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Abstract

We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant 

underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer’s 

disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that 

is “reactive,” but, subsequently, each proteinopathy may contribute strongly to the clinical 

symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary 

underlying conditions—e.g., developmental, traumatic, and inflammatory/infectious diseases. 

TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 

proteinopathy was first described in the central nervous system of patients with amyotrophic 

lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 

proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in 

advanced age with hippocampal sclerosis, Huntington’s disease, and other diseases. There is also 

evidence of cellular co-localization between Tau and TDP-43, suggesting common pathways or 

protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene 

variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, 
Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. 

Studies of genetic risk factors have provided insights into multiple nodes of the pathologic 

cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either 

a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same 

gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset 

version of a clinically and pathologically specific disease type. Overall, a complex but 

enlightening paradigm has emerged, wherein both Tau and TDP-43 are linked to numerous 

overlapping upstream influences, and both are connected with multiple downstream 

pathologically- and clinically-defined deleterious effects.
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Introduction

A common theme that has emerged in Alzheimer’s disease (AD) and related dementia 

(collectively termed ADRD) research is that underlying genetic and/or environmental 

perturbations lead to formation, aggregation, and propagation of misfolded proteins (termed 

a “proteinopathy”) that can be deleterious through both toxic gain-of-function and also loss 

of normal function mechanisms [1–3]. Over the past several decades, clinical-pathologic 

correlation (CPC) studies, in concert with genetic studies, provided significant new insights 

into the roles of proteinopathies in ADRD. Modern CPC studies have established that two of 

the most important pathologic hallmarks associated with clinical cognitive impairment are 

proteinopathies associated with the microtubule-associated protein Tau, and the transactive 

response DNA 43 kDa binding protein (TDP-43).

Both Tau and TDP-43 proteinopathies are caused by pathologic mechanisms that occur in a 

wide range of disease paradigms. In the course of these diseases, common pathologic 

cascades are downstream of many different primary causes, while clinical symptoms are not 

necessarily specific to their biologic or pathologic antecedents. Whereas there is widespread 

appreciation that many different conditions are associated with Tau protein pathology (“the 

tauopathies”) [4, 5], the study of TDP-43 proteinopathic conditions is a younger area of 

research. Interestingly, some of the paradigms associated with tauopathic disease also seem 

to apply to TDP-43 proteinopathies, including the tendency of specific genetic modifiers [6, 

7] to apparently increase the proteinopathy that was caused by different primary upstream 

causes. Here, we review the relevant literature on these “misfoldingopathies”, beginning 

with a descriptions of some of the emerging themes of pathologic cascades, then reviewing 

some of the pleiotropic genetic influences discovered to affect Tau and TDP-43 

proteinopathies, and finally discussing a subset of the downstream effects that were 

discovered before the age of widespread immunohistochemistry-based neuropathologic 

investigations.

Pathologic cascades and synergies: protein misfolding can have multiple 

causes and effects

Proteinopathies can provide diagnostic histologic markers for ADRD subtypes, and also may 

eventually represent therapeutic targets. However, there are added levels of complexity that 

derive from differing upstream influences, from multi-step pathologic cascades, from 

overlapping downstream effects, and from biochemical interactions that may occur between 

the different misfolding proteins. All of these factors often occur concurrently and should be 

considered when studying the Tau and TDP-43 proteinopathies.

A generalizable paradigm of pathologic cascades in ADRD involving misfolding proteins 

(Fig. 1) can be applied more specifically in the contexts of both Tau and TDP-43 

proteinopathies (Fig. 2). The red arrows in Figs 1 and 2 indicate that the presence of 

misfolded proteins can, by themselves, contribute via positive feedback mechanism (s) to 

changes in the local biochemical microenvironment, propagating further misfolding of 

proteins. Evidence in support of this positive-feedback hypothesis comes from multiple 

sources including cell culture models [8, 9] and “transmission” animal models [10–12] 
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where injection of misfolded proteins can lead to an auto-propagating degenerative changes 

in which intrinsic proteins are incorporated into a pathogenetic process by exogenous 

proteins.

Many questions remain regarding what, specifically, initiates Tau and TDP-43 

proteinopathies. Here we focus predominantly on TDP-43 proteinopathy, as prior reviews 

have focused extensively on tauopathies [13–15]. Given that a majority of patients with 

TDP-43 proteinopathies lack strong family histories of similar illnesses (as far as we now 

know), it may be that exogenous factors can influence TDP-43 to form pathologic 

inclusions. One example of a relatively clear upstream mechanism at work is chronic 

traumatic encephalopathy (CTE), a progressive neurodegenerative condition in which the 

initiating event is recurrent brain trauma, and pathologic examination reveals both TDP-43 

and Tau proteinopathies [16–19]. In one study [20], of 12 autopsied individuals with CTE, 

10 had widespread TDP-43 pathology; three of these who had developed progressive motor 

neuron disease with weakness, atrophy, and fasciculations were found to have both Tau and 

TDP-43 proteinopathies. Proteins that have been found in disease-associated protein 

aggregates have revealed common properties—internal amino acid sequences that facilitate 

aggregation [21, 22]. Similar protein motifs are found in non-disease causing proteins, and 

their liberation and interaction with disease causing proteins allows selfpropagation and 

formation of cytotoxic proteins aggregations [23, 24]. In normal cells, misfolded proteins 

can be degraded or refolded into their homeostatic form by protein chaperones [25]. As the 

human brain undergoes normal aging, the chaperone proteins responsible for correct protein 

folding are repressed, and these changes are even more prominent in patients affected by 

AD, Huntington’s disease (HD), or Parkinson Disease (PD) [26], so, the lack of chaperone 

proteins may be contributing to these disorders.

Following or in parallel with disease initiation, specific biochemical factors, paradigms, and 

cellular domains have been associated with worsening (or protection from) TDP-43 

proteinopathy—posttranslational modifications (phosphorylation, acetylation, proteolysis), 

autophagy, endosomal/lysosomal processing, mitochondrial function, nuclearcytoplasmic 

transport, oxidative stress, and neuroinflammation, to name a few. A comprehensive 

discussion of these factors is beyond the scope of this review. However, we here address 

several of these contributing factors.

Oxidative stress has been postulated as a triggering mechanism responsible for the formation 

of pathologic TDP-43 inclusions [27, 28]. Work by Iguchi et al. demonstrated that treatment 

of NSC34 cells and mouse primary cortical neurons with ethacrynic acid (EA) depleted their 

glutathione levels and causes increased oxidative stress. This caused TDP-43 

phosphorylation, insolubilization, and cytoplasmic distribution [29]. The phosphorylation 

was reversed by N-acetylcysteine (NAC) or inhibition of CK1 and CK2, suggesting that 

CK1 and CK2 can mediate TDP-43 phosphorylation as a result of oxidative stress. 

Exploring whether other causes of oxidative stress can result in the same phenotype, the 

authors found that H2O2 also induced C-terminal phosphorylation, insolubilization, and 

cytoplasmic distribution of TDP-43 as observed under EA exposure [29]. Oxidative stress 

has been associated with various aging-related disorders [30, 31], and since some TDP-43 
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proteinopathies are aging-related diseases, this supports the hypothesis that oxidative stress 

can potentiate the pathologic TDP-43 modification.

TDP-43, when found in insoluble toxic inclusions, is known to be hyper-phosphorylated at 

C-terminal sites [29, 32, 33]. The best characterized phosphorylation sites on the TDP-43 

protein are amino acid residues Ser409 and Ser410 [32, 34]. Additional phosphorylated 

residues that are associated with disease pathology are Ser379, Ser403, Ser404 [32, 35, 36], 

which have not been as well characterized as Ser409/410. Some studies demonstrate that 

phosphorylation of TDP-43 negatively affects its solubility [37–40]. There are multiple 

kinases that can phosphorylate TDP-43; however, the exact role for these molecules in each 

specific neurodegenerative disease has not been clearly established and more work is 

required in this area.

Another potential upstream contributing factor in TDP-43 pathology is believed to be 

defects in autophagy. Previous studies provided evidence that pathological forms of TDP-43 

are cleared through autophagy [41–43]. For example, Wang et al. demonstrated that using an 

mTOR inhibitor rapamycin and three other autophagy activators (spermidine, 

carbamazepine, and tamoxifen) reduced the number of cytosolic TDP-43 inclusions in a 

FTLD-TDP mouse model [42]. Further strengthening the association between autophagy 

and pathological TDP-43 accumulation was work by Chang et al. [44], who, studying 

neurons deficient in progranulin (the polypeptide product of GRN), found that autophagy 

regulators were impaired and autophagic flux was reduced. This reduction in autophagy 

rendered neurons more prone to accumulate pathological TDP-43 [44]. These results suggest 

that, in addition to oxidative damage and phosphorylation, defects in autophagy precipitate 

pathologic TDP-43.

Whatever the upstream mechanisms, the accumulation of one species of misfolded protein 

can affect cellular processes and ultimately trigger misfolding of different proteins in the 

same cells [1, 3, 45–48]—a process termed “pathologic synergy” [3]. This interaction 

among misfolded protein species may accelerate cognitive decline in some dementing 

disorders [3]. Tau and TDP-43 proteinopathies appear to be have the potential for pathologic 

synergy. Brain conditions with Tau pathologies, including argyrophilic grain disease [49], 

HD [50], anti-IgLON5 tauopathy [51], corticobasal degeneration (CBD), and progressive 

nuclear palsy (PSP) [52–54], have been reported to also demonstrate comorbid TDP-43 

pathology, often with both pathologies present in the amygdala [3]. Several studies have 

demonstrated co-localization of Tau and TDP-43 pathologic aggregates in the same cells [3]. 

For example, Higashi et al. used confocal microscopy and double-label immunostaining 

against TDP-43 and Tau to show that TDP-43 and Tau-positive NFT co-localize in amygdala 

in AD patients [55]. Smith et al., in a study of 247 subjects, found that a subset of 

colocalized hippocampal Tau/TDP-43 pathology was associated with advanced AD [56]. In 

this study, immunofluorescence experiments indicated that approximately 25% of cells with 

TDP-43 proteinopathy showed detectable colocalized phospho-Tau immunoreactivity [56]. 

Even in brains that lack appreciable AD-type amyloid plaques, there can be both Tau and 

TDP-43 pathologies. Note that in the representative case shown in Fig. 3, Tau and TDP-43 

pathologies are demonstrated in multiple regions, including, intriguingly, near the pial 
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surface of the brain. We conclude that these common pathologies may occur secondarily or 

in parallel with each other.

It is widely accepted that tauopathies span diverse disease paradigms such as developmental/

genetic diseases, viral infection, triplet repeat disorders, head trauma, myositis, and many 

others (Table 1). Excellent prior reviews have been written on tauopathies [13–15]. It is less 

well-known that pathologic promiscuity also characterizes TDP-43 proteinopathies (Table 

1). For example, to the relatively well-known diseases with TDP-43 proteinopathy (ALS and 

FTLD), one can add Alexander disease [57], Perry syndrome [58], Cockayne syndrome [59], 

neurodegeneration with brain iron accumulation [60], inclusion body myositis [61], HD 

[50], and other conditions (Table 1). Brain diseases that have been characterized to include 

both Tau and TDP-43 proteinopathies are indicated by red checkmarks in Table 1. The full 

implications of these observations are still not well understood but some inferences can be 

made: (1) Both Tau and TDP-43 proteinopathies can be driven by a diverse set of upstream 

factors; (2) Most of the upstream factors associated with Tau and TDP-43 proteinopathies 

involve some sort of chronic stress or insult; (3) Both Tau and TDP-43 proteinopathies are 

not disease-specific, but they still may play a role in influencing—perhaps dramatically 

exacerbating—multiple different upstream diseasedriving mechanisms.

Genetic pleiotropy in neurodegeneration and Tau/TDP-43 proteinopathies

Genetics is (for good reasons) considered to exert upstream influences on disease 

phenotypes. However, genetic factors may influence diseases at different nodes of a 

pathologic cascade—perhaps causing protein misfolding to be worsened only after it has 

begun to develop. As such, there is abundant evidence of pleiotropy, wherein a given gene, 

or even a specific gene mutation, may be associated with more than one different 

phenotypes.

Pleiotropic influences have been shown to be at work in both Tau and TDP-43 

proteinopathies, which should come as no surprise. Since the first genomewide association 

study (GWAS) was conducted, there have been over 80,000 unique single nucleotide 

polymorphism (SNP)-trait associations discovered and published in over 3000 manuscripts 

[62]. As more replicable associations were found, the magnitude of pleiotropy in human 

disease has been increasingly appreciated. In 2011, a study of curated results from the 

GWAS Catalog indicated pleiotropy in nearly 17% of genes and 4.6% of SNPs [62, 63]. 

Notably, the conservative criteria used in this study undoubtedly induced underestimation 

and the distinction between a cross-phenotype association, and, true biological pleiotropy 

cannot be guaranteed from these database studies [64]. In a more recent survey of GWAS 

results, 44% of trait-associated SNPs were found to associate with more than one phenotype 

[65]. The increased availability of GWAS summary statistics in concert with methodological 

developments for estimation of the genetic covariance shared between distinct traits—

including extensions for annotationbased partitioning—has enabled accelerated progress in 

the investigation of genetic mechanisms shared between multiple traits [66, 67]. These 

exciting developments will continue to help resolve the etiologies of complex diseases that 

affect the aged human brain.
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Before discussing pleiotropy in ADRD proteinopathies, it is important to note that there is 

some conceptual ambiguity in the term “pleiotropy”. The detectable crossphenotype genetic 

associations can be classified, and only a subset deserve the designation of true biologic 

pleiotropy. Hence, there are subtypes of cross-phenotype associations that could be 

delineated when a genetic variant or gene is correlated with more than one trait: biological 

pleiotropy, mediated pleiotropy and spurious pleiotropy [64]. These distinctions are 

important but it is notable that even when some degree of reported results are “spurious” (the 

study design, genotype, and/or phenotype are biasing the result), there could still be 

important biological commonalities between two conditions as highlighted by the genetic 

association; such is apparently the case for schizophrenia and bipolar disorder [64]. For an 

excellent discussion of this topic, please see ref. [64]. Here, we focus on four genes relevant 

to Tau and/or TDP-43 proteinopathies: MAPT, TMEM106B, GRN, and APOE (Table 2).

Specific mutations in MAPT produce different pathologic features and correspondingly 

different clinical symptoms. The MAPT gene codes for the Tau protein. Alternative splicing 

of MAPT is able to generate six Tau isoforms ranging from 352 to 441 amino acids in adult 

human brain [68]. Direct associations between MAPT mutation and neurodegenerative 

diseases were established when dominantly inherited forms of frontotemporal dementia and 

parkinsonism (FTDP) were linked to chromosome 17q21–22 (FTDP-17) [69–71]. There are 

now dozens of known pathogenic mutations identified in MAPT [72]. The MAPT mutations 

exert different effects—the mutations in exons 9–12 typically impair the function of Tau 

microtubulebinding repeats, whereas other mutations affect alternative splicing of Tau pre-

mRNA [73].

Underscoring the pleiotropic effects of MAPT gene variants, two haplotypes of MAPT exist 

and they are associated with a variety of different ADRD phenotypes. The haplotypes 

themselves are characterized by a 900-kilobase inversion (H1) or noninversion (H2) 

polymorphism [74]. Prior to discovery of H1 haplotype in MAPT, it was demonstrated that 

TG repeats (A0/A0 genotype, which is present in > 50% of Caucasians [75, 76]) in exon 9 

were linked with increased risk of development of PSP [77]. Further work demonstrated that 

the H1 allele is also associated with increased risk of developing other tauopathies including 

FTLD-Tau, AD, and primary age-related tauopathy (PART) (see refs [78–81]). Perhaps 

surprisingly, Pastor et al. genotyped 152 PD and 52 AD patients and demonstrated that the 

tau A0/A0 allelic frequency was increased in PD (not considered a tauopathy) as well as AD 

[82]. Other groups confirmed that the H1 polymorphism was associated with PD risk [79, 

83]. Collectively, these studies indicate that single nucleotide mutations, nucleotide 

duplications, and inversions in MAPT produce pleiotropic phenotypes, linking one gene to 

numerous downstream diseases. More specifically, MAPT demonstrates that a particular 

gene can harbor rare, high-penetrance, diseasedriving mutations that cause one set of 

diseases (PSP, CBD, argyrophilic grain disease, or globular glial tauopathy), or, alternatively, 

a separate variant in the same gene can contain relatively common, low-penetrance alleles 

(MAPT haplotypes) that are associated with altered risk for separate complex diseases (AD, 

PD, and PART). We recognize that it is debatable how one fits these observations into the 

concept of pleiotropy, however, we emphasize that these diseases differ importantly in terms 

of clinical and pathological features, and the genetic associations provide important clues of 

pathogenetic overlap.
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As is the case for MAPT/Tau in neurodegenerative disease, evidence has emerged of genetic 

modifiers in TDP-43 proteinopathies [6, 7]. TDP-43 is the polypeptide product of the 

TARDBP gene, which is mutated in some cases of amyotrophic lateral sclerosis (ALS) [84, 

85]. However, the far greater number of “sporadic” TDP-43 proteinopathy cases remain 

largely unexplained. In an attempt to find genetic risk factors for FTLD-TDP, Van Deerlin at 

al. studied patients with FTLD-TDP pathology and conducted a GWAS [86]. This led to the 

discovery of SNPs on chromosome 7p21.3 that were associated with FTLD-TDP risk. Nine 

SNPs in the original Van Deerlin study were found to span the transmembrane protein 106B 

(TMEM106B) gene locus. Of these gene variants, only one SNP (rs3173615) is located 

within the coding region of TMEM106B and results in a threonine to serine substitution at 

amino acid 185 (T185S). The missense variant affecting codon 185 is only two amino acids 

downstream from a critical site of N-glycosylation, residue 183 that is part of the N-X-T/S 

glycosylation consensus sequence [87]. The T185 isoform of TMEM106B produces ~2-fold 

increase in TMEM106B protein levels compared to the S185 isoform [88].

TMEM106B gene variants now have been associated with risk for numerous TDP-43 

proteinopathies [86, 89–96]. However, the function of TMEM106B protein in the context of 

brain physiology has only partly been explored. TMEM106B is a 274 amino acid single 

pass, type-II transmembrane protein that localizes to cellular lysosomes [87]. It contains a 

highly glycosylated luminal domain and this posttranslational modification is required to 

transport TMEM106B from the endoplasmic reticulum to late endosomes and lysosomes. 

Interestingly when vacuolar H+-ATPases are inhibited, the levels of TMEM106B and GRN/

progranulin (see below) significantly increase, suggesting a link between these two proteins 

[87]. Further, it has been demonstrated that TMEM106B has a role in regulation of lysosome 

synthesis, size, trafficking, and localization [87, 97–100]. Schwenk et al. [100] found that 

TMEM106B knockdown in primary neurons alters neuronal trafficking and blunts dendritic 

arborization, increasing retrograde transport of lysosomes in dendrites. This supports the 

finding by Stagi et al. [99] that demonstrated TMEM106B knockdown resulted in 

distribution of lysosomes in cell soma. Collectively, these studies provide strong evidence 

that TMEM106B participates in lysosomal function, and suggest that alterations in 

lysosomal cell physiology can be linked to neurodegeneration. Beyond FTDP-TDP, 

TMEM106B variants have been associated with hippocampal sclerosis (HS) pathology [92] 

(see below) and, in a recent study by Cherry and colleagues, TMEM106B allele rs3173615 

SNP was linked to alteration of the CTE phenotype [101].

In addition to TMEM106B, another gene implicated in TDP-43 proteinopathy was granulin 

(GRN), as first became clear when germline mutations in GRN were discovered to cause 

FTLD-TDP [102–104]. Further, a common SNP, rs5848 (~40% of most human populations 

harbor one copy of this allele), located in the 3′-untranslated region (UTR) of GRN, was 

demonstrated to be associated with a ~3-fold increased risk of developing FTLD-TDP 

among individuals homozygous for the T-allele of rs5848 compared to C-allele [105]. 

Rademakers and colleagues demonstrated that the expression of GRN is partly regulated by 

a microRNA (miR-659) that binds to the mRNA’s 3′-UTR [105]. Moreover, GRN rs5848 

allele is also associated with HS pathology and TDP-43 proteinopathy in non-FTLD aged 

persons [106–108]. Recent work suggests that the impact of GRN on multiple different 

neurodegenerative conditions may be more extensive than was previously thought [109]. 
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Additional discussion of the genetic factors involved in TDP-43 proteinopathy in aged 

individuals is provided below.

As with MAPT, TMEM106B, and GRN, the APOE locus can influence more than one 

disease, again suggesting shared pathophysiology among neurodegenerative diseases. The 

APOE ε4 allele, which is strongly associated with deposition of Aβ peptide and AD 

pathogenesis [110, 111], has also been associated with Lewy body disease [112, 113], 

TDP-43 proteinopathy [112, 114], and HS pathology [115]. We note that there is an entirely 

different list of genes (e.g., Huntingtin, NPC1) in which mutations can lead to both Tau and 

TDP-43 pathologies [116–118]. Collectively, these results underscore that—reflecting 

differing upstream causes and downstream pathologies—individual gene changes can exert 

pleiotropic effects that influence misfolded proteins and help drive resulting degenerative 

brain changes. The mechanistic influences of each individual gene change are still being 

debated although the importance of genetics is beyond doubt.

Downstream effects: insights and controversies in an evolving research 

field

The field of ADRD research is characterized by both a rapid pace of discovery and also 

areas of controversy, some of which directly pertain to current ideas on Tau and TDP-43 

proteinopathies. Although each novel scientific discovery builds on the prior corpus of 

knowledge, the resulting new paradigms can be challenging to reconcile with prior 

assumptions and hypotheses. One contributing factor that generates both insights and 

confusion is the constantly changing methods used for making pathologic observations—

notably, the immunohistochemical detection of proteinopathies. Here we highlight several 

important perceptions that have affected the field of ADRD research: first, since AD itself 

(Tau tangles and amyloid plaques) was discovered relatively early as a driver of cognitive 

impairment in the elderly, this also led to an assumption that most or all of non-vascular 

dementia was secondary to AD; and, second, relatively nonspecific neuropathologic features 

including synapse loss and HS pathology were attributed to specific causes, and therefore 

considered to define specific diseases. New data contradict these assumptions.

The neuropathologic hallmarks of AD (AD neuropathologic changes, or ADNC) were 

discovered at the beginning of the 20th century using silver-based histologic stains [119]. 

Since then, the strong correlative impact of Tau tangles on cognition has been firmly 

established [4, 5, 13]. However, many CPC studies have revealed that the neuropathologic 

substrate(s) of amnestic cognitive impairment are not usually “pure” ADNC [2, 93, 120–

122], and there is now ample evidence of common non-ADNC pathways to dementia [123, 

124]. The reasons that this is important are several: (1) there are multiple common, clinically 

impactful diseases that affect aged persons’ brains and which need to be addressed in 

clinical and research contexts; (2) different proteinopathic changes (e.g., Tau, TDP-43, and 

α-synuclein proteinopathies) often co-occur in the same brain; (3) Tau and TDP-43 

proteinopathies are both evidently the result of pathologic cascades that provide possible 

overlap in therapeutic targets for conditions that have different upstream causes. Some of the 

hypothesized pathogenetic mechanisms are described above; it is important to note the 
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downstream effects were discovered during an era when the underlying mechanistic 

explanations were much less well understood.

We note two phenomena—synapse loss and HS pathology—that have been associated with 

dementia, and which relate to our central foci of Tau and TDP-43 proteinopathies. Synapse 

loss was considered for a time to be a relatively specific feature of AD, but this has been 

shown to be an incorrect hypothesis, for the simple reason that synapse loss characterizes 

numerous different neurodegenerative conditions. Multiple studies have reported 

ADassociated changes in specific synaptic proteins in different areas of the brain, and, these 

changes include both presynaptic (synaptophysin, synaptobrevin) and postsynaptic proteins 

(PSD-95, drebrin) [125]. The overall picture from these studies is that the loss of synapses 

and/or synaptic proteins is widespread in AD [125]. However, synapse loss is a nonspecific 

proxy for multiple diseases, a good indicator for neurodegeneration without specifically 

indicating AD or indeed any underlying ADRD subtype [125]. Recent CPC studies helped 

explain why there is an imperfect correlation between AD-type pathology per se (plaques 

and tangles) and cognitive status [124]. Thus, particularly in the aged brain where 

coexisting/mixed pathologies are common, non-specific markers of neurodegeneration 

(synapse loss, or neuronal loss) have stronger correlations with cognitive status than specific 

markers related to any one disease entity.

Another nonspecific histopathologic hallmark that has been associated with dementia, and 

that is directly related to TDP-43 proteinopathy, is HS pathology. This ill-defined pathologic 

endpoint has been associated with various underlying disease categories including epilepsy, 

hypoxia/ anoxia, infectious diseases, and various neurodegenerative conditions [52, 126–

128]. The term HS is applied in clinical radiology, usually in relation to seizure disorders, 

and ~90% of PubMed hits for the search term “hippocampal sclerosis” are papers related to 

seizure disorders. From the neuropathologic standpoint, there is no specific terminology or 

classification system to characterize HS pathology in older individuals. In 1993, Dickson et 

al. [129] identified 13 elderly subjects with documented antemortem dementia and HS 

pathology, yet who lacked substantial ADNC. Larger case series of persons with HS and 

dementia were subsequently reported [130–134]. Following the 2006 discovery of TDP-43 

in subjects with rare diseases (ALS and FTLD) [135], TDP-43 proteinopathy was also 

discovered to be a common pathologic features of brains of elderly persons lacking ALS or 

FTLD, including in individuals with comorbid HS pathology [136, 137]. These persons 

tended to be diagnosed clinically as AD [107, 138]. For the brain disease of which HS 

pathology was the initially discovered histopathologic indicator, it is now clear that TDP-43 

proteinopathy is a more sensitive and specific feature than HS itself [48, 139–143]. A 

hypothetical pathologic cascade that may underlie the age-related TDP-43 proteinopathy is 

shown in Fig. 4, integrating findings from multiple prior studies [48, 92, 94, 144–148]. This 

proposed sequence illustrates how the upstream influences (ABCC9 gene variant and 

arteriolosclerosis) may occupy different pathogenetic nodes in comparison to the misfolding 

of TDP-43 that may be affected more directly by the genetic modifiers— TMEM106B and 

GRN genotypes. It is hoped that the various causes of the common TDP-43 

proteinopathy/ies of aging will be better characterized in future studies.
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Summary

The aged brain is an extremely complex milieu and the pathologies of old age are 

correspondingly challenging to understand for researchers and clinicians alike. 

Neurodegenerative diseases evolve in a multi-step and multi-factorial manner, yet coherent 

paradigms are emerging (Fig. 5). Both Tau and TDP-43 proteinopathies are linked to 

multiple upstream influences, and both are connected with numerous deleterious 

downstream endpoints. Gene variants can be either disease-specific, or, they appear to be 

able to exert influence on the misfolding pathology itself rather than the upstream cause. 

Therefore, the gene variants may be associated with pleiotropic effects in multiple disease 

conditions. We conclude that the intriguing similarities between the pathogenetic cascades 

involved in Tau and TDP-43 proteinopathies may—when considered together—shed light on 

both, and help to guide researchers toward much-needed diagnostic and therapeutic 

strategies.
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Fig. 1. 
Schematic cartoon depicts a paradigm for the mechanisms underlying neurodegenerative 

conditions of aging. Multiple different upstream genetic and/or environmental factors have 

the potential to constitute a trigger for reactive changes in the brain. The reactive 

mechanisms and pathways may be compensatory or beneficial in some contexts. However, 

those same pathways may also contribute to one or multiple different proteins misfolding. 

The tendency to generate misfolding proteins appears to be augmented among individuals 

with specific genetic risk factors. Importantly, a salient feature of misfolding proteins that 
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are impactful, in a clinical and biologic sense, is that they appear to have a propensity to 

create or promote a micro-environmental shift toward biochemical pathways that augment 

their own misfolding. This deleterious feedback mechanism (signified by the red arrow) may 

promote an auto-propagating cycle, greatly amplifying the impact of the primary disease 

mechanism(s). The net effects of the upstream trigger, reactive pathways, and misfolding 

proteinopathies, are cell death and synapse elimination that can culminate in clinical 

manifestations. Note that on the right of the figure is indicated an inverse relationship 

between the factors that are disease-specific (related to upstream mechanisms) and the 

downstream pathologic phenomena, such as synapse loss, that correlate best with 

antemortem clinical symptoms
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Fig. 2. 
Schematic cartoons depict the overlapping elements of the pathological cascades that are 

seen in Tau (a) and TDP-43 (b) proteinopathies. Multiple factors can contribute to Tau or 

TDP-43 proteinopathies, or both (see Table 1). For Tau and TDP-43 proteins, reactive 

pathways—perhaps related to oxidative stress, phosphorylation, autophagy, proteolysis, 

inflammation, and/or other biochemical changes—appear to have an influence on the 

proteins’ structural properties, making the polypeptides more likely to misfold and to 

generate both toxicity and loss of normal function. Whereas the MAPT haplotype appears to 

be an important genetic risk factor in multiple different Tau proteinopathies, the 

TMEM106B haplotype (signaled by the rs1990662 risk variant) is associated with increased 

risk for multiple TDP-43 proteinopathies. Both Tau and TDP-43 proteinopathies also appear 

to be “transmissible” in animal models (see ref. [10]), meaning that their presence in the 

brain can—even without another “upstream factor”—potentiate additional “downstream” 

proteinopathy, contributing to cell death and synapse loss
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Fig. 3. 
Comorbid Tau and TDP-43 pathologies are relatively common pathologic phenomena. Here 

are shown photomicrographs depicting stained sections from the brain of a 102-year-old 

woman who died with a history of dementia. Autopsy showed minimal Alzheimer’s disease-

type changes (no neuritic Aβ plaques and Braak NFT stage II). Portions of the brain were 

stained using hematoxylin and eosin (H&E; a), and near-adjacent sections were stained for 

phospho-Tau immunohistochemistry (IHC; b, d, f), and phospho-TDP-43 IHC (c, e, g). The 

hippocampus is shown in the coronal plane (a) with anatomic regions labeled. Panels b and 

Chornenkyy et al. Page 23

Lab Invest. Author manuscript; available in PMC 2019 July 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



c show dentate granule (dg) cells, d and e show entorhinal cortex (ERC), and f and g 
demonstrate IHC staining near the pia lining (orange arrows). Sections are counterstained 

using hematoxylin (blue nuclei) and IHC reaction product is brown. Note that both Tau and 

TDP-43 proteinopathy are seen in dentate granule cells, entorhinal cortex, and within 

twiglike processes around corpora amylacea (red arrowheads) near the pia layer at the 

surface of the medial temporal lobes. Scale bars = 4 mm (a), 70 μm (b–e), and 100 μm (f, g)
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Fig. 4. 
TDP-43 proteinopathy with hippocampal sclerosis (HS) pathology and arteriolosclerosis 

pathology provide the basis for a hypothetical pathologic cascade in aged human brains. 

Shown are aged control brain (a, c, e) and HS brain (b, d, f) for comparison’s sake, stained 

using H&E. This HS brain is the same one that is depicted in Fig. 3. Note that the 

photomicrographs in (a) and (b) are at the same magnification, indicating the amount of 

atrophy in the hippocampus shown in (b). Portions of the hippocampal CA1 sector are 

shown for comparison in panels c, d. Note that the control brain has large pyramidal neurons 
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(arrowheads) and dense, intact eosinophilic neuropil (*). By contrast, the CA1 sector in the 

brain with HS pathology shows astrocytosis, dropout of neurons, and neuropil that is looser 

and rarefied. Brain arterioles that have histopathologic features within normal limits in aged 

brains (arrowheads in panel e) can be contrasted with arteriolosclerosis pathology (f) where 

the arteriolar walls are thickened and dysmorphic with eosinophilic material in the vessel 

wall that may impair cerebral blood flow. A hypothetical sequence, influenced by various 

factors, is shown (g) that incorporates findings from multiple prior studies [48, 92, 94, 144–

148]. Upstream genetic risk factors may contribute to brain arteriolosclerosis in a manner 

that induces chronic stress in the brain, potentiating TDP-43 proteinopathy that also is 

influenced by additional genetic risk factors (e.g., TMEM106B, GRN). The question-mark 

conveys that the detailed mechanisms are as yet mostly unknown. The combination of 

‘upstream’ stresses and TDP-43 proteinopathy may contribute to the cell loss and gliosis that 

manifests as HS pathology and contributes to the dementia syndrome. Scale bars = 6 mm (a, 

b), 120 μm (c, d), and 200 μm (f, g)
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Fig. 5. 
Schematic depiction of the genetic (top) and non-genetic (bottom) factors that are 

contributory to the complex, multi-stage pathologic cascades of neurodegenerative diseases. 

Different genetic factors may either contribute to “primary” condition-specific aspects of 

disease progression, or may induce pleiotropic effects that can influence (protect from, or 

exacerbate) misfolded proteins in multiple diseases, resulting in phenotypes that overlap in 

both clinical and pathological contexts. The aspects that may be most amenable to disease-

specific therapeutic strategies are “upstream” influences, whereas the “downstream” 

pathologic manifestations correlate best with clinical symptoms
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