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Abstract

Ultrasound (US) imaging is a safe, sensitive and affordable imaging modality with a wide usage in 

the clinic. US signal can be further enhanced by using echogenic contrast agents (UCAs) which 

amplify the US signal. Developments in UCAs which are targeted to sites of disease allow the use 

of US imaging to provide molecular information. Unfortunately, traditional UCAs are too large to 

leave the vascular space limiting the application of molecular US to intravascular markers. In this 

mini review, we highlight the most recent reports on the application of molecular US imaging in 

the clinic and summarize the latest nanoparticle platforms used to develop nUCAs. We believe that 

the highlighted technologies will have a great impact on the evolution of the US imaging field.

Introduction

Ultrasound imaging (US) is the second most widely used medical imaging modality due to 

its high sensitivity, portability, relative low cost, and good safety profile (no ionizing 

radiation) [1]. In US imaging, anatomical images are produced after measuring the 

propagation of high frequency sound waves when travelling between materials and tissue 

interfaces of different acoustic properties [1]. Contrast enhanced ultrasound (CEUS) takes 

advantage of using highly echogenic contrast agents to further amplify the US signal 

allowing imaging organs with low US contrast (i.e. blood pool) [2]. Ultrasound contrast 

agents (UCAs) are typically gas-filled micronsized bubbles (MBs) with a 1–8 mm diameter 

which oscillate upon interacting with the US wave thus enhancing the reflected US signal. 

To date, seven MBs have been approved for clinical use and are routinely utilized to improve 

organ imaging and to better assess blood flow and vascularization [2–4]. In the past two 

decades, many efforts focused on developing MBs which are targeted to vascular endothelial 

markers of disease by attaching biomolecules to its surface expanding the utility of CEUS in 

the molecular imaging field [5●]. Preclinical validation of molecular US imaging of a 

variety of diseases such as inflammation (inflammatory bowel disease, myocardial ischemia, 

atherosclerosis and cardiac transplant rejection) and cancer (pancreatic, angiosarcoma, 

ovarian, prostate, breast, colon, liver, renal, glioma and melanoma) have been reported [5●]. 

In addition, advances in transducer technology and pulse sequences stimulated the use of 

CEUS for therapy through ultrasound-mediated bubble destruction. Such innovations are 

now widely employed to reversibly break the blood–brain barrier, cause cavitation and 

enhance site specific drug/gene delivery with improved therapeutic outcomes [6]. 
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Unfortunately, current UCAs cannot extravasate beyond the vasculature due to their micron-

size and have limited circulation time constraining the advancement of molecular US 

imaging (Figure 1a). In this review, the first application of targeted MBs for molecular US 

imaging of disease in the clinic will be summarized and recent efforts in the development of 

the next generation of nano-sized UCAs (nUCAs) will be highlighted.

Molecular US imaging in the clinic

To date there is only one molecularly targeted UCA that is being evaluated in the clinic. This 

contrast agent, named BR55 (Bracco, Italy), has a mean diameter of 1.5 µm and is composed 

of a phospholipid shell and a gas core consisting of perfluorobutane and nitrogen. BR55 is 

targeted to kinase insert domain receptor (KDR) which is a human analog of vascular 

endothelial growth factor receptor type 2 (VEGFR2) a known marker overexpressed in many 

human cancer types [7]. After an extensive preclinical evaluation of BR55 by various groups 

and in multiple animal models, BR55 is now being evaluated in humans for prostate, 

ovarian, pancreatic, and breast cancer imaging. Our group published their first in human 

results showing the efficacy and safety of BR55 in evaluating patients with breast (n = 21) 

and ovarian (n = 24) cancer lesions [8●●]. After BR55 injection and ultrasound imaging for 

up to 29 min, tissue samples were taken out in order to correlate the KDR-expression 

observed indirectly via the US image with that observed through direct 

immunohistochemistry (IHC) staining. The US image signal matched well with KDR-

expression on IHC (93% of breast and 85% of ovarian malignant lesions). The strong KDR-

targeted US signal was present in 77% and 93% of ovarian and breast malignant lesions 

respectively. Although not designed to measure accuracy, the results were encouraging for 

further continued testing. Smeenge and co-workers recently conducted a phase 0 study in 

prostate cancer (PCa) patients to assess the feasibility and safety of BR55 in detecting PCa 

lesions [9]. Upon improving scanning settings, 68% of PCa lesions detected by histology 

after prostatectomy were localized through BR55 US imaging (n = 12). These pilot results 

show promise in the utility of US molecular imaging in differentiating between malignant 

and benign lesions making it an important tool to help reduce unnecessary biopsies or 

surgeries in the future.

Nano-sized UCAs (nUCAs)

One major limitation in targeted molecular US imaging is the lack of submicron-size UCAs 

which can still amplify the US contrast as well as extravasate beyond the vasculature to 

target disease biomarkers (e.g. on tumor cells) directly (Figure 1b). Unfortunately, reducing 

the size of the MBs not only reduces its echogenicity under clinical ultrasound but also 

reduces the stability of gas-filled bubbles in solution [10]. This makes it extremely 

challenging to develop small yet highly echogenic particles resulting in the need to exploit 

other non-traditional strategies to develop nUCAs. A variety of nUCAs have been 

developed/discovered which enabled new, paradigm shifting applications of CEUS in 

diagnosis and therapy (theranostics) [11–14]. Such agents include chemical-based agents 

(developed from organic and/or inorganic material) as well as genetically engineered 

protein-shelled particles (such as gas vesicles) [15,16●●]. A wide range of echogenic 

nUCAs with an inorganic shell have been reported and are reviewed elsewhere [12,17●●,
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18●]. The following sections will highlight novel efforts (2015-present) in developing 

organic nUCAs. While many of these agents are employed for both imaging and therapeutic 

applications, the focus of this review will be more towards their utility and potential as 

molecular ultrasound imaging agents.

Organic nUCAs

The advancements in nanomedicine resulted in a rapid development of echogenic and 

biocompatible organic nUCAs (50–600 nm) with promising physical properties. These 

particles are composed of a phospholipid-based shell and/or polymer-based shell and a solid, 

liquid or gas core (Figure 2). Prominent examples in this direction are summarized in Table 

1 with a few reports highlighted in the following sections of the article.

Gas-filled nanobubbles (NBs)

NBs are nanoparticles (diameter < 1 µm) comprised from a phospholipid shell stabilized by 

a surfactant and a perfluorocarbon gas core (Figure 2a). A number of publications reported 

the development of NBs actively targeted to extracellular markers of cancer [19,20,21●]. 

Yang et al. and Fan et al. developed NBs targeted to human epidermal growth factor receptor 

type 2 (HER2) and prostate specific membrane antigen (PSMA) respectively and took 

advantage of biotin-streptavidin or avidin interaction to attach the respective targeting 

moiety to the NBs surface [19,20]. Both groups showed effective targeting of the NBs by 

measuring the increase in US signal. Unfortunately, these NBs showed limited in vivo 
stability (2 and 20 min respectively) and are not clinically translatable due to the use of 

immunogenic avidin/streptavidin. Jiang et al. later developed more clinically translatable 

HER2-targeted NBs by covalently attaching the targeting moiety (Herceptin) to the surface 

of the NBs [21●]. These NBs are slightly bigger in diameter (613.0 ± 25.4 nm) but showed 

target-specific US signal enhancement in HER2-expressing tumors for up to 40 min. 

Although NB’s extravasation was confirmed through histology, the pore gaps in tumors are 

usually very heterogeneous and validating extravasation on other tumor models is necessary 

[22]. Recently, Gao and coworkers prepared NBs targeted to ovarian cancer by covalently 

coupling CA-125 antibody to the surface of the NBs [23]. In vivo evaluation showed over 

two-fold higher US signal in CA-125 positive tumor xenograft (OVCAR-3) compared to 

non-targeted NBs but US monitoring was only conducted for 10 min.

Efforts by Perera and co-workers looked into adding a crosslinking polymer to the 

phospholipid-based NBs to reduce the diffusion of the perfluorocarbon gas core thus 

stabilizing the NBs without affecting the flexibility of its shell (i.e. reduce US contrast 

ability) [24]. After UV irradiation to activate the cross coupling reaction, the NBs showed 

better in vivo stability and passive tumor targeting than NBs without the cross-linker but 

only seven minutes of in vivo monitoring was conducted.

Phase-change droplets (PCDs)

Nanodroplets (NDs) are comprised of a low boiling liquid perfluorocarbon encapsulated 

within an organic or inorganic shell (Figure 2b) [11,12]. The advantage of such nano-
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emulsions is their ability to preserve their shape and initial diameter upon injection and 

undergo a liquid-to-gas transition once exposed to high energy (heat) producing micron-

sized bubbles at the site(s) of interest. This allows NDs to extravasate and accumulate at the 

site of disease before transforming into echogenic bubbles upon heating [11,12]. The 

activation can occur upon exposure to US-, NIR-, magnetic-irradiation, radio-irradiation and 

microwave-irradiation and the majority of novel NDs are developed through thin film 

hydration (phospholipid–based) or water/oil/water formulation (W/O/W; polymer-based) 

[25,26]. In addition, several reports looked into developing NDs from premade micron-sized 

particles through condensation by increasing ambient pressure and/or decreasing the 

temperature [27]. Such an approach can be very useful to prepare NDs from existing 

commercial CAs which can avoid the need for in-house synthesis, minimize resource 

requirements and possibly improve particle yield.

Acoustic droplet vaporization (ADV)

As the name implies, these nanoparticles are transformed into MBs upon heating caused by 

exposure to ultrasound. Li and co-workers developed perfluorooctyl bromide (PFOB) 

nanodroplets coated with a folic acid-conjugated chitosan/alginate-PEG layer [28●●]. In 
vivo evaluation of the targeted NDs showed higher US signal enhancement in the folate 

receptor-expressing tumors compared to non-expressing tumors or non-targeted NDs. The 

NDs showed the highest signal enhancement at 20 min postinjection and the signal was 

detectable for up to 160 min. Similarly, Liu and co-workers developed perfluoropentane 

(PFP) droplets stabilized by a phospholipid shell [25]. These NDs were also targeted to 

folate receptor and showed higher US contrast compared to controls when imaged 1 hour 

post injection. Recently, Choi and co-workers developed a functionalized chitosan-based 

PFP NDs for multimodal X-ray/CT and US imaging [29●●]. The NDs accumulated 

passively in the tumor and showed peak US signal enhancement at 12 hours with a 

detectable signal for up to 24 hours.

Other efforts focused on further stabilizing NDs to ensure no premature activation occurs in 
vivo before reaching the disease site. Huang and co-workers developed polymerbased ADV 

NPs which are further stabilized with a UVinduced thiolene crosslinking moiety [30]. In 
vitro stability and US characterization showed better stability and less pre-mature 

vaporization of these particles at room temperature. Picheth and co-workers synthesized a 

variety of PLA polymers with different fluoro-carbonyl groups to study its effect on 

stabilizing perfluorocarbon NDs [31]. In vitro evaluation showed that the echogenicity of 

NDs with a fluorinated-shell was increased by at least 3-fold and up to 40-fold compared to 

ones without the fluorinated shell.

Optical droplet vaporization (ODV)

ODV relies on the availability of a photo-absorber within the NDs which produces heat upon 

NIR irradiation. A variety of NDs have been reported which incorporate fluorescent dyes or 

NPs as photo-absorbers. To our knowledge, no CEUS imaging of actively targeted NDs 

using ODV has been reported and the majority of these particles were evaluated after passive 

accumulation in the tumor or after intra-tumoral injection in the tumor bed. Zhao et al. and 
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Xu et al. reported the development of PLGA-based NPs infused with perfluorohexane (PFH) 

or PFP NDs respectively [26,32]. The photo-absorber in both cases were iron oxide NPs 

encapsulated within the NDs which provided means for MRI and CEUS imaging. In vivo 
evaluation of these droplets upon intra-tumoral injection showed CEUS after NIR 

irradiation. A couple of NDs were also developed for the detection and therapy of tumor 

sentinel lymph nodes (SNL) [33,34]. For example, Yang and co-workers developed PLGA-

based NPs encapsulated with PFH and carbon nanoparticles which produce heat upon NIR 

irradiation [34]. In vivo evaluation in rabbits bearing a VX2 tumor showed the accumulation 

of these NDs in popliteal fossa lymph nodes using both photoacoustic and CEUS imaging 

with a detectable US signal for up to two hours. Finally, two reports relied on producing 

fluorescent NDs (porphyrin or Cy7.5 respectively) from micron-sized bubbles through 

pressurization [35,36]. Paproski and co-workers showed passive accumulation (EPR) of their 

porphyrin NDs in a HT1080 tumor model in chicken embryo [35]. On the other hand, Lin 

and co-workers assessed their NDs in vitro showing around 11 times higher US signal 

enhancement upon NIR irradiation compared to dye-less NDs [36].

Due to the easy scattering of US by gas or bone as well as the limited penetration-depth of 

NIR, investigators looked into exploring other means to activate NDs. A number of 

publications investigated utilizing magnetic, radio or microwave irradiation to activate NDs 

and conducted preliminary evaluations upon intra-tumoral injection in mice. Zhou and co-

workers developed hollow iron oxide nanoparticles (HIONs) which are encapsulated with 

PFH through a vacuum-assisted impregnation process [37]. Such particles were able to 

produce heat upon magnetic stimulation and showed 1.7-fold increase in US signal after 

magnetic irradiation for 3 min. Zhang and coworkers developed PLGA-based NPs infused 

with DL-menthol which was activated upon radiofrequency irradiation [38]. Lastly, Xu and 

co-workers developed folatetargeted phospholipid-based particles infused with a mixture of 

PFH and PFP [39]. Activation of such NDs was conducted upon microwave irradiation and 

bubble production was visible using CEUS imaging.

Gas-generating NPs (GGNPs)

GGNPs consist of nanoparticles incorporating a reactive moiety which produces gas (e.g. 

CO2 or O2) upon reaching site of disease. Figure 2c is a summary of the different functional 

groups and their gas-production mechanisms which either rely on unique features in the 

tumor microenvironment (such as low pH or high concentrations of hydrogen peroxide) or 

require heating. A couple of GGNPs possessing the gas producing functional group on the 

shell have been reported (Figure 2Ca). Min and co-workers developed PLGA-based GGNPs 

functionalized with a carbonate copolymer which produces CO2 gas upon hydrolysis [40●●] 

(Figure 2Ca1). After intravenous injection in tumor bearing mice, the NPs passively 

accumulated in the tumor and CO2 gas production was monitored using CEUS for up to 4 

hours. Kang and co-workers developed GGNPs from poly (vanillin oxalate) which is shown 

to react with hydrogen peroxide producing CO2 gas [41●●] (Figure 2Ca2). These particles 

were evaluated in an animal model with an induced hepatic IR injury and showed enormous 

potential as an imaging agent for oxidative stress with real time US imaging for up to 1 hour.
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Several reports also highlight the use of NPs encapsulated with a base (e.g. ammonium 

bicarbonate or calcium carbonate) which produce CO2 gas in acidic environments (Figure 

2b1–3) [42–48]. Zhang and co-workers incorporated ammonium bicarbonate and gold 

nanorods (GNRs) in phospholipid-based NPs and showed the ability to produce CO2 gas at 

the tumor site upon heating caused by NIR-irradiation [42]. The large amounts of CO2 gas 

was detectable in vivo via CEUS for up to 4 hours. Kim et al. developed an alginate loaded 

nanocarrier which was used as a vessel where CaCO3 was produced [44]. These 

nanoparticles passively accumulated in the tumor after intravenous injection and showed US 

signal enhancement for up to 60 min. Lee and co-workers developed PLGA-particles loaded 

with CaCO3 targeted to neuroblastoma using a rabies virus glycoprotein peptide [46]. Such 

particles were able to specifically target neuroblastoma tumors and showed US signal 

enhancement for up to 30 min.

Lastly, GGNPs can also produce O2 gas from hydrogen peroxide either through enzymatic 

activation or by reacting with MnO2 (Figure 2Cb4–5). Wang and co-workers developed a 

probe composed of functionalized superparamagnetic iron oxide particles, a dual enzyme 

species (catalase and superoxide dismutase), and a polysaccharide cationic polymer glycol 

chitosan gel [49]. These agents were passively targeted to VX2 tumors in rabbits upon 

intravenous injection via the ear vein and O2 production was monitored for up to 2 hours 

using ultrasound. In addition, Gao and co-workers recently developed a theranostic agent 

from HA-NPs encapsulated with ICG and MnO2 to help provide more oxygen at the tumor 

site during photodynamic therapy (PDT) [50●●]. In vivo results in tumor bearing mice 

showed enhanced US signal in the tumor for up to 24 hours post intravenous injection.

Conclusion

With the development and preliminary clinical assessment of targeted US contrast agents, 

US imaging is showing great potential as a molecular US imaging modality. This concise 

review highlights some creative approaches in developing novel nUCAs. Whether for 

imaging or therapy, the development and complete evaluation of nUCAs requires a lot of 

chemistry expertise, knowledge about biological systems and a foundational background in 

US physics. This further enforces the need for cross discipline collaborations in order to 

develop and properly evaluate nUCAs as US molecular imaging agents. While many of the 

highlighted nUCAs show immense promise, these agents are fairly recent and more studies 

are required to better assess their clinical utility and safety profile. Furthermore, the ability 

of NBs to enhance US contrast at clinically relevant frequencies is not well understood and 

further US physical assessments are needed. Similarly, studies that can correlate the US 

signal enhancement with biomarker expression using nUCAs (especially when using PCDs 

or GGNPs) are important to showcase their potential as molecular imaging agents. While 

still in its early phase, developments of stable nUCAs with the appropriate instrumentation 

and US sequences are slowly evolving and will serve as a focal point for the fast growth of 

molecular US imaging.
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Figure 1. 
Schematic representation of molecular US imaging using micro-sized and nano-sized UCAs 

(MBs and nUCAs respectively). (a) Molecular US imaging using targeted MBs which are 

limited to the vascular space and can only target intravascular markers of cancer due to 

inability to extravasate into tumor microenvironment. (b) Molecular US imaging using 

targeted nUCAs which can actively target intravascular and extravascular markers of cancer 

as well as passively accumulate in the tumor microenvironment through the enhanced pore 

and retention effect (EPR).
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Figure 2. 
Schematic representation summarizing novel organic nUCAs. (a) Nanobubbles (NBs): 

perfluorocarbon gas-filled particles stabilized with a phospholipid shell (blue) and surfactant 

(purple). (b) Phase-change droplets (PCDs): perfluorocarbon droplets encapsulated in 

phospholipid or polymer-based (green) NPs. Phase-change of droplets occurs upon heating 

caused by ultrasound, near infrared, magnetic, radio-wave or microwave irradiation. (c) Gas-

generating NPs (GGNPs): NPs containing a reactive functional group which produces gas at 

the site of interest. Reactive group can either be placed on the shell (Left) or inside the NPs 

(Right). Ca and Cb summarize the different mechanisms used to produce gas in GGNPs.
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