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Abstract

Structure-by-structure analysis, in which the brain magnetic resonance imaging (MRI) is 

parcellated based on its anatomical units, is widely used to investigate chronological changes in 

morphology or signal intensity during normal development, as well as to identify the alterations 

seen in various diseases or conditions. The multi-atlas label fusion (MALF) method is considered 

a highly accurate parcellation approach, and anticipated for clinical application to quantitatively 

evaluate early developmental processes. However, the current MALF methods, which are designed 

for neonatal brain segmentations, are not widely available. In this study, we developed a T1-

weighted, neonatal, multi-atlas repository and integrated it into the MALF-based brain 

segmentation tools in the cloud-based platform, MRICloud. The cloud platform ensures users 

instant access to the advanced MALF tool for neonatal brains, with no software or installation 

requirements for the client. The web platform by braingps.mricloud.org will eliminate the 

dependence on a particular operating system (e.g., Windows, Macintosh, or Linux) and the 

requirement for high computational performance of the user’s computers. The MALF-based, fully-

automated, image parcellation could achieve excellent agreement with manual parcellation, and 
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the whole and regional brain volumes quantified through this method demonstrated developmental 

trajectories comparable to those from a previous publication. This solution will make the latest 

MALF tools readily available to users, with minimum barriers, and will expedite and accelerate 

advancements in developmental neuroscience research, neonatology, and pediatric neuroradiology.
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Introduction

Structure-by-structure analysis, in which the brain is parcellated based on structural units 

that follow standard ontology in brain anatomy, is widely used to investigate disease-related 

changes seen on brain MRI scans.1–4 Numerous tools for brain parcellation methods have 

been proposed in the past and their accuracy has continuously improved, especially in the 

past decade since the introduction of multi-atlas label-fusion (MALF) algorithms.5–10 The 

major strength of this approach is that the algorithm relies on a large collection of pre-

parcellated images (atlases) as teaching files to achieve high parcellation accuracy against a 

wide range of anatomical variability, even for diseased brains11,12 and to account for 

differences in scanner and scan parameters.12,13 This robustness to anatomic variations is 

beneficial in neurodevelopmental studies; a set of multiple atlases that covers the entire 

landscape of anatomic variations during brain development can minimize the errors in 

parcellating structures with anatomical variability. For example, a highly variable structure is 

the cavum septum pellucidum, which is a cavity between the left and right anterior horns of 

the lateral ventricles, and is seen in approximately 70% at 36 weeks and 35% at 40 weeks of 

gestation,14 7% in children under 17 years of age,15 and 1 – 6% in the adult brain.15–18 

Images with and without this cavity are topologically different; therefore, transforming an 

image with the cavity to an image without the cavity is an ill-posed problem.19 Image 

normalization to a single atlas space is, thus, problematic, especially in studies targeting 

neonates or infants.

Although MALF-based parcellation is now considered a highly accurate parcellation 

approach, it works only when a multi-atlas library with accurate parcellation of brain 

structures is available. In particular, when brains in active development are targeted, the 

library must cover the age-range of interest and variations in local brain volume and 

intensity, which is changing during brain development. Existing multi-atlas repositories are 

available for pediatric and adult brains,20 and recently, for neonatal brains.21–26 The 

neonatal atlas repositories may be applied to the clinical setting, since they can quantify 

brain MRIs from infants during early development, which may provide early diagnosis or 

prediction of neurobehavioral sequelae. However, there are several practical issues in the 

application to clinical MRIs. First, the existing MALF approach applied to neonatal brain 

MRIs typically utilizes T2-weighted contrast or a combination of T1- and T2-weighted 

contrast to drive the algorithm,21–23,27 since T2-weighted scans provide greater contrast than 

T1-weighted scans in separating the cortical gray matter area from the unmyelinated white 

matter adjacent to the cortex. Three-dimensional (3D) or thin-slice, high-resolution T2-
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weighted protocols that are compatible with the advanced image analysis framework have 

been adopted in ongoing research studies of the neonatal brain.28,29 However, in clinical 

practice, conventional, two-dimensional, T2-weighted protocols with thicker slices (typically 

> 2 mm) are still common, while high-resolution, three-dimensional (3D), T1-weighted 

images are readily available as a routine clinical protocol. Second, the majority of the 

existing MALF methods require a skull-stripping procedure, which is a challenging task for 

fully-automated image processing. Third, the application of MALF to neonatal brain 

imaging was reported by a limited number of institutes that have strong biomedical 

engineering groups and was supported by programmers and imaging science specialists. For 

neurobiologists or clinician scientists without such support, the critical barriers are the 

requirement for knowledge and skills for the implementation of mathematical modeling into 

the practical image analysis system.

We aimed to break the current barrier in accessibility to MALF-based neonatal image 

quantification. We integrated the MALF framework with a T1-weighted, neonatal, multi-

atlas repository into the cloud-based platform, MRICloud, which has more than 2,000 

registered users worldwide (as of November 2018). This integration ensures users instant 

access to the advanced MALF tool for neonatal brain image analyses, with no requirement 

for the installation or download of additional software by the client. The web platform at 

braingps.mricloud.org will eliminate the dependence on a particular operating system (e.g., 

Windows, Macintosh, or Linux) and the requirement for high computational performance of 

the user’s computer. This solution will make the latest MALF tools readily available to users 

with minimum barriers, and will accelerate advancements in developmental neuroscience 

research, neonatology, and pediatric neuroradiology.

Methods

Participants

A neonatal brain MRI database from a longitudinal study of early brain development30–32 

was used. Written and verbal informed consent were provided by the infants’ parents or 

legal guardians, in accordance with the Cooperative Institutional Review Board (IRB) of the 

Queen’s Medical Center, the University of Hawaii, and the Johns Hopkins University. 

Exclusion criteria for the term-born infants were: prolonged intensive care (>7 days); 

intracranial hemorrhage; neonatal hypoxic-ischemic encephalopathy; brain infections 

(toxoplasma, syphilis, varicella-zoster, parvovirus B19, rubella, cytomegalovirus, and 

herpes); and congenital heart disease or other anomaly; or any chromosomal anomaly. 

Among 248 MRIs available, the MRIs of term and preterm born neonates (three boys and 

four girls born during 26 to 41 gestational weeks), scanned during 39 to 46 post-menstrual 

weeks, were used to create the multi-atlas repository (Table 1 and Fig. 1A). The images were 

chosen to cover the morphological variability seen in this age-range. Namely, we 

intentionally selected images based on: (i) the width of the subarachnoid fluid space [from 

wide (Atlas 7) to narrow (Atlas 1); (ii) the ventricular volume [from large (Atlas 2) to small 

(Atlas 6)]; (iii) the existence of the cavum septum pellucidum [from prominent (Atlas 4) to 

absent (Atlases 2 and 3)]; (iv) the myelination status [from partial myelination seen in the 

posterior limb of the internal capsule and the low-intensity thalamus (Atlases 1 and 6) to 
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myelination seen in both the anterior and posterior limbs of the internal capsule (Atlas 7)]; 

and (v) the shape [from round (Atlas 1) to dolichocephalic (Atlases 2 and 5)]. The selection 

was based on agreement between two neurologists who went over the images. One hundred 

seventy-seven MRIs from term-born neonates that were not used to create the atlases were 

used for the validation study (Table 2).

MRI scans

The whole-head, 3D, T1-weighted images were acquired using a 3.0 Tesla Siemens TIM 

Trio scanner (Siemens Medical Solutions, Erlangen, Germany) equipped with a 12-channel 

phased-array RF coil for parallel imaging. The infants were scanned without sedation. A 

vacuum immobilization mat (Noras MRI Products, Hoechberg, Germany) was used to 

minimize infant motion, and earmuffs were used to attenuate the scanner noise. Images were 

acquired with a three-dimensional (3D), magnetization-prepared, rapid gradient-echo 

(MPRAGE) sequence, with TE/TI/TR of 4.15/1400/3200 ms, a flip angle of 7°, an imaging 

matrix of 176 × 256 × 160, and 1 mm isotropic resolution.

Creation of a multi-atlas repository

The seven T1-weighted images were rigidly transformed to the JHU-neonate atlas33 and 

manually parcellated by board-certified neurologists and an image analysis specialist. The 

deep gray matter structures identified in our previous studies of neonatal brains33–35 were 

readily identified in these neonate brain images using T1-weighted contrasts. We manually 

parcellated these structures on each atlas, using the JHU-neonate-SS as a reference. After the 

deep gray matter structures were defined, we identified the cortical surface and the 

ventricles. Between the brain surface and the deep gray matter structures, we located the 

cerebral cortex and the white matter areas. We parcellated these areas based on intensity 

thresholding, followed by manual corrections. For these manual parcellation procedures, 

ROIEditor (www.Mristudio.org) was used, with inspection of all three slice orientations. A 

total of 38 anatomical structures were parcellated, as shown in Fig, 1 and listed in Table 3. 

The resultant seven T1-weighted atlases with corresponding parcellation maps were in the 

same space: an imaging matrix of 220 × 280 × 220 with 0.6 mm isotropic resolution.

MALF algorithm

We applied an existing system that allows users to submit their images (target image) and to 

receive parcellation maps generated through the MALF procedure. There are two crucial 

components in the algorithms: image registration and the multi-atlas label fusion process. In 

the registration step, seven atlases are transformed to the target image using Large 

Deformation Diffeomorphic Metric Mapping (LDDMM).36–38 This process provides seven 

parcellated maps on the target space, each of which was derived from each atlas transformed 

to the target space. The seven parcellated maps are then fused through the atlas fusion step, 

in which local weighted voting with the joint label fusion technique, developed by the Penn 

Image Computing and Science Laboratory (PICSL),39,40 was adopted to generate a 

parcellation map for each target image. The algorithm incorporates correlations between the 

parcellation errors produced by any two atlases to reduce bias in the atlas set. Namely, the 

optimal voting weights were obtained by minimizing the expected label difference between 

the consensus label (obtained from weighted voting) and the label of the target image. To 
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increase robustness against registration errors, the algorithm integrates the probabilistic 

correspondence model, in which each patch within the searching area is weighted by the 

estimated probability of the correct match.41,42 This algorithm was adopted because of its 

superiority in accurate delineation of anatomical boundaries and in removing atlases with 

inaccurate co-registration to the target image, compared to other label-fusion algorithms 

based on independent voting weight estimation or that relying on a single-candidate 

corresponding patch.39

The MRICloud platform

The MRICloud is a cloud-based architecture for neuroimage analysis tools through the web. 

Representational State Transfer (REST)-ful web application programming interfaces (API) 

are accessible from any platform that is capable of secured Hypertext Transfer Protocol 

(HTTP) communications. Our MALF tool was implemented in the MRICloud through the 

API. For the hardware, the MRICloud has been utilizing the Extreme Science and 

Engineering Environment (XSEDE) Computational Anatomy Science Gateway (https://

www.xsede.org/gateways-overview) at the Texas Advanced Computing Center Stampede 

Cluster and supercomputing resources at the Maryland Advanced Research Computing 

Center (MARCC). The core algorithms of our MALF image analysis pipeline have been 

implemented to take full advantage of these computing resources with highly paralleled, 

multi-threaded CPU and GPU codes.

Evaluation

Leave-one-out cross-validation was performed to investigate the parcellation accuracy when 

the multi-atlas repository was implemented in the MALF algorithm. The Dice coefficient43 

was used to evaluate the overlap, and the Jaccard distance was used to evaluate the distance 

between manual and automated anatomical labels. The intra-class correlation (ICC) was 

used to evaluate the consistency between manual and automated volume measures. The ICC 

calculation for a single rating was performed on an open script “icc” that runs on R (https://

cran.r-project.org/web/packages/irr/index.html).

Application to test datasets

The fully-automated MALF tool was applied to two test datasets (Table 2) to quantify the 

volumes of the brain structures listed in Table 3. Whether the developmental trajectories 

obtained by our MALF method were congruent with a previous study that utilized multi-

contrast (T1- and T2-weighted) MRI44 was qualitatively investigated. To account for the 

difference in structural boundary definition used in our approach (definition based on the 

JHU-neonate-SS atlas) and that used in the previous morphometry study,44 the measured 

regional volumes were adjusted based on the equation: (adjusted volume) = (volume 

measured by MALF) x (MRV24 x MTVMALF)/ (MTV24 x MRVMALF), where MRV24 

represents mean of the 24 infants’ regional volume measured according to manual 

delineation,44 MRVMALF represents the mean of the seven atlases’ regional volume used in 

our study, MTV24 represents the mean of the 24 infants’ total brain volume from the prior 

study,44 and MTVMALF represents the mean of the seven atlases’ total brain volume used in 

our study. Only total brain volume and regional volumes of the cerebellum, caudate, and 
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putamen were compared, because the developmental trajectories of these structures were 

elaborated with the mean and the 5th – 95th percentiles in the prior study.44

Results

Multi-atlas repository

The atlases with structure labels are shown in Fig. 1. Note that extra-axial structures, such as 

the skull and scalp were also parcellated to avoid the necessity of the skull-stripping step 

that most of the existing MALF procedures require. The defaced version (facial features of 

the head MRIs were removed) of the atlas repository is available through our website (http://

lbam.med.jhmi.edu/).

Web interface

The MRICloud web interface was built so that the target images can be uploaded instantly 

with a selection of “UH-JHU-neonate_38Labels_7atlases” from the dropdown menu. The 

tool accepts images in Analyze 7.5 format. For the users who process clinical images in the 

Digital Imaging and Communications in Medicine (DICOM) format, we provide a DICOM 

to Analyze converter. The time required to process one image ranged from 20 minutes to six 

hours, depending on the number of images submitted at the same time from multiple users.

Leave-one-out cross-validation

Representative images comparing the parcellation map based on manual and MALF-based 

automated parcellations are demonstrated in Fig. 2. The mean and standard deviation (SD) 

of the measured volume of each structure, the mean Dice coefficient and the SD, and the 

mean Jaccard distance and the SD, are listed in Table 3, along with the ICC and the 95% 

confident interval (CI). In general, most of the structures indicated an excellent Dice 

coefficient (> 0.7)45 and Jaccard distance (< 0.5), except for the structures with a volume 

less than 170 mm3 [the pituitary gland and the cavum septum pellucidum], thin structures 

with a minimum thickness at the perpendicular slice of less than 3 mm [the corpus callosum 

and the myelinated WM] or structures with vague contrast to define the boundary [the 

globus pallidus]. The ICC of the measured volume between that based on the MALF and on 

the gold standard (manual delineation) varied depending on the type of structure, from 

excellent [subarachnoid space = 0.94, cerebellum = 0.95 (left), 0.97 (right), lateral ventricles 

= 0. 91 (left), 0.88 (right)], 3rd ventricle = 0.85, 4th ventricle = 0.83, cavum septum 

pellucidum = 0.83, cortical gray matter = 0.80 (left), 0.73 (right)], where the boundaries 

were mostly defined by the CSF space, to poor [corpus callosum = 0.02 (left), −0.03 (right), 

myelinated WM = −0.24 (left), −0.36 (right) and the globus pallidus = −0.65 (left), −0.67 

(right)], where the boundary was vague on the T1-weighted image of the neonatal brain (Fig. 

3).

Normal developmental curves of early brain development

Total brain volume and adjusted volumes of representative structures (cerebellum, caudate, 

and putamen) quantified through the MALF tool were plotted against the postmenstrual age 

(PMA) for each infant, as shown in Fig. 4, which clearly demonstrated the chronologically 

increasing volumes in these structures. The results were comparable with those reported 
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from the previous publication. Note that most of the measured volumes were plotted within 

the 5 – 95% range of the normal growth trajectories reported in the previous study,44 

although a systematic downward bias (approximately 400 mm3 smaller than those reported 

previously44) was observed in the putamen. There were several infants in whom local brain 

volumes, as well as the total brain volume, were large or small for their age. Some of these 

infants are labeled as Outliers 1 – 4 in Fig. 4 and demonstrated in Fig. 5, showing that brain 

parcellation was appropriately performed even for these outliers.

Discussion

Although MALF-based parcellation has become a common practice during the past decade, 

multi-atlas repositories for the neonatal brain that are available for public use are still scarce.
19 Over the past two decades, we have built multiple atlases and created atlas libraries with 

more than 200 atlases that provide coverage between 2 to 95 years of age20 (https://

braingps.mricloud.org/atlasrepo). This study is an extension of our effort toward building 

user-friendly image analysis tools for even younger-age subjects, which is becoming more 

prevalent and in higher demand, both in research and in clinical practice.

The leave-one-out cross validation was applied to evaluate the accuracy of the MALF-based, 

fully-automated image parcellation. Note that the validation was performed on seven atlases 

that were intentionally selected to cover major developmental and anatomical variations seen 

in this age-range. This variation was disadvantageous for the accuracy measurement because 

none of the six images were similar to the selected image. Nevertheless, the MALF-based 

parcellation did achieve excellent agreement45 with the manual parcellation, as shown by the 

high Dice coefficient and the ICC, and low Jaccard distance. The result was comparable to 

an existent label propagation and fusion method based on T1-weighted contrast, which 

demonstrated a Dice coefficient, averaged across regions, of 0.81.46 We also tested the 

applicability of the MALF-based parcellation on the cohort of 177 typically developing 

term-born infants, and found that the local brain volumes measured were comparable to 

those based on T2-weighted contrast or a combination of T1- and T2-weighted contrasts. 

However, the effect of including a T2-weighted image, compared to the T1-weighted image 

only, on the accuracy of image parcellation is yet to be investigated. Ongoing infant brain 

imaging projects, such as the baby connectome project and the development of the human 

connectome project,28,29 might provide opportunities to investigate the effects of adding T2-

weighted contrast to the parcellation accuracy.

We are aware of several weaknesses of the MALF-based method. The Dice coefficient was 

lower and the Jaccard distance was higher for small (< 170 mm2) or thin (thickness < 3mm) 

structures, compared to other structures, because a small shift in the structural boundary 

(e.g., one pixel) of such structures has a substantial impact on the Dice coefficient and the 

Jaccard distance. We are also aware that the ICC was affected by the clarity of the structural 

boundaries. This issue was typically seen is the putamen, of which the medial boundary with 

the internal capsule and the lateral boundary with the putamen are vague, and the boundary 

definition is dependent on a priori knowledge about the brain anatomy (Fig. 3). For such 

structures, the ICC between the MALF approach and manual delineation is difficult to 

evaluate for two reasons. First, the parcels generated by the MALF approach are less 
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accurate compared to the structures with clear anatomical boundaries, because the image 

contrast is used for both image registration and label fusion steps. Second, the manual parcel 

delineation is less stable for such structures, compared to structures with clear anatomical 

boundaries. Another potential issue is the age range to which the MALF-based method can 

be reliably applied. Although the result indicated that the seven atlases cover the anatomical 

features of the ages 37 – 47 weeks PMA, the upper- and lower-limits are still unknown. The 

creation of a tool that covers a wider age-range is particularly important to quantify images 

from a longitudinal cohort study; therefore, continuous effort is needed to create atlases 

outside this age range and to create an algorithm to incorporate an age to select the 

appropriate set of atlases.

The major motivation that drove this project is the demand from clinician scientists who 

wanted to quantify their patients’ clinical 3D- T1-weighted images, scanned at the infantile 

period, to see correlations with the prognosis at school age or later. In such a study, they 

need to analyze legacy images (typically scanned more than 10 years ago) when only T1-

weighted anatomical images were available for a volumetric study. We implemented the 

MALF tool on the MRICloud because it offers several substantial advantages, which are 

particularly suitable for clinician scientists with limited computational resources and time 

available for image analysis. First, the web-based interface provides a platform-free 

environment, which means that users do not have to spend time downloading, updating, or 

compiling the programs in order to perform the image processing. Second, the users do not 

need to own a high-end computer to process their images, because the computational 

resources are in the cloud: the system monitors the data queues, send the data to available 

supercomputers, and utilizes CPU/GPU resources. Third, the cloud platform provides users 

with novel or updated algorithms, with minimal changes in the image-submission interface 

with which they are familiar. Image processing algorithms are rapidly developing, and it is 

highly possible that existing algorithms will become outdated in the near future. For the 

majority of clinician scientists, it is not practical to keep getting used to the new tools that 

become available every month. The use of a cloud system is beneficial for both users and 

developers because incorporating additional algorithms from other labs is straightforward. 

For example, one of the core technologies that support this study is the MALF technology 

developed by PICSL (Picsl_upenn), which was among the most accurate image 

segmentation algorithms demonstrated at the 2012 workshop organized by the Medical 

Image Computing and Computer-Assisted Intervention (MICCAI) society, the Multi-Atlas 

Labeling workshop, and the Neonatal Brain Segmentation 2012 (NeoBrainS12) challenge. 

Although the Picsl_upenn has been rigorously tested for the past six years, and is, therefore, 

highly reliable, recent advancements in this field may improve that MALF algorithm or 

provide an even better algorithm that uses a multi-atlas repository as a training dataset to 

parcellate target images. An example of this approach was demonstrated in the Grand 

Challenge on MR Brain Segmentation (MRBrainS18) at MICCAI 2018 

(mrbrains18.isi.uu.nl). The MRICloud platform allows developers to implement the latest 

algorithms through the API whenever needed.

One of the major strengths of our approach is the compatibility with high-throughput 

analysis. The majority of existing automated image parcellation algorithms requires image 

pre-processing routines, including skull-stripping, a process by which the brain is extracted 
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from a head image, which itself is still an active research field.47–53 The “human-in-the-

loop” quality control process is almost always required to ensure the accuracy of the skull-

stripping. While such a quality control process is reasonable for scientific research that 

targets a limited number of images (typically less than several hundred image datasets), it 

becomes unrealistically time-consuming in high-throughput, big-data analysis. In our 

approach, the whole head, instead of the whole brain, is parcellated based on the MALF 

algorithm. This approach is similar to the multi-atlas skull-stripping method,47 which is 

known as one of the most accurate methods for skull-stripping. Our MALF is suitable for 

handling big data, such as a clinical database that typically contains a huge amount of legacy 

data.

For clinical applications, the robustness and flexibility to variations in scan protocols and 

scanners are important. Contrary to a clinical research study that uses a single scanner and 

scanning protocol, clinical MRIs contain artefactual heterogeneity caused by variations in 

the scanner type and differences in imaging protocols. Moreover, clinical MRIs often 

include brains with substantial pathological changes in volume or intensity, or both, or even 

mass lesions that may distort the geometry of the brain. Further testing is still needed to 

evaluate the robustness of our method with regard to the heterogeneity of MRI protocols and 

scanners and potential pathological changes. In such a validation study, the involvement of 

multiple institutes is essential. The MRICloud platform is ideal in such a multi-institutional 

study because the only requirement is access to the web-browser. Using MRIs from multiple 

institutes and observing the robustness with regard to the differences and the sensitivity to 

biological variations will be essential in testing the feasibility of our method for large-scale 

clinical applications.
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Fig. 1. 
Neonatal multi-atlas repository. A: Images used to create atlases. Images with different 

features were intentionally selected to account for normal variations in volume, shape, and 

myelinaton of the brain and the variations seen in the subarachnoid fluid space, ventricles, 

and the cavum septum pellucidum. Atlas 1 represents a less myelinated brain with the 

anterior limb of the internal capsule (yellow arrow) more hypointense than the adjacent 

caudate and putamen. Ongoing myelination is seen in the anterior limb of the internal 

capsule of Atlas 7 (yellow arrow), which is hyperintense compared to the adjacent caudate 

and putamen. B: A representative atlas showing the parcellation map overlaid on the image. 

①, subarachnoid fluid space; ②, lateral ventricle; ③, 3rd ventricle; ④, 4th ventricle, ⑤, 

cavum septum pellucidum; ⑥, cortical gray matter; ⑦, white matter; ⑧; myelinated white 

matter; ⑨; brainstem; ⑩, cerebellum; ⑪, corpus callosum; ⑫, caudate nucleus; ⑬, 

putamen; ⑭, globus pallidus; ⑮, thalamus; ⑯, hippocampus; ⑰; amygdala; ⑱, pituitary 

gland.
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Fig. 2. 
Result of the fully-automated image parcellation based on the MALF algorithm. The result 

was comparable to that based on the gold-standard manual parcellation (Fig. 1B).
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Fig. 3. 
Comparison between manual parcellation (lower left) and the MALF-based image 

parcellation (lower right). The deep brain area, surrounded by the yellow rectangle (upper 

left) with the magnified view (upper right), indicated that the contrast between the globus 

pallidus (red arrows) and the surrounding structures was obscure.
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Fig. 4. 
Volume measures obtained from the MALF-based image parcellation. Each plot represents 

each infant. Upper row: volume of girls’ brains. Lower row: volume of boys’ brains. The 

measured structures were (from left to right): the whole brain parenchyma; the cerebellum; 

the caudate; and the putamen. The three solid lines overlaid on each scattergram represent 

the 95th percentile, the 50th percentile, and the 5th percentile of the volume measures, 

reported by44 (adapted from the eFigures 3 and 6 with written permission).
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Fig. 5. 
Images with a brain volume more than the 95th percentile (Outliers 1 and 3) or less than the 

5th percentile (Outliers 2 and 4). The structural boundaries were automatically generated 

through the MALF-based image parcellation and overlaid on the corresponding images.
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Table 1:

Demographics of the infants from which the multi-atlas repository was created.

Sex gestational age at birth (weeks) postmenstrual age at scan (weeks) birth weight (kg) birth body length (cm)

Atlas 1 girl 39.0 39.9 2.98 50.2

Atlas 2 boy 33.1 41.2 1.55 40.6

Atlas 3 girl 28.6 45.0 1.20 38.1

Atlas 4 boy 26.4 42.4 0.96 34.0

Atlas 5 girl 28.7 41.3 1.00 36.5

Atlas 6 boy 40.9 43.2 3.07 48.3

Atlas 7 girl 33.1 46.2 1.96 45.0
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Table 2:

Demographics of the 177 infants included as the test dataset.

number of boys and % 86 48

gestational age (weeks), mean and standard deviation 39.34 1.12

postmenstrual age (weeks), mean and standard deviation 41.59 2.28

weight at birth (kg), mean and standard deviation 3.32 0.42

body length at birth (cm), mean and standard deviation 50.75 2.47

J Neuroimaging. Author manuscript; available in PMC 2020 July 01.
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