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Abstract. Background/Aim: Radiation therapy (RT)
represents a therapeutic option in breast cancer (BC). Even if
a great number of BC patients receive RT, not all of them
report benefits, due to radioresistance that gets activated
through several factors, such as the hormone receptor status.
Herein, we analyzed the gene expression profiles (GEP)
induced by RT in triple-negative BC (TNBC) MDA-MB-231,
to study signalling networks involved in radioresistance.
Materials and Methods: GEP of MDA-MB-231 BC cells
treated with a high dose of radiation, went through cDNA
microarray analysis. In addition, to examine the cellular
effects induced by RT, analyses of morphology and clonogenic
evaluation were also conducted. Results: A descriptive report
of GEP and pathways induced by IR is reported from our
microarray data. Moreover, the MDA-MB-231 Radioresistent
Cell Fraction (RCF) selected, included specific molecules able
to drive radioresistance. Conclusion: In summary, our data
highlight, the RT response of TNBC MDA-MB-231 cell line at
a transcriptional level, in terms of activating radioresistance
in these cells, as a model of late-stage BC.

Radiation therapy (RT) represents one of the most frequently
used therapeutic options in cancer clinical practice, including
breast cancer (BC), able to control localized tumor (1). As
known, BC represents a highly heterogeneous group of
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tumors at both the clinical and molecular level associated
with different outcomes for the patients (2).

Today, a great amount of cancer patients receive RT
through several modalities, such internal or external RT,
Brachytherapy, intraoperative electron radiation therapy
(IOERT), and others (3-5). Although technological advances
in radiation delivery have strongly enhanced the tumor
killing capacity, the current clinical practice still offers
standard RT protocols for patients with cancer in the same
anatomical position, without taking into account the
molecular characteristics of the tumor histotype.

As described by several groups including our own, IOERT
is a RT technique that can destroy residual cancer cells that
may be left at the tumor site, immediately following surgical
removal of the tumor (6). According to specific eligibility
criteria, IOERT may be exclusive (a single radiation dose of
21-23 Gy) or an anticipated boost of 9-12 Gy, followed by
conventional RT (7-13).

As recently described by Yadava and Shankara, even if a
great number of cancer patients receive RT, not all of them
report a therapeutic benefit due to distant metastatic spread
and local recurrence, a processes able to induce radioresistance
activation (14, 15). Indeed, tumor radiosensitivity depends on
many factors, some of which are linked to the clinical state of
the patient. For example, the fate of BC disease following
ionizing radiation (IR), depends on many factors, such as
hormone receptor (HR) status of estrogen (ER), progesterone
(PR) and human epidermal growth factor (HER2). Moreover,
the balance between radiosensitivity and radioresistance is
regulated by different and complex factors including the tumor
stem cells which are able to repopulate during the course of
the RT schedule, tumor microenvironment such as hypoxia,
stromal interaction and variations in the intrinsic sensitivity of
cells to radiation, modulation of DNA repair or other cell
survival pathways (14-19).

To our knowledge, limited data are reported regarding the
IR-induced gene expression changes in relation to BC tumor
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grading (20-24). In this sense, we recently reported IR-
induced low grade- and high grade-specific signaling in BC
cells (5). This study described the IR-induced genomic
biomarkers and gene-signatures of specific breast tumor
subtypes, grouped according to HR status. In particular
regarding this radiobiological issue, more advanced studies
on this topic are needed in order to help personalized
biological-driven RT treatment planning alone or in
combination with other therapies.

Several authors have reported controversies with respect to
the use of RT for patients with triple-negative BC (TNBC)
(ER7/PR7/HER2") (25, 26). TNBC (heterogeneous disease
which represents 15%-20% of BC incidences), is associated
with an early age at presentation, larger tumor sizes, higher rates
of recurrence, more aggressive biology, and poorer prognosis
(25, 26). In addition, the absence of hormonal or targeted
therapy against TNBC makes it a clinical challenge for
oncologists in terms of patient management. However, Yao and
colleagues have recently reported a survival advantage of
adjuvant RT for TNBC patients, underling the necessity to study
and clarify molecular mechanisms active in these cells and how
these are involved in regulating cell survival/death balance (24).

Summarizing, as described in the literature, a major
obstacle for effective cancer treatment by RT is the
development of radioresistance. Thus, a great focus of
research should aim to help clinicians understand the
molecular features involved in the activation of this process,
including the contribution of the specific tumor subtypes in
this process. Such studies could better define the most
successful treatment plan, including the choice of the best RT
modality and schedule in the clinical practice against cancer.

In this sense, the principal aim of this work was to study
gene expression profiles (GEP) by cDNA microarray
analyses, induced by a high dose of IR used during IOERT
schedules in triple negative MDA-MB-231 BC cells and to
identify key factors and networks principally involved in the
radioresistance process. Here, we report a list of genes and
cellular process involved in cellular and molecular responses
to high IR doses. We trust that these data could be used to
better clarify mechanisms involved in the radioresistance of
patients, particularly those with triple negative BC cells.

Materials and Methods

Radiation treatments. Cellular irradiation setup and dose distribution
were conducted as previously reported and were performed using
the NOVAC7 IOERT system (Sortina IOERT Technologies,
Vicenza, Italy) (5, 7, 10, 27). MDA-MB-231 BC cells were
irradiated using the following two doses: i) 9 Gy (according to the
boost scheme), and ii) 23 Gy (exclusive modality), to the 100%
isodose at a rate of 3.2 cGy/pulse.

Cell cultures and clonogenic survival evaluation. The human breast
adenocarcinoma MDA-MB-231 cell line, was purchased from the
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American Type Culture Collection (ATCC, Manassas, VA, Canada)
and cells were cultured according to manufacturer’s guidelines, as
previously described (5). To detect the cell radiation effect,
clonogenic survival assays, according to the method by Franken et
al., and morphological evaluations were conducted as previously
reported (10, 27).

Whole-genome ¢cDNA microarray expression analysis. GEP of the
MDA-MB-231 BC cell line treated with 9 and 23 Gy of IR doses was
performed. In addition, we also conducted microarray experiments on
the surviving fraction of MDA-MB-231 cells collected 7 days after
IOERT treatment, using 9 Gy of IR dose (hereafter named
Radioresistent Cell Fraction, RCF). The total RNA was extracted from
cells and was evaluated for its concentration and purity, as previously
reported (5). cRNA synthesis and labeling were conducted according
to the Agilent Two-Color Microarray-Based Gene Expression Analysis
protocol (Agilent Technologies, Santa Clara, CA, USA), as previously
described by our group (5). For this purpose we used Whole Human
Genome 4x44K microarrays (Agilent Technologies) that contain all
known human genes. Array hybridization, microarray scanning and
feature detection, as well as statistical data analysis, background
correction, normalization and summary of expression measures were
conducted with the Feature Extraction and GeneSpring GX 10.0.2
software (Agilent Technologies), as previously described in detail (7).
In addition, the GEPs obtained in this work were also analyzed by
pathway analysis using the Database for Annotation, Visualization and
Integrated  Discovery = (DAVID) network  building  tool
(https://david.ncifcrf.gov/tools.jsp). The data discussed here are
deposited in the NCBI Gene Expression Omnibus (28) and are
accessible through the GEO Series accession number (GSE127789).
Microarray data are available in compliance with Minimum
Information about a Microarray Experiment standards (29).

Results

Cell survival and morphology. To evaluate MDA-MB-231 cell
viability in terms of reproductive capacity, we performed a
clonogenic survival assay (10, 27). 23 Gy of IR exposure
inhibited the colony-forming ability of cells. On the other hand,
3 weeks following the 9 Gy exposure an RCF was observed
(SF=6.4%) (Figure 1). Cell morphology modifications induced
by IR, such as membranous and cytoplasmic damages, were
starting from 72 hours post-treatment with either dose of 9 or
23 Gy.

Moreover, irradiated MDA-MB-231 cells displayed a
large flat shape with evident macroscopic plasma membrane
and nucleus alterations, suggesting a typical senescent
phenotype (the well-known ‘fried egg’), confirmed by SA-
b-Gal activity, as previously described (30).

Overview of cDNA microarray gene expression analyses after
9Gy and 23Gy irradiations. Whole human genome
Microarray-Based Gene Expression Analyses (Agilent
Technologies) were conducted on MDA-MB-231 cells treated
with 9 Gy and 23 Gy, delivered by IOERT. MDA-MB-231
untreated cells were used as reference sample for comparing
the differential gene expression analyses (Figure 2A).
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Figure 1. Micrographs of MDA-MB-231 RCF cell line following 9 Gy for morphological and clonogenic survival evaluation. Scale bars: 30 um.

A total of 2,127 genes changed their expression levels by
1.5-fold or more (1129 genes were down-regulated and 998
up-regulated) compared to the untreated reference group of
MDA-MB-231 cells irradiated with 9 Gy.

Deregulated genes (DEGs) were grouped according to
their involvement in specific pathways using DAVID and
REACTOME tools (https://david.ncifcrf.gov/tools.jsp;
https://reactome.org). The result of this mapping, shown in
Table I highlights the involvement of a set of factors,
principally involved in stem cell pluripotency pathway:
Hippo, Rapl and FoxO signaling as well as in cell cycle
control.

From the MDA-MB-231 cells irradiated with 23 Gy, 3438
DEGs were selected a difference in their GEP by 1.5-fold or
greater compared to the control: 1588 genes were down-
regulated and 1850 up-regulated (Figure 2A).

The top 5 statistically and biologically relevant pathways,
deregulated in MDA-MB-231 following 23 Gy, were
analyzed by using the DAVID tool, underlining the
involvement of the following listed pathways: i) Rapl
signaling, ii) Jak-STAT network, iii) stem cell pluripotency
pathways, iv) cell cycle control and v) Tumor Necrosis
Factor (TNF) network (Table II). Moreover, we performed
Venn diagrams in order to study the number of unique and
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A
Differentially expressed genes (DEGs)
(>1.5-fold) Down | Up
MDA-MB-231_9Gy 2127 1129 998
MDA-MB-231_23Gy 3438 1588 | 1850
MDA-MB-231 RCF 2592 515 2077
B
MDA-MB-231 MDA-MB-231
9 Gy 1473 1965 23 Gy

Figure 2. (A) Genes whose expression was significantly altered by 1.5-fold or greater following different irradiation conditions compared to the
untreated reference group. (B) Venn diagrams showing the number of unique and shared differentially expressed genes (DEG) of the MDA-MB-231

BC cells, following exposure to doses of 9 and 23 Gy.

shared differentially expressed genes between the cells
exposed to IR doses of 9 and 23 Gy (Figure 2B). 1473 genes
were found to be common to MDA-MB-231 BC cells
exposed to either 9 or 23 Gy (848 were down- and 625 were
up-regulated). As shown in Table III, the stem cells
pluripotency pathway, Rapl, Jak-STAT and PI3K-Akt
signaling, were the top-5 statistically relevant pathways
selected using the DAVID tool.

Interestingly, the analysis GO biological processes of all
the configurations analyzed in this work, underlined the
involvement of multiple cellular processes associated with
chromatin assembly, such as nucleosome and telomere
organization.

Overview of cDNA microarray gene expression analyses of
RCF. As described above, following 9 Gy treatment a
surviving MDA-MB-231 RCF (6.4%), was isolated and
maintained up to 3-weeks post-IOERT (Figure 1). In order
to analyze key genes involved in radioresistant cell response,
we performed GEP analysis of MDA-MB-231 RCF samples
collected 7 days post IOERT treatment. We used a
comparative reference sample (MDA-MB-231 9 Gy-treated
cells collected 24 hours post irradiation) in order to study
genes specifically and temporally involved in the activation
of the radioresistant process in the post irradiation time
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window analyzed. Precisely, 2592 genes were found to be
deregulated in the MDA-MB-231 RCF pool by 2-fold or
more compared to control (515 genes were down-regulated
and 2,077 were up-regulated) (Figure 2A).

Also in this case, we performed DAVID analysis in order
to analyze the top-5 cellular pathways regulated by the
selected gene list, as shown in Table IV. This analysis
confirmed once again the involvement of networks, such as
TNF, NF-kappa B, Jak-STAT and PI3K-Akt signaling and
phagosome pathway. Interestingly, the analysis of GO
biological processes performed using DAVID tool,
underlined once again the involvement of multiple processes
associated with chromatin assembly, possibly driving the
activation of radioresistance processes in MDA-MB--231
RCEF cells (Figure 3).

Discussion

As recently described by Sosin et al., IOERT demonstrates
favorable patient-reported outcomes and low rates of toxicity
with adequate local disease control at 2-year follow-up when
implemented in early BC (6). However, the radiosensitivity
of BC depends on many factors, including a positive or
negative HR status (5). In particular, controversial data are
available in the literature regarding the radiation responses
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Table 1. Top-5 molecular pathways of deregulated genes expressed in MDA-MB-231 cells treated with 9 Gy.

Pathway name Genes found p-Value Genes
in GEP list

1 Stem cells pluripotency signaling 23 0.004  FGFR3, IL6ST, WNT3A, OTX1, SMADS, PAX6, LIFR, FZD4, STAT3,
HESX1, IGFIR, WNT7B, ACVR2B, KRAS, RIF1, ID2, WNT11, SKIL,
BMPR1B, PIK3R3, FGF2, AKT3, KAT6A

2 Hippo signaling 22 0.02 PRKCZ, NF2, GDF7, WNT3A, PRKCI, TEAD1, WWTRI, FZD4, TCF7L2,
LATS2, TGFB2, WNT7B, CCND1, CCND3, ID2, BBC3, CCND2, AMOT,
WNT11, BMPR1B, BMPSB, DLG2

3 Rapl1 signaling 27 0.04 FGF5, PRKCZ, FGFR3, TLN2, ADORA2A, PGF, KITLG, CTNND1,
LPAR3, APBBI1IP, IGFIR, KRAS, CNRI1, ANGPT1, CALML6, PDGFC,
PIK3R3, FGF2, MAP2K6, AKT3, GRIN1, PRKCI, VASP, RGS14,
PDGFRB, EFNA5, NGFR

4 FoxO signaling 19 0.04 IL6, PRKAB2, PRKAG2, CCNG2, STAT3, ATM, TGFB2, CCNBI1, IGFIR,
CCND1, EP300, KRAS, CCND2, CDKN2D, MDM2, CAT, PIK3R3,
AGAP2, AKT3

5 Cell cycle 17 0.05 PRKDC, RB1, ATM, MCM5, CDC25B, MCM6, TGFB2, CCNB1, CCND1,

EP300, CCND3, CCND2, CDKN2D, MDM2, BUB3, STAG2, STAG1

Table 1I. Top-5 molecular pathways of deregulated genes expressed in MDA-MB-231 cells treated with 23 Gy.

Pathway name Genes found  p-Value  Genes
in GEP list

1 Rapl signaling 32 0.001 FGF18, FGFR1, FGF5, FGFR3, ADCY7, ADORA2A, GNAI1, MRAS,
CSF1, KITLG, LPAR3, CTNNDI1, ITGB3, FGF12, ITGB1, APBBI1IP,
IGFIR, KRAS, GRIN2B, CNR1, FGF1, EGF, FGF2, AKT3, MAP2K6,
GNAOI1, MAPK11, DOCK4, ID1, MAPK13, KRIT1, EFNAS

2 Jak-STAT signaling 24 0.001 CSHI1, CSF3, IL4, CSF2, IL6, IL2RB, IL22RA1, IL6ST, CREBBP, LIFR,
1L24, IL21, IRF9, LIF, CCND1, EP300, IL12A, EPOR, IL2RG, JAK3,
MYC, CSF2RA, AKT3, IL22RA2

3 Stem cells pluripotency signaling 22 0.004 BMI1, FGFR1, NANOG, FGFR3, IL6ST, LIFR, MAPK11, ACVRIC,
LIF, IGFIR, ACVR2B, KRAS, ID2, MAPK13, ID1, JAK3, BMPRI1B,
AXIN2, FGF2, MYC, AKT3, KAT6A

4 Cell cycle 18 0.02 E2F1, E2F2, CDC14A, CDC14B, CREBBP, CDC23, CDK6, ESPL1,
MCM3, MCM4, ATM, MCM5, MCM6, CCND1, EP300, MDM2,
MYC, BUB3

5 TNF signaling 16 0.02 CFLAR, CSF2, IL6, CSF1, MAPK11, CX3CL1, LIF, FOS, MAPK13,

JUN, MAP3KS8, IL1B, MLKL, FAS, MAP2K6, AKT3

of TNBC cells. In this work we analyzed genetic and cellular
pathways deregulated after 9 Gy (IOERT BC ‘boost’
scheme) and 23 Gy (BC exclusive treatment modality) of IR
doses, conventionally delivered during the IOERT plans.
Cell viability showed that 9 Gy treatment did not totally
inhibit cell growth and proliferation of the MDA-MB-231
BC cell line, which generated RCF (SF=6.4%). On the
contrary, radiation treatment using 23 Gy of IR dose was
able to inhibit cell clonogenic activity (undetectable
colonies) (30). IR-induced morphological changes, that were
similar at either dose. Irradiated MDA-MB-231 cells
displayed a large flat cell shape with evident macroscopic
plasma membrane and nuclear alterations, suggesting a

typical senescent phenotype, confirmed by SA-b-Gal activity
and linked with a senescence-associated secretory phenotype
(SASP), as previously reported (30).

As suggested by GO analyses, both irradiation conditions
created conspicuous changes in DNA structure assembly and
in nucleosome and telomere organization, and consequently
in gene expression regulation.

In particular, following 9 Gy IR exposure, MDA-MB-231
BC cells changed the expression levels in a large set of genes
controlling the stem cell pluripotency pathway: Hippo, Rapl
and FoxO signaling as well as cell cycle regulators. In
particular, DEGs belonging to the selected pathways, are
listed in Table I.
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Table III. Top-5 molecular pathways of differentially expressed genes shared between MDA-MB-231 BC cells exposed to 9 and 23 Gy.

Pathway name Genes found p-Value Genes
in GEP list

1 Stem cells pluripotency signaling 18 0.01 FGFR3, IL6ST, OTX1, SMADS, PAX6, LIFR, STAT3, IGFIR, ACVR2B,
KRAS, ID2, RIF1, SKIL, BMPR1B, PIK3R3, FGF2, AKT3, KAT6A

2 Cancer 13 0.01 HSP90AAT1, RB1, TCF7L2, IGF1R, CCND1, HSP90B1, EP300, KRAS,
MDM2, PDGFRB, PDGFC, PIK3R3, AKT3

3 Rapl signaling 22 0.03 FGF5, FGFR3, TLN2, ADORA2A, PRKCI, KITLG, LPAR3, CTNNDI,
APBBIIP, RGS14, VASP, IGFIR, KRAS, CNR1, PDGFRB, PDGFC,
EFNAS5, NGFR, PIK3R3, FGF2, MAP2K6, AKT3

4 Jak-STAT signaling 16 0.04 CSHI1, IL4, CSF2, IL6, IL22RA1, IL6ST, LIFR, STAT3, PTPN11, CCND1,
STAT4, EP300, PIK3R3, CSF2RA, AKT3, IL22RA2

5 PI3K-Akt signaling 30 0.05 CSHI1, PHLPPI, FGF5, FGFR3, PPP2R5A, PPP2R5C, TLR2, KITLG,

LPAR3, IGFIR, KRAS, PDGFC, MYB, PIK3R3, FGF2, COL11A1,
AKTS3, IL4, IL6, HSP9OAA1, PKN2, NR4A1, COL4A6, COL4AS,
HSP90B1, CCND1, PDGFRB, MDM2, EFNAS, NGFR

Table IV. Top-5 molecular pathways of deregulated gene datasets in MDA-MB-231 RCF cells.

Pathway name

Genes found  p-Value

in GEP list

Genes

1 TNF signaling

2 Phagosome

3 NF-kappa B signaling

4 Jak-STAT signaling

5 PI3K-Akt signaling

31

38

25

25

50

0.00001

0.00001

0.00002

0.03

0.04

CXCL1, TRAF1, CSF2, CCL2, TNF, PTGS2, CXCL3, CSF1, CXCL2,
NFKBIA, CX3CL1, MMP3, CCLS5, CXCL10, VCAMI, FOS, NOD2,
CCL20, MAP3KS8, BCL3, IL1B, ICAM1, IL6, CEBPB, CREBS,
MAPKI10, BIRC3, JUNB, TAB3, RIPK3, TNFAIP3

HLA-DQBI1, HLA-DRBI, C3, HLA-DRB3, TLR4, ATP6V1G2, CIR,
ITGB3, HLA-DMB, TAP1, HLA-DRB4, HLA-DRBS, HLA-DPB1,
FCGR3A, HLA-DOA, PLA2R1, ATP6VOD2, MRC1, OLR1, NCF2,
NCF4, HLA-A, HLA-C, COLEC11, HLA-B, CTSS, HLA-E, HLA-G,
HLA-F, ATP6V1C2, LAMP2, CD36, ATP6VIE2, HLA-DPA1, ATP6VOA4,
CD14, DYNCI112, HLA-DRA

TRAFI1, ICAMI, ILIR1, TNF, PTGS2, LY96, BCL2A1, RELB,

CXCL8, NFKBIA, TNFSF14, TLR4, BIRC3, TAB3, VCAMI, CARDII1,
TNFSF13B, PLCG2, ZAP70, IL1B, LBP, ERCI1, TNFAIP3, LTB, CD14
CSF3, CSF2, OSMR, IL6ST, LEPR, IL13, IL7R, IFNL1, STAT4, IL23A,
IL2RG, PRL, MYC, IL2RB, IL6, IL7, LIFR, IL24, IL6R, STAT3, IL20,
OSM, PRLR, CCND2, JAK3

FGF18, EFNAL, FGF9, FGF14, OSMR, FASLG, TLR4, COL11A2, PRL,
MYC, COL11A1, ANGPT4, PRKCA, HSP90AAL, IL6R, BCL2L11,
OSM, LPARS, CCND2, COL1A2, RELN, COL24A1, CSF3, CSF1,
COL3AL1, KIT, ITGB3, IL7R, KRAS, ITGBS, TEK, IL2RG, EGF,
PPP2R2D, SPP1, COL4A3, IL2RB, IL6, TNXB, IL7, ITGA1, CREBS,
COL4A6, GNGT1, LAMAIL, GNGT2, PRLR, ITGA6, ITGA7, JAK3

The Hippo signaling is a novel tumor suppressor pathway  signaling was inhibited, as highlighted by the down-regulation
that regulates cell proliferation and stem cell state. Hippo also  of several factors that are part of this network, such as
controls organ size by inhibiting cell proliferation and neurofibromin 2 (NF2 also known as Merlin), large tumor
promoting apoptosis (31). In turn, as described by Saeg and  suppressor kinase 2 (LATS2), WW domain containing
Anbalagan, the deregulation of Hippo signaling is believed to  transcription regulator I (WWTR1) and TEA domain family
be responsible for the formation of Cancer Stem Cells (CSCs)  member 1 (TEAD1) (32,34-35). Despite extensive studies, the
in various types of cancer, including BC (32-33). The mechanisms by which breast tumors become radioresistant are
proliferation of CSCs is known to be involved with activation  not fully understood. Tumor heterogeneity is a key product of
of radioresistance. In MDA-MB-231 9 Gy cells, Hippo  CSCs and a key feature of therapy resistance. In particular,
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Figure 3. Schematic of the master regulators and signaling pathways strictly involved in the development of the radioresistance phenotype observed

in MDA-MB-231 BC cells.

following irradiation CSCs up-regulate IGF (insulin like
growth factor) type 1 receptor (up-regulated also in MDA-
MB-231 9 Gy) and increase the IGF1 secretion. In the resting
G phase of the cell cycle, this expression pattern inhibits
PI3K-AKT signaling and activates Fox0, resulting in cell
cycle deregulation and stimulation of self-renewal (32, 34-36).
Our data here confirm these findings as FoxO signaling and
cell cycle key regulators (such as RB1, ATM, CDC25B,
CCNBI1, CCND1, EP300, CCND3, CCND2, CDKN2D genes
and others listed in Table I), were deregulated in MDA-MB-
231 9 Gy (Table I). Finally, Rap1 pathway was included in the
top 5 biologically relevant pathways activated in MDA-MB-
231 BC cells following either irradiation dose. Interestingly,
Rapl gene encodes a protein that is part of a complex
involved in the regulation of telomere length and possibly in
the activation of senescence (37).

The analysis of the top-5 pathway deregulated genes in
MDA-MB-231 treated with 23 Gy, confirmed the
deregulation of Rapl, and of pathways affecting stem cells
pluripotency and cell cycle signaling following radiation
exposure. Interestingly, two out of the five pathways selected
were specifically deregulated following 23 Gy exposure: Jak-
STAT and TNF networks. JAK-STAT signaling plays a key
role in regulating the immune responses to IR. The STAT
proteins (STAT1 and STAT3 were up-regulated in MDA-
MB-231 23Gy) are considered to be important for cell
viability in response to different stimuli, including IR (38-
40), and play a significant role in tumor development.
Interestingly, Khodarev NN ef al., have shown that a
radiation-resistant phenotype could be induced by ectopic
STAT over-expression, while its down-regulation could
significantly increase the radiosensitivity of renal carcinoma

cell lines (38, 41, 42). Thus, the role of JAK-STAT in
acquired radioresistance seems to be based not only on its
transcriptional regulation, but also on its expression.

Several groups have highlighted the key role of TNF
signaling in cancer, including BC. Tumour Necrosis Factor
alpha (TNF-a), is a well-known pro-inflammatory cytokine
often up-regulated following radiation and has been
implicated in the development of fibrosis induced by IR (38,
43). In addition, TNF-a is both an inducer and a target of
NF-kB, one of the most important transcription factors
involved in immunological responses induced by radiation,
and thus a master regulator of radiosensitivity/radioresistance
cell balance (38). In summary, Jak-STAT and TNF pathways
are strictly involved in immunological responses to radiation,
as reported by the literature and by our research group (30,
38, 44). Here, we confirmed their key role in cell radiation
response to high IR doses, such as those delivered by IOERT
with 23 Gy, according to the exclusive BC RT schedule.

Finally, in order to analyze the number of unique and
shared differentially expressed genes of the MDA-MB-231
cells exposed to IR doses of 9 and 23 Gy, we performed
Venn diagrams showing a conspicuous amount of genes
deregulated following either type of high-dose irradiation.
From these, we then listed the top-5 biologically relevant
pathways regulated by the 473 genes common to MDA-MB-
231 BC cells exposed to either 9 or 23 Gy, underling once
again the relevant role in cell radiation response of some of
the above mentioned cellular signaling.

Finally, in order to analyze key genes involved in the
radioresistant cell responses observed in the MDA-MB-231
RCF samples, we performed GEP analysis. Precisely, 2592
genes were found to be deregulated in MDA-MB-231 RCF by
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2-fold or greater compared to control. Even in this case, the top
GO biological process were involved in chromatin assembly
able to regulate gene expression changes and probably able to
drive the activation of radioresistance process in MDA-MB-
231 RCEF cells. In addition, the top five biological relevant
pathways, confirm the involvement of the networks above
described and following listed: TNF, NF-kappa B, Jak-STAT,
PI3K-Akt signaling and phagosome regulations. In MDA-MB-
231 RCEF cells, the regulation of phagosome could be involved
in radiation-induced autophagy known to be able to enhance
radioresistance and leads to activation of the survival pathway,
as recently observed (45). In particular, the master regulators
of these pathways were up-regulated as displayed in Figure 3,
and to our opinion strictly involved in the development of
radioresistance phenotype observed in MDA-MB-231 RCF
cells, after high radiation dose exposure.

In our opinion, this RCF gene list, needs more
investigation in order to clarify the key roles of these factors
in driving cell survival after the exposure of high IR doses
and potentially used in targeted therapy intervention in
tandem with RT schedules.

To date, targeted therapies against these molecules is
under investigation and is supported by encouraging data in
the literature (also in TNBC patients), however, these need
to be further supported and clarificed by radiobiology
approach to evaluate their synergistic behavior in tandem
with RT schedules in order to optimize BC care (46-48).

IOERT demonstrates favorable BC patient outcomes and low
rates of toxicity with adequate control of local disease (6).
However, a limited number of studies describe the molecular
basis of radioresistance activation following RT, especially in
the triple negative BC subtype (7, 10,27, 49). Herein, we report
a list of genes and cellular processes involved in cellular and
molecular responses to high IR doses, delivered during IOERT
schedules, and highlighting key factors involved in
radioresistance activation. We trust that these data could be used
to better clarify mechanisms involved in the radioresistance
process, particularly in triple-negative BC cells in order to
optimize RT successful plans in tandem with targeted therapies.
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