and report the results, followed by the discussion and conclusion in Section 6.

2. Motivating study

Our study of the application and evaluation of GPS in situations when treatment has more 

than two levels was motivated by comparison of different types of the antidepressant use 

during pregnancy and their effects on pregnancy-related outcomes. Antidepressants are 

widely prescribed to pregnant women with major depression and other psychiatric disorders 

[1,4,6,9,27,36]. Up to 13% of all pregnant women filled at least one antidepressant 

prescription during pregnancy [9,27].

Since their introduction in clinical practice in 1988, selective serotonin reuptake inhibitors 

(SSRIs) have become the most commonly prescribed antidepressants [9,16]. SSRIs 

purportedly ameliorate depressive symptoms by selectively blocking the reabsorption 

(reuptake) of the neurotransmitter serotonin and changing the balance of serotonin levels in 

the brain. Compared with other non-SSRI antidepressants, which in general affect more than 

one type of neurotransmitters, SSRIs primarily affect serotonin levels. However, studies have 

reported that SSRI use in the third trimester of pregnancy, but not non-SSRIs, is associated 

with infant convulsions representing a severe neurologic withdrawal syndrome [9,23,33]. It 

is unclear whether choice of antidepressants, SSRIs or non-SSRIs, affects other pregnancy-

related outcomes.

Comparison of the effects of SSRIs and non-SSRIs on pregnancy-related outcomes is 

complicated. Choice of SSRIs or non-SSRIs is confounded by physicians and patients 

preference, as well as disease severity. SSRIs are the most commonly prescribed class of the 

antidepressant medication [3], likely because of their strong empirical base and tolerabil-ity, 

and are widely considered first-line pharmacotherapies [15,17]. In addition, depression itself 

may affect pregnancy-related outcomes. Therefore, direct comparison among the 

antidepressant treatment groups is confounded and may result in biased conclusions. PS 

methods, with their ability to summarize all measured confounders into one score, are 

valuable in assessing the effect of different type of the antidepressant exposure during 

pregnancy and pregnancy-related outcomes. This real-world study motivated us to compare 

multiple, unordered treatment groups in GPS calculation and TE estimation.
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3. Methods

3.1. Notation

Imbens [11] developed the GPS methodology to estimate the average causal effects of 

multiple treatments. Below we closely follow his notation.

Let τ = {0,1,2,..., K} be K + 1 different mutually exclusive treatments. Following the 

potential outcome framework for causal inference, every subject in the population has K + 1 

potential outcomes after receiving each of the K + 1 treatments. For individual i, we denote 

the potential outcome as Yi(T = t) or simply Yi(t), where T is the random variable indicating 

a treatment this subject might have received.

For each individual, the TE of interest is defined as the difference between the potential 

outcomes from the same individual. TE(j, k) = Yi(j) − Yi(k), for all j ≠ k. There exist K(K 
+ 1)/2 individual pairwise TEs. Since Yi(j) and Yi(k) cannot be observed at the same time, 

TEs at the individual level cannot be estimated. Instead, the average treatment effect (ATE) 

in the population is considered. E{Y(j)} is the ATE that would have been observed if the 

entire population had received treatment j. The ATE of treatment j versus treatment k is the 

difference in mean outcomes for these treatments and is denoted 

ATE j, k = E Y i( j) − E Y i(k) . Notethatthe expectationinthisdefinitionisoverthe entire 

population regardless of the treatment that was actually received. In our case study with four 

treatment groups, there exist six ATEs, one for each pairwise comparison.

3.2. Estimation of ATE

To estimate ATEs, we first need to estimate E{Y(t)}(t = 0, 1, 2, …, K). Since

E{Y(t)} = E{Y(t) | T = t}Pr(T = t) + E{Y(t) | T ≠ t}Pr(T ≠ t),

and the first part on the right side of the equation can be directly estimated in large samples 

using respective sample analogs, so the problem boils down to properly estimating 

E{Y(t) |T ≠ t} . In a completely randomized experiment where treatment assignment is 

independent of potential outcomes, we have E{Y(t) |T ≠ t} = E{Y(t) |T = t} . However, this 

equation usually does not hold in non-randomized studies due to the fact that the baseline 

covariates may have large differences among the treatment groups and the treatment 

assignment likely affects potential outcomes. Rosenbaum and Rubin proposed the PS 

approach to make use of baseline covariate information to obtain an unbiased estimate of 

E{Y(t) |T ≠ t} when there are only two levels of treatments. Imbens [11] extends their work 

to multiple treatments and proposed GPS to estimate this quantity.

The GPS, r(t, X), is defined as the conditional probability of receiving a particular level of 

treatment t given a set of pretreatment variables X,

r(t, X) ≡ Pr(T = t | X = X) = E{D(t) | X = X},

where D(t) is the indicator function that denotes the receipt of treatment t.
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By construction, GPS satisfies a balancing property,

D(t) ⊥ X | r(t, X) .

In combination with weak unconfoundedness of treatment assignment given the 

pretreatment covariates X

D(t) ⊥ Y(t) | X,

Imbens [11] proved that the assignment to treatment is also weakly unconfounded given the 

GPS,

D(t) ⊥ Y(t) | r(t, X) .

Then, it follows that

E{Y(t) | r(t, X) = r} = E{Y(t) | T = t, r(t, X) = r} = E{Y(t) | T ≠ t, r(t, X) = r} .

Therefore, GPS can be used to consistently estimate the potential outcome E{Y(t)} for the 

whole population (both the subjects who receive treatment t and those who do not).

The implementation follows three steps. The first step is to estimate r(t, X). In our study, we 

fitted a multinomial logistic regression model, with t = 0 as the reference level. The model is 

as follows.

ln r(k, X)
r(0, X) = ln Pr(T = k | X)

Pr(T = 0 | X) = β0k + β1k′ X, k = 1, 2, …, K . (1)

Each subject has K linear predictors and K + 1 PSs. Second, we estimate the conditional 

expectation of the potential outcome at treatment level t asa function of a scalar variable r(t, 
X),

β(t, r) = E{Y | T = t, r(t, X) = r} . (2)

Finally, we estimate the average outcome at treatment level t by averaging the estimated 

conditional expectation, β(t, r(t, X)), over the distribution of r(t, X). That is,

E{Y(t)} = E{β(t, r(t, X))} . (3)

3.3. Four GPS methods

With estimated r(t, X), we then applied matching, subclassification, IPTW and covariate 

adjustment to estimate β(t, r(t, X)) and E{Y(t)}s, and subsequently the ATEs.
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3.3.1. Subclassification on GPS—Subclassification is a nonparametric estimating 

technique in which conditional expectation of the potential outcome β(t, r(t, X)) is estimated 

based on quantiles of r(t, X). To evaluate the average potential outcome E{Y(k)} at 

treatment level k, we first rank all subjects based on their estimated GPS at this treatment 

level, r (k, X); subjects are then subclassified into five strata based on GPS quintiles qs
r(k, X)

for s = 1,2,...,5. We assume each subgroup is a homogeneous subpopulation regarding r k, X ,
giving E Ys(k) = E Ys(k)|T = k . Although such assumptions only hold in an ideal situation 

where each subgroup should contain a single value of r(k, X), evidence suggests that such 

quintile-based subclassification generally reduces 90% of the bias induced by baseline 

covariates [30]. Within each subgroup, we estimate the average potential outcome E YS(k)

by the mean outcome of the subjects who actually received treatment k in this subgroup.

E Ys(k) = 1
Nsk

∑
i:qs − 1

r(k, X) < r(k, X) ≤ qs
r(k, X)

Yi(T = k),

where Nsk is the number of subjects in subgroup s who actually receive treatment k. The 

overall value of E{Y(k)} is a weighted average of the within-strata estimates with the weight 

for each subgroup equaling the fraction of the sample within that subgroup. That is

E{Y(k)} = ∑
s = 1

5 Ns
N E{Ys(k)} .

This procedure is repeated for each of the treatment level to obtain all of the values of 

E{Y(k)} . The pairwise ATE s are calculated accordingly.

3.3.2. Matching on GPS—Matching is another nonparametric estimating method, and 

what we have proposed here is similar to one-to-one nearest neighbor matching with 

replacement. All the subjects are subgrouped into K+1 subsamples based on the treatment 

each individual actually receives. In subsample k, each individual has an observed outcome 

Yi(k). For each of the subjects not in subsample k, we select a single subject from subsample 

k who has the closest value in terms of r(k, X). In this process, the subjects in subsample k 
are used with replacement, so that a closest match (caliper not defined) can be found for 

every single subject not in subsample k and their potential outcome Yi(k) are directly 

estimated by Yi (k) of their matched subjects in the subsample k. Therefore, we have Y(k) 

(observed for those in subsample k or estimated through the matched for those not in 

subsample k) for all the subjects in the study sample, which represents the entire population. 

The average outcome E{Y(k)} and pairwise ATEs are then estimated by the sample average 

and the corresponding difference between the sample averages, respectively.

3.3.3. IPTW using GPS—As an alternative to the implementation using (2) and (3), 

Imbens [11] proposed using GPS to weight observations because of the equality 

E{YD t)/r T , X )} = E{Y t )} . The idea isto create potential sample (pseudo-population) for 

each treatment level t that are intended to represent the samples we would have observed if 
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everyone had been received treatment t. To implement, we normalize the weights so that 

they add up to one in each treatment group [7]. The weighted outcome for treatment t is 

given by

E{Y(t)} = ∑
i = 1

N YiDi(t)

r t, Xi
∑

i = 1

N Di(t)

r t, Xi

−1
.

3.3.4. Covariate adjustment using GPS—When using the covariate adjustment 

method to estimate E{Y(t)} and ATEs, we explored two different approaches. The first is a 

direct parametric implementation of (2) (covariate adjustment A). A generalized linear 

model was fitted for the outcome on the estimated GPS at each treatment level t. We used 

linear and logistic regression models for continuous and dichotomous outcomes, 

respectively.

E{Y | T = t, r(t, X) = r} = β(t, r(t, X)) = α0t + α1tr(t, X) .

With K + 1 sets of α0t and α1t, the potential outcome of each individual subject at treatment 

level t is estimated as

E{Y(t)} = 1
N ∑

i = 1

N
β t, r t, Xi = 1

N ∑
i = 1

N
α0t + α1tr t, Xi .

In contrast to other GPS methods, covariate adjustment is relatively flexible in that we can 

adjust multiple GPS at the same time. For example,

β(t, r(t, X)) = α0t + α1tg r 1, Xi + α2tg r 2, Xi + ⋯ + αKtg r K, Xi ,

E{Y(t)} = 1
N ∑

i = 1

N
α0t + α1tg r 1, Xi + α2tg r 2, Xi + ⋯ + αKtg r K, Xi .

where we chose g (r(t, X)) = ln (r(t, X)/r(0, X)), which are the linear predictors based on the 

GPS model (1) (covariate adjustment B).

4. Simulation studies

We performed extensive Monte Carlo simulations to examine the performance of the 

different methods proposed in Section 3.

4.1. Data-generating process

First, we randomly simulated eight variables X1, X2,...,X8 for each of the N subjects. X1, X2 

and X3 were Bernoulli with the probability of success equal to 0.3, 0.5, and 0.7, 
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respectively; X4, X5, and X6 were multivariate normal with means (0,1,0), variances of 

(1,2,3) and covariances of 1, 0 . 1, − 1 ; X7 U[ − 3, 3]; X8 χ1
2 .

Second, we generated a treatment status for each of the N subjects as follows: we first 

determined the subject-specific probabilities of treatment assignment as

ln
pi, k
pi, 0

= γk, 0 + γk, 1X1i + γk, 2X2i + γk, 3X3i + γk, 4X4i + γk, 5X5i + γk, 6X6i

+ γk, 7X7i + γk, 8X8i, k = 1, 2, …, K .

(4)

We then randomly generated a treatment status for each of the N subjects from a 

multinomial distribution with subject-specific probabilities of the treatment assignment:

Ti Multinomial pi, 0, pi, 1, pi, 2, …, pi, K

Third, for each of the N subjects, we randomly generated K + 1 potential outcomes 

conditional on the eight variables

g E Y i(k) = βk, 0 + βk, 1X1i + βk, 2X2i + βk, 3X3i + βk, 4X4i + βk, 5X5i
+ βk, 6X6i + βk, 7X7i + βk, 8X8i,

(5)

where g() was the identify link function for continuous outcomes and logit link function for 

binary outcomes.

The values assigned to the regression coefficients in Equations (4) and (5) were listed in 

Tables A1 and A2. The data-generating process thus randomly generated treatment status, 

covariates, and potential outcomes for each of the N subjects.

All the eight covariates are confounders. The absolute values of γ s in the treatment 

assignment model (4) were the same for all the covariates so that they had the same impact 

on the treatment assignment. The values of βs in the outcome model (5) were set in such a 

way that the effects of covariates on the outcome were largely comparable and the expected 

average potential outcomes were 1 or 2 for continuous outcomes and 0.4 or 0.6 for binary 

outcomes. Accordingly, the expected ATE is 1 or 0 for continuous outcomes and 0.2 or 0 for 

binary outcomes. The overall confounding effect of the covariates can be measured by the 

bias when using the observed sample means in each treatment group as estimates of the 

average potential outcomes, which was about 0.4 for continuous outcomes and was about 

0.008 for binary outcomes.

4.2. Factors considered

We varied the values of the following factors to investigate the performance of the proposed 

methods in different situations.

Nian et al. Page 8

J Appl Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Outcome type: We generated both continuous and binary outcomes by using an 

identity or logit link function of g() in (5).

• Treatment levels: τ = {0,1}, {0,1,2}, {0,1,2,3}, {0,1,2,3,4} and {0,1,2,3,4,5} 

were considered, i.e. K = 1,2,3,4 or 5.

• Sample size: We used n = 50,100,200,500,1000 for continuous outcomes, and n 
= 100, 200, 500, 1000, 2000 for binary variables, where n is the sample size at 

each treatment level.

4.3. Evaluation criteria

For each of the scenarios described in Section 4.2, we simulated 1000 datasets and the 

proposed methods were applied to each of the datasets to obtain the estimate of E{Y (t) }s 

and ATEs. 95% confidence intervals (CI) for the point estimates were constructed using the 

nonparametric bootstrap percentile method, and in each bootstrap sample, GPS was re-

estimated. We used four evaluation criteria, including absolute bias, variance, square root of 

mean square error (RMSE) and empirical coverage probability (CP) of 95% CI. To simplify 

the comparisons between different methods, we calculated an average statistics over the 

multiple treatment levels (Table 1).

4.4. Simulation results

The results of simulation studies were summarized by average absolute bias, variance, 

RMSE and 95% CI coverage defined in Section 3, and displayed in Figures 1–2 and Figures 

A1 and A2.

In all the methods studied, IPTW provided the most unbiased estimators overall. The bias of 

IPTW estimators was quite comparable for different numbers of treatment groups, and 

monotonically reduced with increasing sample size. The number of subjects needed in each 

treatment group for the IPTW method to reach negligible bias was smaller when the number 

of treatment groups was reduced. This was especially true when the outcome was 

continuous. The matching method also had small bias, for both continuous and binary 

outcomes. It performed consistently across different scenarios with varying numbers of 

treatment groups, and the bias decreased with increasing sample size. Compared with IPTW 

and matching methods, subclassification resulted in noticeably larger bias, especially with 

large sample size. The performance of subclassification was relatively invariant to the 

number of treatment groups and the sample size within each group.

The performance of the two covariate adjustment methods varied with the number of 

treatment groups. In general, the bias of estimators using covariate adjustment B (adjusting 

for all the linear predictors from the GPS model) decreased when the number of treatment 

groups increased. When there were only two treatment groups (K = 1), method of covariate 

adjustment B generated the estimators with largest bias among all the methods studied; 

while when there were six treatment groups (K = 5), this method performed better than all 

the other methods except IPTW. The bias of estimators based on the method of covariate 

adjustment A (adjusting for single PS separately), on the other hand, increased with 

increasing number of treatment groups. This trend was more profound for continuous 
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outcome than for binary outcome where the bias using covariate adjustment A remained 

relatively stable with varying number of treatment groups. Yet for both types of outcomes, 

the method of covariate adjustment A outperformed covariate adjustment B when there were 

two treatment groups but underperformed B when there were five or six treatment levels. 

Increasing sample size decreased bias of estimators in both adjustment methods Such bias 

decrease was more noticeable when the outcome was a continuous variable.

In general, the variance of all the estimators declined with increasing sample size. Compared 

with other GPS methods, matching had the largest variance across all the scenarios. The 

covariate adjustment methods had the smallest variance, and IPTW and subclassification 

gave a slightly bigger variance. For all methods, increasing treatment groups and/or 

decreasing sample size increased the variance of estimators.

The patterns of RMSE for different methods were similarto the patterns ofvariance, and the 

matching method stood out from all the other methods with the largest RMSE. Compared 

with continuous outcome scenario, the differences in the performances of the IPTW, 

subclassification, and covariate adjustment methods were less significant with regard to 

variance and RMSE when the outcome was a binary variable.

The expected value of empirical CP for 95% confidence interval is 0.95. The confidence 

intervals of matching method were over-covered in all scenarios we studied. The CPs of the 

other methods fluctuated, or slightly decreased with increasing sample size around the 

nominal level of 0.95. In the scenario of six treatment levels and a continuous outcome, 

subclassification and covariate adjustment B had confidence intervals notably under-covered 

when the sample size was large.

5. Antidepressants and pregnancy outcome data analysis

5.1. Data source and statistical analysis

Data of 228,876 singleton pregnancies of women aged 15–44 years old were obtained from 

the linked Tennessee Medicaid program (TennCare) administrative database. All women 

were continuously enrolled in TennCare during 1995–2007 and from 180 days prior to their 

last menstrual period to 90 days after delivery [9]. We studied the antidepressant exposure 

during pregnancy and the risk of adverse pregnancy outcomes. Based on the type of 

antidepressants women received during pregnancy, pregnant women were categorized into 

four groups: no exposure, SSRI only, non-SSRI only, and both groups. The outcomes of 

interest included continuous outcomes: birth weight in grams, gestation age in days, and 

binary outcomes: respiratory distress and preterm labor (Table 3). We separated those 

women with both types of antidepressants as we hypothesized that women with both types 

of antidepressants had more severe illness. To minimize the confounding effect of depressive 

illness, we performed all analyses separately among women with or without an ICD-9 

unipolar depressive disorder diagnosis (296.2, 296.3, 300.4, and/or 311) 180 days prior to 

pregnancy. Table 2 displays the baseline characteristics of the study subjects stratified by the 

types of the antidepressant exposure for the two subpopulations. The study was reviewed 

and deemed as an exempt study by the Vanderbilt University Institutional Review Board.
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We first fitted a multinomial logistic regression model with types of pregnancy 

antidepressant exposure as outcomes of interest to estimate GPS. Because the aim of the 

GPS model is to obtain the best estimate of the probability of treatment assignment, we were 

not concerned with over-parameterization; all the baseline covariates related to type of the 

antidepressant exposure or pregnancy outcomes were included in the model. Restricted 

cubic splines of the continuous covariates were included to model the potential nonlinear 

relationship between covariates and type of the antidepressant exposure.

For each subject, we obtained four GPS, r 0, Xi , r 1, Xi , r 2, Xi , and r 3, Xi , which 

corresponded to no exposure, SSRI-only, non-SSRI only, and both treatment groups, 

respectively. Before applying GPS to the outcome analysis, we inspected the extent to which 

the distribution of r t, Xi  overlapped among subjects who received treatment t and those 

who did not. We further examined the covariate balance between treatment groups before 

and after GPS adjustment. The degree of imbalance was quantified by the absolute 

difference in the means of a covariate between the subjects in the treatment group t and the 

subjects not in the treatment group t divided by a pooled standard deviation within the 

sample matched on r (t), stratified by r (t) or between r (t) weighted samples.

The methods described in Section 3 were then applied to estimate the ATEs between 

treatment groups for each of the outcomes.

5.2. Results

Among 228,876 pregnancies, 28,154 (12.3%) were from women carrying a depression 

diagnosis before pregnancy and 200,722 (87.7%) were from women without a depression 

diagnosis. Among the women with a depression diagnosis prior to pregnancy, 13,532 

(48.0%) did not fill any prescription for an antidepressant during pregnancy, none: 7359 

(26.1%) filled an SSRI only, 4571 (16.2%) filled a non-SSRI only, and 2.692 (9.6%) filled 

both SSRI and non-SSRI prescriptions. For the women who were not diagnosed with 

depression before pregnancy, the majority, 194,587 (96.9%), did not fill any antidepressant 

prescriptions during pregnancy, and the numbers of subjects who filled SSRI, non-SSRI or 

both SSRI and non-SSRI prescriptions were 3562(1.8%), 2135(1.1%), and 438(0.2%), 

respectively. In both subpopulations, there were significant differences in all the baseline 

characteristics except infant gender among the four antidepressant exposure groups (Table 

3). We estimated the probabilities of the subjects having each of the four antidepressant 

exposure types during pregnancy, i.e. GPS, based on these baseline characteristics. Figure 

A3 shows the distributions of the GPS of the treatment groups. There was considerable 

overlap of GPS among the four treatment groups, indicating that the TEs we estimated using 

GPS would be applicable for the whole population. In addition, the estimated GPS had 

dramatically improved the covariate balancing between treatment groups by all the three 

methods evaluated (Figure A4). One rule of thumb for assessing the covariate balance is that 

an absolute standardized mean difference of 0.2 or greater maybe of concern[25,35]. Except 

that comorbidity and anxiety disorder had standardized difference of about 0.25 by the 

subclassification method for the subpopulation without prior depression, the standardized 

difference of all the covariates by all the three methods evaluated were smaller than 0.2. The 

IPTW method yielded the smallest standardized difference.
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Figure 3 and 4 show the estimated ATEs for various pregnancy outcomes comparing patients 

receiving SSRI only, non-SSRI only, and both treatments with women receiving no 

treatment. These results are graphed for each GPS method. For the women without a 

depression diagnosis prior to pregnancy, children exposed to SSRI in utero had lower birth 

weights relative to those who were not exposed to any antidepressant in pregnancy. The 

effect of each type of antidepressants on birth weight was consistent across different GPS 

methods. Compared with no exposure, SSRI only had no significant decrease in birth 

weight, while exposure to non-SSRI only decreased birth weight by 43 g (96% CI: 7–76 g), 

35 g (95% CI : 1–93 g), 41 g (95% CI : 8–76 g), 25 g (95% CI: −4 to 53 g) and 35 g (95% 

CI: —3 to 65 g) using subclassification, matching, IPTW, and covariate adjustments A and 

B, respectively. Across all GPS methods, exposure to both types of antidepressants during 

pregnancy was associated with the greatest reduction in birth weight with estimates ranging 

from 71 to 134 grams, although this reduction was not statistically significant. The type of 

antidepressant exposure did not show a consistent significant effect on either gestation age, 

the risk of respiratory disease or the risk of preterm labor across all of the GPS methods.

Among women who were already diagnosed with depression prior to pregnancy, the effect 

of different types of antidepressant exposure on birth weight, gestational age, respiratory 

distress, and preterm labor was consistent across all GPS methods. Types of antidepressant 

exposure had no significant effect on birth weight and respiratory distress. Although the 

effect was not significant, exposure to SSRI only, non-SSRI only, and both treatments tended 

to increase the gestational age by half to one day compared with women with no exposure to 

any antidepressant during pregnancy; women exposed to both treatments had the longest 

gestational age, followed by women exposed to non-SSRI only and women exposed to SSRI 

only. These results relating the gestational age to the type of antidepressant was consistent 

with the results for the antidepressant exposure and the risk of preterm labor. Women 

receiving both treatments and non-SSRIs had a decreased risk of preterm labor.

6. Discussion

Subclassification, matching, IPTW, and covariate adjustment are four PS methods 

commonly used to draw causal inferences. These methods have been extensively studied in 

situations in which only two treatments are being considered. Although the concept of GPS 

was proposed years ago and is used occasionally, there is little research systematically 

investigating the performance of these four methods when more than two treatments are 

being evaluated. Further, there is no study comparing the performance of GPS with binary 

and with multi-level treatments. Our paper attempts to fill this research gap and provides 

some guidance in employing GPS in multi-level treatment settings.

The idea of GPS for multi-level treatments is relatively new, but it is a natural extension of 

PS methods The weak unconfoundedness assumption of GPS is that assignment to a certain 

treatment level is independent of the potential outcome at this treatment level given the GPS. 

It automatically turns into strong unconfoundedness assumption that the treatment 

assignment is independent of all the potential outcomes when the number of treatment levels 

reduces to two. In this paper, we did not distinguish the methods applied to two treatments 

from those applied to more than two treatments because they share the same procedures and 
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formulas, and the change from K > 1to K = 1 is trivial and intuitive. For example, in 

matching and IPTW, we created four pseudo-populations for four-level treatments but two 

for binary treatments. In subclassification, we stratified the population four times in total 

based on each of the four r( t, X) swhen K = 3, while we did this twice for binary treatments. 

Note that because in binary treatments r(t = 1,X) = 1 − r(t = 0,X), the two stratifications lead 

to exactly the same set of subgroups, this is equivalent to ‘single’ subclassification on r(t = 1, 

X).

Our simulation studies showed all four GPS application methods perform quite consistently 

in binary treatments and, for the most part, in multiple treatments as well. IPTW consistently 

gives the smallest bias that diminishes with increasing sample size. The bias of the 

estimators based on the matching method is smaller than that of the subclassification method 

especially when the sample size is large. This is not surprising considering that the accuracy 

of these nonparametric estimators heavily depends on the fineness of the grid used, and one-

to-one matching with replacement is analogous to the subclassification on each unique GPS 

value. The estimator of subclassification is probably inherently inconsistent, as the bias 

remained relatively unchanged with increasing sample size beyond a certain point. On the 

other hand, the bias for matching decreases as sample size increases to at least N = 2000 

where the bias is almost negligible. In both binary and multiple treatments, IPT W and the 

matching method have relatively small bias. However, compared with matching, the IPTW 

method has consistently smaller RMSE estimators when the sample size is small to 

moderate. Due to the large variance, the matching method always has overcovered 95% 

confidence intervals. Previous simulation studies with binary treatments [2] also showed that 

IPTW had superior performance compared with all the other PS methods In some sense, 

these similarities in the performances of these methods between binary treatments and multi-

level treatments demonstrate the natural extension of PS methods for two treatments to GPS 

methods for multiple treatments.

The only method whose performance varies with the number of treatments is covariate 

adjustment. Compared with other PS methods, covariate adjustment is probably the most 

convenient one with regard to implementation. For binary treatments, we can only include 

one PS as a covariate in the model, while for multiple treatments, we must choose either one 

or multiple GPSs. Spreeuwenberg et al. [34] proposed including all the K — 1 PSs in the 

model. Their rationale is based on the strong unconfoundedness assumption that the 

potential outcome is independent of treatment assignment given all the GPSs. In this paper, 

we followed the spirit of Imbens’ implementation that is based on the weak unconfound-

edness assumption. We used one single relevant GPS to estimate the potential outcome at 

each of the treatment levels separately, which makes this method comparable to other PS 

methods As a comparison, we also examined Spreeuwenbery’s method and included all the 

GPSs in the form oflogit linear predictors as covariates in the model. With two treatment 

groups, the difference between these two covariate adjustment methods actually lies in 

whether the PS is included in the model in the form of probability or log odds. Our 

simulation studies indicate that including GPS on its original probability scale performs 

slightly better than including it on the logit scale for binary treatment. However, when the 

number of treatment groups increases, adjustment with multiple GPS on the logit scale gives 

much smaller bias than the case with a single GPS adjustment. The variances of these two 
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methods were similar though multiple GPS adjustment tended to be slightly more precise 

when the sample size was small and the number of treatment groups was large. In general, 

including all the GPSs should reach better balance in multiple treatment settings.

We applied all four GPS methods in a dataset assessing the types of antidepressant use 

during pregnancy and their effects on pregnancy-related outcomes. Compared with the 

subclassification and matching methods, IPTW and covariate adjustment methods gave more 

precise estimates. Among women who had no depression diagnosis prior to pregnancy, the 

use of non-SSRI only and both type of antidepressants tended to lower their children’s birth 

weight, while the effect of SSRI only use was less clear, varying from no effect in the IPTW 

method to a significant decrease in the method involving covariate adjustment A. Types of 

antidepressant use during pregnancy had no significant effect on birth weight among women 

who had depression prior to pregnancy. The differential effect of types of antidepressant use 

during pregnancy on birth weight in women with and without depression prior to pregnancy 

is understandable. While antidepressants, particularly non-SSRIs, might increase the risk of 

low birth weight, it improves women’s depression symptoms and improves maternal 

function, and thus may improve the chances of a normal birth weight. Types of 

antidepressant use during pregnancy may affect gestational age. Among women with 

depression prior to pregnancy, exposure to any type of antidepressants tended to increase the 

infants gestational age and decrease the risk of preterm labor. Such effects of antidepressant 

use during pregnancy were more pronounced among women with both types of 

antidepressants, although women exposed to SSRI only or non-SSRI were also affected. 

Previous study focuses on timing (1st, 2nd, and 3rd trimester) and course (1, 2, and 3+) of 

antidepressant use, and treats the type of antidepressants in an equal manner (SSRI vs. non-

SSRI) on pregnancy-related outcomes[9]. Application of different GPS methods presented in 

this study provides additional insights to the literature on types of antidepressant use and 

their risk on pregnancy outcomes. It is reassuring that results show no difference in birth 

weight, gestational age, respiratory distress, and preterm labor among women with a 

diagnosis of depression who take SSRI only, non-SSRI only, or both comparing with women 

who do not take medications.

One limitation of PS methodology that it only controls for observed covariates also applies 

to GPS. This is always a limitation of non-randomized studies, which makes assessment of 

unconfoundedness assumption difficult if not completely impossible[12,37]. So in practice, 

one should make every effort to collect data on the variables that might even potentially 

affect the outcome and the treatment assignment. In addition, in this study we estimated ATE 

instead of ATT, ATE among treated. ATE is clinically meaningful and relevant when the 

population at risk ought to be treated, and comparative TE size needs to be estimated. This is 

particularly important when treatment tend to be underutilized. In our application study, it is 

clinically relevant and important to know the potential impact of anti-depressant treatment 

on pregnancy outcomes among pregnant women with depression for whom treatment is 

indicated. It would be of interest to estimate ATT using the four GPS methods if all pregnant 

women regardless of depression are included in the study sample[24].

In conclusion, we evaluated the performance of four GPS methods when treatments have 2 

or more than 2 levels. We showed that IPTW provides preferred performance compared with 
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matching, sub classification, and covariate adjustmentwith single/multiple GPS. These 

methods provide a reasonable approach to assess the effects of multi-level treatments on 

patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Results of simulation studies regarding potential outcome estimates for continuous 

outcomes.
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Figure 2. 
Results of simulation studies regarding potential outcome estimates for binary outcomes.
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Figure 3. 
Estimates and 95% CIs of ATEs of the antidepressant exposure during pregnancy for 

subjects without prior depression.
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Figure 4. 
Estimates and 95% CIs of ATEs of the antidepressant exposure during pregnancy for 

subjects with prior depression.

Nian et al. Page 21

J Appl Stat. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nian et al. Page 22

Table 1.

Evaluation criteria.

Criteria E{Y(t)} E{ATE}

Average absolute bias 1
K + 1 ∑t = 0

K ϕb(E{Y(t)}, E{Y(t)}; m) 1
K(K + 1)/2 ∑ j = 0

K − 1 ∑k = j + 1
K ϕb ATE jk, E ATE jk ; m

Average variance 1
K + 1 ∑t = 0

K ϕv(E{Y(t)}; m) 1
K(K + 1)/2 ∑ j = 0

K − 1 ∑k = j + 1
K ϕb ATE jk; m

Average RMSE 1
K + 1 ∑t = 0

K ϕr(E{Y(t)}, E{Y(t)}; m) 1
K(K + 1)/2 ∑ j = 0

K − 1 ∑k = j + 1
K ϕr ATE jk, E ATE jk ; m

Average 95% CI 
coverage

1
K + 1 ∑t = 0

K ϕc(E{Y(t)}; m) 1
K(K + 1)/2 ∑ j = 0

K − 1 ∑k = j + 1
K ϕv E ATE jk ; m

We repeat the estimation procedure m = 1000 times. Denote EW{Y(t)} and ATEi j
w

 as the estimators obtained in the wth
 time for w = 

1,2,...,1000. Let z = z1, …, zm . Define the following functions: 

ϕb z, z0; m = |(1/m)∑w = 1
m zw − z0 | , ϕv(z; m) = (1/m)∑w = 1

m (zw − (1/m)∑w = 1
m zw)2,ϕr z, z0; m

= (1/m)∑w = 1
m zw − z0

2, and ϕc z0; m = (1/m)∑w = 1
m l q0.025

w < z0 < q0.975
W .
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