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Abstract

Over the past decade, human host genome-wide association studies (GWASs) have contributed greatly to our understanding
of the impact of host genetics on phenotypes. Recently, the microbiome has been recognized as a complex trait in host
genetic variation, leading to microbiome GWAS (mGWASs). For these, many different statistical methods and software tools
have been developed for association mapping. Applications of these methods and tools have revealed several important
findings; however, the establishment of causal factors and the direction of causality in the interactive role between human
genetic polymorphisms, the microbiome and the host phenotypes are still a huge challenge. Here, we review disease scoring
approaches in host and mGWAS and their underlying statistical methods and tools. We highlight the challenges in
pinpointing the genetic-associated causal factors in host and mGWAS and discuss the role of multi-omic approach in
disease scoring statistics that may provide a better understanding of human phenotypic variation by enabling further
system biological experiment to establish causality.
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Introduction
Our understanding of the diversity of the human genome has
improved considerably in the past decade with the advances
in high-throughput sequencing technology [1]. These high-
throughput technologies have also revolutionized disease
scoring statistics (DSS) approaches. DSS refer to the application
of statistical methods to any ‘omic’ data to identify and
characterize the factors underlying human phenotypic variation
(Figure 1). Leveraging on the huge technological developments,
DSS have led to the identification of various factors that
shape the diversity of the human genome at individual, family
and population levels. DSS provided deeper insights into the
basis of phenotypic variation, including human appearance,
disease susceptibility/resistance, disease severity and response
to treatment [2]. In recent years, studies have also corroborated

the role of the microbiome on human phenotypic variation,
and the microbiome has emerged as a complex trait in human
variation [3, 4]. These studies have shown that the microbiome is
intimately involved in the interplay between health and disease
[5, 6]. For example, alterations in the composition of the gut
microbiome, also known as dysbiosis, are now known to be
associated with many complex diseases such as inflammatory
bowel disease, cancer and autoimmune disorders [7]. Altogether,
these remarkable discoveries from human genome-wide
association study (GWAS) and microbiome GWAS (mGWAS) have
raised enthusiasm among researchers to conduct research to
obtain a broader understanding of human genetic architecture,
particularly as each new DSS approach continues to reveal novel
biomarkers for disease phenotypes.

Although we know that the taxonomic composition and rel-
ative abundance of the microbiome is associated with host
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Figure 1. Development of various DSS.

Figure 2. Illustrative representation of host GWAS, mGWAS and the integrative host-microbiome study approach.

genetics and host phenotypes, little is known about the associ-
ated causative genetic factor; the precise molecular mechanisms
underlying the expression of a given phenotype, is at best,
poorly understood [3, 5]. Recent studies have suggested that the
microbiome impacts host phenotype through alteration of the
host gene regulation in the interfacing host epithelial cells or
modification of open chromatin status in the intraepithelial lym-
phocytes [8]. The genetic risk factors in the observed relationship
between host genetic polymorphisms, the host’s phenotypic
expression and the microbiome composition are of fundamental
biological and medical interest as a 1st step toward causality.
DSS can play major roles toward dissecting associated genetic
factors by helping to identify and prioritize likely associated
variants in linkage disequilibrium (LD) with causal variant from
the set of statistically associated genetic polymorphisms. This
will enable further biological experiment to reveal their precise
molecular mode of action. While DSS have enabled identification
of novel genes, pathways and networks that harbor genetic
variations responsible for a horde of phenotypes, current human
host and mGWASs do not clearly provide a mechanistic under-
standing of how the consortium of host genetic variation, the
microbiome and the environment cooperate to influence traits/
disease. Furthermore, we even delve into the challenges host or
mGWASs face in discerning true risk variants and the perplexity
in understanding how these risk variants exert their effects [9].
However, these constitute an important step toward a global
understanding of what and how human variation contributes to
phenotypic differences ranging from development, physiology
and behavior to pathogenesis of many human diseases. With
this global view, it has today become critical to integrate different
factors that potentially play roles in the human phenotypic vari-
ation. Consequently, the integration of multi-omic data within
integrative DSS approaches (Figure 2) will greatly improve our
understanding and unravel the complex interaction between
host genetics, microbiome and environment that are pertinent
to human health and disease. Such integrative DSS approaches
will facilitate the understanding of causality and subsequently

translate to clinical and medical applications, including proper
diagnosis, prevention and treatment. It is important to note that
the integration of such high-dimensional and diverse multi-
omic data is itself challenging [10].

In this paper, we (1) discuss genetic risk in the observed
associations between host genetics, the microbiome and the
complex diseases using DSS, (2) outline the role of integrative
multi-omic approaches to unravel causality and (3) conclude by
highlighting some research areas where further work on DSS is
needed to establish integrative genetic risk factors of complex
traits and diseases.

Human variation
Human populations differ in the distribution and frequency of
their phenotypic expressions. These ‘human variations’ result
from both their genetic components whose compositions are
largely shaped by their genomic history and nongenetic compo-
nents. The genomic history of human evolution is characterized
by the exchange of genetic materials across individuals, result-
ing into individuals with unique genetic features. Consequently,
the current pattern of human genetic diversity is hypothesized
to be ‘ancestral’, most genetic variants having occurred once in
human history and vertically spread across populations, rather
than due to recurrent mutations [11]. This genetic mixing gener-
ated substantial genetic variation. It is estimated that the human
genome contains between 4.1 and 5.0 million polymorphisms,
at least 99% of them being Single Nucleotide Polymorphisms
(SNPs) and short indels [12]. Despite the large number of genetic
variants in the genome, only a minute fraction of them are
hypothesized to be causal of disease [11], the majority being
neutral (having no contribution to phenotypic variation) or near
neutral.

In addition to genetic variation, the human microbiome, the
collection of bacteria, archaea, fungi, protozoans and viruses
that colonize our body surfaces and their respective genomes,
plays an important role in health and disease variation [5, 8]. A
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long-standing goal in human genetic studies is elucidating the
fraction of heritability and environment that may contribute to
the variation in health and disease [11]. This goal is, however,
challenging owing to the myriad of confounding factors that
likely mask true and causative associations. To this end, various
DSS methods for host and mGWAS have been developed to
investigate the association between genetic variability and/or
microbiome composition and disease susceptibility/resistance
[12, 13].

It is worth to note that current developed omic technologies,
particularly genotyping arrays and imputation panels, have
widely been designed for populations of European descent
with long-range patterns of LD [13]. Additionally, current
microbial databases are built with genomes of European descent
populations. The insufficient capture of some haplotypes from
non-European populations limits the power to detect important
associations. In addition, many new genetic associations to
diseases that have been identified from both host and mGWASs
have primarily been applied to samples from population of
European ancestry [12, 13]. This has an implication that a
substantial proportion of functionally important variations in
other populations are not captured. This may partly explain the
challenge in replicating variants identified in some populations
let alone drawing a strong mechanistic link between the
associated variants and disease phenotypes. Variants associated
with diseases found in populations of European descent do
not always replicate in non-European, particularly African
populations [12, 14] for several reasons, including differences
in allelic architecture, LD and confounding of environmental
factors across populations. In addition, genetic determinants
of disease and their effect sizes have also been shown to vary
significantly between European and African populations [13, 14].

The high levels of genetic diversity and the burden of com-
plex diseases in non-European, particularly in African popula-
tions, may further introduce both challenges and opportunities
not only for host and mGWAS but also for the general omic
analyses [9, 14]. The high genetic diversity, environmental het-
erogeneity and high burden of diseases that characterize the
African population [15] make it clear that leveraging the African
genomic data is pertinent to a robust analysis. Notwithstanding,
current genome-wide DSS that leverage a single level of omic
data may be limited for adequately gaining insights into the
basis of observed phenotypic expressions.

Whereas the importance of increasing host GWAS to
include samples from non-European ancestry has been long
appreciated, the observation that the composition and relative
abundance of the human microbiome is influenced by diet,
environment and host genetics has demonstrated how studies
on diverse backgrounds may provide valuable insights. For
example, Smits et al. compared the gut microbiome of the
Hadza hunter-gatherers of Western Tanzania to 18 others in
16 different countries with varying lifestyles [16]. They found
the gut microbiome composition to be clearly differentiated
between traditional and industrialized populations. With the
inclusion of multiple genetically diverse populations in the
analysis, it is hoped that it will be possible to (1) elucidate
the genetic architecture of many complex traits, (2) more
accurately reconstruct ancestral haplotype which cannot occur
in non-Africans and (3) shed light on the role of the human
microbiome in disease susceptibility and resistance given
differing environment and the burden of communicable and
noncommunicable diseases in Africa, South America and Asia.
The disparity in omic research, in terms of genetic diversity of
the study population, and technology capacity across the globe,

may not favor the advancement of our understanding of the
intricate pathogenesis of complex diseases. In addition, such
disparity forms a major obstacle toward the full development
of appropriate global prevention and treatment strategies
particularly in light of precision medicine.

Methodologies underpinning host and
microbiome DSS
To identify one or more genetic variants associated with a given
disease, the most commonly used approach today is to perform
a genetic association study. This goal is achieved by comparing
the frequency of one or more genetic variants between cases and
controls [17, 18]. This has led to the advent of the development of
various host-based GWAS models, mostly based on linear mixed,
random, mixed effects and Bayesian frameworks [19, 20]. Box 1
provides a brief genesis of statistical methods for host-based
GWAS approaches. Although many of these approaches and
tools have been effective at uncovering the genetic basis of many
complex traits, they have potentially missed out many novel
genetic variants and/or failed to disentangle true signals from
spurious associations owing to limitations in the underlying
statistical models. Methodologically, these association frame-
works (Supplementary Table S1 ) can be classified into two broad
categories: linear regression-based and linear mixed model
(LMM)-based frameworks. Supplementary Table S1 displays the
category of the tools and provides a brief description on each
tool.

Box 1: statistical methods in host GWAS

The traditional statistical method for GWAS was the simple
linear (1) or logistic (2) regression, which phenotype Y and
the fixed effects X by the relation:

Y = Xβ + ε (1)

log it(p) ∼ α + βX (2)

where β is the effect size, ε is random noise and P = E
(
Y|X)

is
the expected value of phenotype given genotype. LMM
modifies (1) by introducing a random effects U so that the
model becomes

Y = Xβ + U + ε. (3)

While LMM represented a powerful methodology, three
key issues remained at the forefront of its implemen-
tation: (i) computational cost in evaluating the vari-
ance parameters, (ii) strategy of modeling SNP effects
(fixed SNP effect vs random SNP effect) and confounders
and (iii) method of modeling genetic architecture of the
phenotype (infinitesimal versus non-infinitesimal), lead-
ing to development of various statistical tools. Under
an infinitesimal model, the χ2 [1 Degree of Freedom
(d.o.f)] test statistic for testing association in equation (3),
with the hypothesis βtest = 0 is

χ2 =
(
x′

testV
−1y

)2

x′
testV−1xtest

, (4)

where, V = cov(y) = σ 2
g K + σ 2

ε I; K is the genetic relationship
matrix (kinship matrix) that models sample structure and
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I is n×n identity matrix. The variance parameters σ 2
g and σ 2

ε

are typically unknown and to be computed. The computa-
tion of variance components in LMM is, however, expen-
sive. Various approaches have been proposed to reduce
computational cost. Kang et al. [22] proposed a direct esti-
mation σ 2

g and σ 2
ε by maximizing the REML function, and

then applying spectral decomposition [23] obviating more
computationally intensive approach of determining the
best linear unbiased prediction via Henderson’s iterative
procedure [24].

Computational efficiency is improved from other
approaches that replace the usual relatedness matrix com-
puted from all genome-wide SNPs by low-rank related-
ness matrix [23]. In addition, the effective sample size
of a random effect is reduced by clustering subjects into
genetically similar groups. Moreover, logistic mixed model
has recently been advocated for, in place of LMM, analysis
of binary traits. This is because LMM is based on the
assumption that the trait has constant residual variance—
an assumption that is usually violated by binary traits in
the presence of covariates [24]. In recent years, in light
of trait polygenicity, LMM methods that simultaneously
test the effect of multiple SNPs have been developed, for
example, GCTA [25]. In these, the model is set as

Y = Xβ +
p∑

i=1

gi + ε (6)

where gi is a vector of genetic effects on whole genome.
Bayesian modeling technique has since been adopted for
joint analyses of multiple SNPs, because of their abil-
ity to increase power by leveraging known information
on marker effects. Chen et al. [24] proposed Hierarchical
Bayesian model, in which the SNP random effects are
assumed to follow the mixture distribution:

Y = Xβ + Uα + ε (7)

where αj values are assumed to follow a Gaussian
distribution.

This improved power over other LMM-based methods,
such as GCTA modeled [25] by equation (6). Meanwhile, Loh
et al. [33], in the current popular BOLT-LMM tool, undertook
a different Bayesian approach to capture non-infinitesinal
genetic architecture, modeling SNP effect sizes by fitting
non-Gaussian mixture prior distribution that better mod-
els small- and large-effect sizes. In this framework, the test
statistic in (4) is derived to be
χ2 = (x′

testy
∗)

c , where y∗ is a vector of residual phenotypes
obtained by fitting a Gaussian mixture of priors to the
standard LMM and c is calibration factor defined so that the
LD score regression intercept of the χ2 test statistic under
the non-infinitesimal model matches with that under the
infinitesimal model (4).

Linear regression-based approaches (Box 1) model the pheno-
type of an individual as function of fixed effects (which include
genotype at the candidate marker, as well as optional covariates
such as age, gender and other clinical information). In such
models, the inflation in the test statistic can then be controlled

by using different methods. These include genomic control, mul-
tidimensional scaling, structured association and principal com-
ponent analysis. These methods are implemented in the GWAS
software tools including STRAT [21] and the currently popular
PLINK [22] (Supplementary Table S1). Although these methods
are effective at controlling inflation in test statistic when the
population has structures, they do not suffice in the presence of
population substructure [19]. In particular, they do not account
for the complete genealogy of all study subjects. LMM (Box 2),
an extension of the standard linear regression, partitions the
explanatory variables into two groups: fixed effects, which are
modeled as parameters that are fixed but unknown, and random
effects, which are modeled as being drawn from a random
distribution. This provides a powerful method to simultaneously
account for various levels of sample structure, including pop-
ulation stratification, family structure and cryptic relatedness.
Principally, this is achieved by fitting population structure as a
fixed effect and incorporating marker-based kinship informa-
tion via the variance–covariance structure of the random effect
for the individuals [23, 24]. To date, LMM remains the workhorse
for association mapping and nearly all-current GWAS tools are
based on it. Importantly, not only does LMM provide a control
for confounding due to sample structure, but it also increases
the statistical power to detect causal variants and enables esti-
mation of heritability explained by genotyped markers [25]. This
is achieved by applying a correction that is specific to a given
type of sample structure [26, 27].

Box 2: statistical methods in mGWAS

Diversity metrics (alpha diversity or beta diversity) can
be leveraged as phenotype for mGWAS. In mGWAS [35]
beta diversity is leveraged as phenotype in GWAS. The
beta diversity analysis uses microbiome distance measures
such as UniFrac and Bray-Curtis dissimilarity. Let D =
(dij) be a beta diversity distance matrix between subjects
i and j. Let Gij = |gi − gj| be the genetic distance. The
main hypothesis here is that if a SNP is associated with
the microbiome (through its distance matrix), then the
microbiome distance measure should be smaller for pairs
of subjects that have identical genotype at the SNP given
SNP. Then, assuming a linear relationship,

dij = β0 + βGij + εij

where εij is the environmental effect. If n is the number of
individuals, then n

2 (n − 1) pairs of subjects can be clustered
into three groups with genetic distance 0, 1 and 2. The
hypothesis H0 : β = 0 versus β > 0 is tested using a score
statistic, S, derived by minimizing

∑
i<j

(
dij − β0 − βGij

)2:

S = ∑
i<j d∗

ijGij, where d∗
ij = dij − 2

n(n−1)

∑
p<q dpq. The

conditional variance of S on D is Var0(S|D) = σ 2 =
∑

i<j,p<q d∗
ijd

∗
pqCov(Gij, Gpq), Cov(Gij, Gpq) = 0 when i, j, p and q

are distinct.
Then the variance-scaled score statistic for testing

association of a microbiome distance with a genetic dis-
tance across pairs of subjects is then given by Zsc = S/σ ∼
N(0, 1).

This model was subsequently extended to incorporate
multiple distance matrices so as to improve statistical
power.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
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Lynch et al. [36], proposed an mGWAS method that
uses, as phenotype, relative abundance computed at a
given taxonomic level. Owing to the high dimension of
microbiome relative abundance data, their method applies
regularization based on lasso regression, which results in
a sparse solution. Host SNPs associated with microbiome
are then determined via permutation test, while specific
taxa correlated with host genetic variation identified using
stability selection [37].

While LMMs has become the method of choice for GWAS, it
presents a substantial computational challenge. Methods that
compute the exact association test statistics from complete or
imputed genotype data certainly provide ‘accurate’ P-values
and thus maintain high power. Current software tools using
exact computation of the test statistic include EMMA [28],
FaST-LMM [29] and more recently GEMMA [23] (Supplementary
Table S1). Although the P-values produced by GEMMA are
identical to EMMA and FaST-LMM, the algorithm in GEMMA
provides a higher efficiency, in terms of per-SNP computational
time. It is important to note, however, that even with efficient
implementation, the computation of variance component in
these tools scale in time of O(mn3), where m is the number of
markers and n is the number of individuals, and as such these
tools are impractical for analysis of large samples (Box 2) [26]. To
circumvent computational cost, several approximation methods
have been proposed. These include (i) obviating repetitive
estimation of variance components, as implemented in the
software tools TASSEL [29] and EMMAX [30] (Supplementary
Table S1) and (ii) step-wise implementation [31]: estimation of
the residuals from the LMM under the null model and then
using these residuals as phenotypes for analysis by the standard
linear model (e.g. implemented in software GRAMMAR [32]. This
substantially reduces the per-SNP computation time. Another
important note is that these approximation-based tools show
reduced power at SNPs with small effect sizes. Recently, Loh et al.
[33] proposed an efficient approximation method that adapts
the LMM by taking a Bayesian perspective and modeling non-
infinitesimal genetic architectures via non-Gaussian mixture
prior distributions, invoking the fast variational approximation
to compute approximate phenotypic residuals. Their methods,
implemented in BOLT-LMM and BOLT-REML (Supplementary
Table S1), are the current state-of-the-art methods for host
GWAS analysis not only in terms of computation time and
memory requirement in large cohorts but also, importantly,
in terms of the genetic architecture modeled. Apart from the
methods proposed by Loh et al. [33], all currently existing tools
are based on the infinitesimal model in which all variants
are assumed causal with effect sizes following independent
Gaussian distribution. In addition, all current tools, as far
as we know (Supplementary Table S1), have computational
times that scale with the square or cube of sample size,
rendering them unfeasible in large data sets. Overall, all these
state-of-the-art methods of host GWAS cannot distinguish
confounding from polygenicity in the association test [19].
In contrast to host GWAS, methodological development for
mGWAS has just begun to emerge. The past 3 years have seen
the development of statistical methods for investigating host–
microbiome interactions. These methods leverage microbiome
features (relative abundance of microbial taxa, alpha diversity,
beta diversity or microbial pathway) as a complex trait and
determine their correlation with host genetics, by testing either
multiple-distance matrices across pairs of subjects or taxa

relative abundance [34]. Principally, GWAS can be performed
between any given set of genotypes and phenotypes, and
thus, although most of mGWAS carried out to date have been
limited to the metagenomic level, the framework can similarly
be performed at the metatranscriptomic, metaproteomic and
metabolomic levels.

The two currently existing mGWAS tools are based on linear
regression model as illustrated in Box 3 and Supplementary
Table S2 summarizes the functionalities of these mGWAS tools.
The 1st mGWAS tool is mGWAS [35]. It is a statistical framework
for identifying host genetic variants associated with microbiome
beta diversity with or without interacting with environmental
factors and corrects for skewness and kurtosis. The 2nd mGWAS
tool, HOMINID [36], which is based on Lasso regression, iden-
tifies associations between host SNPs and microbiome taxa.
Additionally, by using Lasso regression plus stability selection
with randomized Lasso, this tool enables identification of micro-
bial taxa that are correlated with specific host SNPs.

Box 3: some unsolved challenges in host and micro-
biome GWAS

• Statistical methodologies for host-based and mGWAS
for identifying causal factors in the observed associ-
ations between the environment, host genetics, the
microbiome, and complex phenotypes

• Determining the direction of causality in the interplay
between host genetics and microbiome in complex
traits

• Determining the impact of host epigenetics on micro-
biome features

• Accounting for interaction among microbial species,
in identifying specific microbial taxa associated with
host genetic variation

• Correcting for confounders arising from the multiple
factors that modulate the microbiome composition

• Modelling the true genetic architecture of complex
traits

• Accounting for the missing heritability in host GWAS

Limitations in current methods and tools for
host and mGWAS
Although substantial progress in the development of meth-
ods and tools for host genome-wide association mapping has
occurred over the past decade and many new tools continue to
be unveiled, many significant challenges need to be addressed
before the gap between statistical association and biological
association can be narrowed. Similarly, initial foray into mGWAS
using custom-made mGWAS tools or ported host GWAS tools
have illuminated several important microbiome-associated host
genetic polymorphisms. Even so, however, several methodolog-
ical limitations and pitfalls exit in using these tools. Box 1
provides some challenges in host and mGWAS.

Most current host GWAS tools are built on the infinitesimal
genetic architecture, which makes the implicit assumption that
all variants are causal with small-effect sizes independently
drawn from Gaussian distributions. For complex traits, it is
now known, however, that only a small proportion of the
genetic variants are actually causal [17]. Thus, employing this
assumption clearly limits power. Bayesian techniques have been

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
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invoked to incorporate non-infinitesimal genetic architecture
[33, 34]. However, the prior on marker effect sizes is assumed
to follow independent Gaussian distributions. The validity
of the Gaussian assumption, according to the central limit
theory, requires sufficiently large sample sizes that may not
necessarily be the case in GWAS analyses. This concern can be
even greater for the case of ascertained case–control studies
because in such cases the distributions of genetic effects are
no longer Gaussian [37] and the independence between genetic
effects and environmental effects is lost due to disproportionate
sampling of cases and controls [38]. In the same light, methods
and tools so far developed to leverage the microbiome as a
complex quantitative trait for association mapping assumes
the infinitesimal genetic architecture and do not incorporate
the effect of genetic interactions on the microbiome. Early
insights gained from the mGWAS studies suggest that only a
few host loci interact with the microbiome; thus, a more realistic
non-infinitesimal genetic architecture could be modeled by
taking a Bayesian approach and incorporating small and
large effect size loci using suitable distributions. However,
the question of how to choose the appropriate distribution
and/or incorporate the (possibly) different distributions of
marker-effect sizes (because not all markers were created
equal) remains open for future research. In addition, existing
methods [34] that leverages multiple microbiome beta-diversity
distance matrices apply the strongest association, defined
as the highest P-value from the set of P-values obtained
from each distance matrix, to evaluate significance. Statistical
techniques that allow to rescale the overall statistic threshold
by effect of distance matrices should provide increased power.
Here methods such as truncated product method [39] could
be employed. Meanwhile, aptly approaches to tackle the
complexity implied by the multi-dimensional interactions
among genetic loci would perhaps include recursive partitioning
method, multifactor dimensionality reduction or Bayesian
technique.

It must be pointed out that another great limitation of current
host and mGWAS methods alike is the absence of robust models
for interactions of host genetics and the microbiome with the
environment. While significant progress has been achieved in
this direction for host GWAS, no appreciable stride has been
made on the mGWAS side. The plasticity of microbiome data to a
plethora of environmental factors makes realistic investigation
of microbiome–environment interactions an extremely difficult
problem. A 1st step toward addressing this issue will be to define
a ‘gold standard’ for statistical methods that will be developed
for such complex interactions. Of course, given that complexity
of the microbiome, in terms of dimensionality and features (zero
inflated, over dispersed and multiple outliers), any such models
that incorporate environmental factors is likely to be computa-
tionally intractable. In such a case, likelihood free methods such
as approximate Bayesian computation could be adopted. These
limitations and challenges in current DSS frameworks conse-
quently impact the progress toward a complete understanding
of the nature association between host genetics, gene regulation
and microbiome.

Dilemma in risk factors: host genetics, gene
regulation and microbiome causality
The results of several host GWAS conducted over the years have
provided several insights into the biological processes underly-
ing many diseases [40]. Several genes, pathways and regulatory

Figure 3. Possible direction of interaction between host genetic, microbiome and

gene regulation on host phenotype.

networks have been identified for a number of complex diseases,
including cardiovascular diseases, type 2 diabetes and cancer
[41, 42]. While the pathogenesis and nature of the aberrant
activities in these pathways and regulatory networks is coming
into view for some complex diseases, the apparent molecular
circuitry remains generally elusive for most traits. Meanwhile,
initial forays into mGWAS have already demonstrated the inti-
mate link between host genetic polymorphisms and microbiome
attributes [43, 44]. For example, a pioneering study by Blekhman
et al. using samples from 93 individuals identified multiple host
loci associated with changes in abundance of microbial taxa [5].
Intriguingly, some of the loci detected in this and other mGWAS
carried out to date overlap with several expression quantitative
trait loci that have previously been identified across multiple
tissues [38]. Moreover, this link is observed to be tissue specific
[45] and enriched with specific human proteins [43]. These dis-
coveries suggest the likely influence of host gene regulation on
specific tissues that interact with the microbiome. However, little
is known about the interplay between host genetic variation,
microbiome composition and host gene expression and how this
impacts host traits (Figure 3).

Several challenges remain toward establishing causality.
These association results are often limited to correlations and
may generally end up identifying consequential changes rather
than the true risk factors that may lead to establish genetics
causality [13, 2]. For example, the predictive power of disease
risk remains poor because current identified variants account
for only a small proportion of additive genetic variation [2].
Consequently, current findings from disease scoring approaches
have not yet had major impact on therapeutic optimization
for the majority of complex traits. Moreover, it has become
apparent that changes in gene regulation are at the center stage
of biological mechanisms underlying most associations, and yet
our current knowledge of gene regulation is still limited [46].
Without a comprehensive knowledge of gene regulation and the
paucity in available tools for studying regulation, the transition
from statistical associations to biological insights (biological
mechanisms, the particular genes involved and the direction
of causality) remains a challenge. Nevertheless, significant
advances in technology coupled with multi-omic approaches,
which is able to simultaneously capture millions of data points,
will enable system-wide examination of complex interactions
in biological system [47].
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Omic data integration

The multi-omic approach involves understanding the complex-
ity of the living as a whole by incorporating data at multiple
biological levels: from gene sequencing to protein expression
and metabolic structures [48]. Therefore, these data cover wide
range of the biological information involved in the variations
that occur in the genes and cellular networks and influence
the functioning of organic systems in their entirety [48].
This approach has mainly been driven by the surge in high-
throughput sequencing efforts over the past two decades. Multi-
omic approach will be able to dramatically improve our way
of analyzing the biological system, which relies on a single-
omic model, that offers limited insight into the complex and
dynamic nature of biological networks and their association
with environment factors. Integrating data from all these
omic levels will be useful for identifying new biomarkers,
generating new knowledge and/or developing new diagnostic
tools. The integration of multi-omic data with GWAS will
bring more insight in the causal factors and the interactions
between the host, microbiome and environment. However,
multi-omics is still in its infancy [47, 49] and requires large-
scale studies that need state-of-the-art tools. So far, many
integrative multi-omic tools have been developed [50]. Multi-
omic method, however, poses significant challenges in terms
of the analysis approach, the statistical methods and the
interpretation of these numerous data [51]. One of the most
important challenges is the difficulty of representing existing
knowledge about the molecular processes involved in many
complex diseases, given that biological systems are a myriad of
complex connections and are closely linked to their evolutionary
history. Another fundamental challenge is that of matching the
heterogeneous data from different methods and platforms. It
requires a synchronization of huge amount of data that vary
in data format, thus potentially will add bias and noise to data
integration processes. This step can use various strategies either
merging the different data coming from the same subjects
or trying to homogenize the data. However, it is very critical
because matching the data must not only put the data in
the same files but also bring a new meaningful knowledge.
In addition, incorporating various omic data each of which
typically contains many measurement errors raises the issue
of quality control. This is compounded by the fact that the
measured molecular data are prone to bias arising from samples
preparation and processing. Another challenge is analyzing the
data of huge size and of different classifications (molecular data,
measurement features, technology used, biological samples,
type of study, etc.). Therefore, bioinformatics approaches and
pipelines and their associated mathematical models need to
address the dimensionality and heterogeneity of the data. In
doing so, machine-learning approaches may be more suitable
for data integration and related modeling, as they provide
a robust way of leveraging hidden knowledge from various
omic data types to improve analyses. On the other hand, topolog-
ical data analysis methods that examine the shape of data with
geometric dimensional conversions [52] can also be suitable in
finding hidden patterns compared to other standards methods
such as correlation-based analysis [53, 54] and unsuper-
vised data integration (matrix factorization methods, Bayesian
methods, network-based methods, multiple kernel learning and
multi-step analysis) [53, 55]. The other approach to explore
is the complex network-based approaches, which may be
worthy of exploration to efficiently handle the multi-omic data
deluge [53].

Role of bioinformatics in the era of
multi-omics
Considering the molecular variation of biomarkers, the rapid
growth in large-scale omic technologies opens windows for
global views of biological system in a holistic hypothesis-driven
manner. Integrative approaches need to be designed and applied
to various levels of biological information to comprehend
the pathogenesis of complex diseases [49]. Bioinformatic
approaches, resources and computational biology tools are at
the center for the advancement in implementing real-time
multi-omic integration and health care analytics. Bioinformatics
is arguably a recent field but has substantially contributed
to the advancement in the modernization of computational
techniques and capacity to handle the amount of biological
data generated by genome sequencing and variation studies
[1, 10, 15]. Bioinformatics currently plays a critical role in
deciphering omic data and organizing information in all aspects
of independent omic layers. While bioinformatics and compu-
tational biology tackle challenges raised from each independent
omic data type in the past decades [15, 49], today multi-omic
era has raised further challenges in integrating various levels
of biological information [47, 49]. Furthermore, analyzing and
interpreting such integrative biological information demand
outstrips supply and further bioinformatics and computational
biology capacities are needed. This issue raises the need to
strengthen the multidisciplinary nature of bioinformatics and
education. In doing so, this will have a critical impact on
the discovery of multi-omic diagnostics, biomarkers, clinical
decision-making and data-driven medicine.

Conclusions and perspectives
The substantial role of host genetics on the microbiome and
on host phenotypes has been identified using the wealth of
available DSS tools. Although many of these methods and tools
have been effective at uncovering the genetic basis of many
complex traits, they have potentially missed out many novel
genetic variants and/or failed to disentangle true signals from
spurious associations owing to limitations in the underlying
single-omic statistical models. Given the current experimental
observations of the strong influence of host genetics on the
microbiome and the role of the microbiome on host pheno-
types, it has become increasingly apparent that integrating the
microbiome in host GWAS will reveal many important insights
and it will be a strong 1st step toward establishing causality. A
critical challenge facing the host genetics and microbiome field
is the identification of genetics risk factors with strong effect
to allow the establishment of the direction of causality in the
observed associations between the environment, host genetics,
microbiome and complex diseases. A complete solution for this
issue would be one of the major breakthroughs for a century-
long problem on understanding human variation relevant.

The integrative analysis may be the key to better understand
the role and mechanisms of host genetics, microbiome and
environment in the manifestation of many complex diseases
(Figure 2). This will ultimately revolutionize therapeutics, driving
the era of precision medicine. The major challenge for this inte-
gration lies in the development of novel statistical techniques
and multi-omic data integration. The integrative analyses will
throw bioinformatics and human genetic studies into a brand-
new era, quickening the pace of movement from population level
to individual level understanding of complex human traits and
diseases.
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It will be interesting to perform simulations to examine the
power of various current host and mGWAS methods and to
investigate their performance under various important factors,
such as sample size, marker effect size, host genetic correlations,
population structure and microbial interactions. Such simula-
tions will not only highlight current methodological limitations
but also guide development and validation of future association
tools. In brief, we discussed DSS approaches in host GWAS
and in mGWAS, outlining their associated methods and tools.
We further discussed the limitations of these methods and
highlighted the dilemma in dissecting causality between host
genetic, microbiome and environment. Finally, we underscored
the importance of integrating multi-omic data with GWAS and
outlined some of the challenges in this data integration. We
believe that this paper may motivate the development of new
methods for mGWAS.

Key Points
• Discussing issues related to host and mGWAS
• Outlining current methods and tools available for host

and mGWAS
• Discussing the importance of integrative multi-omic

approaches in understanding causal factors and the
direction of their effects on host phenotypes

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bfg.

Funding
This work was funded in part by DAAD, the German Academic
Exchange Programme, under grant number 91653117. Some of
the authors are also funded in part by the National Institutes
of Health Common Fund under grant numbers 1U54HG009790–
01(IFGeneRA), U01HG009716 (HI Genes Africa), U24HG006941
(H3ABioNet) and 1U01HG007459–01 (SADaCC) and by Wellcome
Trust/AESA under grant number H3A/18/001. The content of this
publication is solely the responsibility of the authors and does
not necessarily represent the official views of the funders.

Acknowledgements

We are grateful to Oyekanmi Nashiru and Hassan Ghazal
for helpful discussions. Computations were performed using
facilities provided by CHPC (https://www.chpc.ac.za/).

References
1. Zhang J, Chiodini R, Badr A, et al. The impact of next-

generation sequencing on genomics. J Genet Genomics 2011;
38(3):95–109.

2. Visscher PM, Brown MA, McCarthy MI, et al. Five years of
GWAS discovery. Am J Hum Genet 2012;90(1):7–24.

3. Goodrich JK, Davenport ER, Clark AG, et al. The relationship
between the human genome and microbiome comes into
view. Annu Rev Genet 2017;51:413–33.

4. Sandoval-Motta S, Aldana M, Martínez-Romero E, et al. The
human microbiome and the missing heritability problem.
Front Genet 2017;8:80.

5. Blekhman R, Goodrich JK, Huang K, et al. Host genetic vari-
ation impacts microbiome composition across human body
sites. Genome Biol 2015;16(1):191.

6. Cho, Blaser MJ. The human microbiome: at the interface of
health and disease. Nat Rev Genet 2012;13(4):260.

7. Wang J, Jia, H. Metagenome-wide association studies: fine-
mining the microbiome. Nat Rev Microbiol 2016;14(8):508.

8. Richards A, Muehlbauer L, Alazizi A, et al. Gut micro-
biota composition impacts host gene expression by chang-
ing chromatin accessibility. 2018 bioRxiv. doi: https://doi.
org/10.1101/210294.

9. Hall B, Tolonen AC, Xavier RJ. Human genetic variation and
the gut microbiome in disease. Nat Rev Genet 2017;18(11):690.

10. Kohl M, Megger DA, Trippler M, et al. A practical data process-
ing workflow for multi-OMICS projects. Biochim Biophys Acta
2014;1844(1):52–62.

11. Frazer KA, Murray SS, Schork NJ, et al. Human genetic vari-
ation and its contribution to complex traits. Nat Rev Genet
2009;10(4):241.

12. Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS
discovery: biology, function, and translation. Am J Hum Genet
2017;101(1):5–22.

13. Peprah E, Xu H, Tekola-Ayele F, et al. Genome-wide associa-
tion studies in Africans and African Americans: expanding
the framework of the genomics of human traits and disease.
Public Health Genomics 2015;18(1):40–51.

14. Wang K, Li M, Hakonarson H. Analysing biological path-
ways in genome-wide association studies. Nat Rev Genet
2010;11(12):843.

15. Shameer K, Badgeley MA, Miotto R, et al. Translational
bioinformatics in the era of real-time biomedical, health
care and wellness data streams. Brief Bioinform 2016;18(1):
125–4.

16. Smits SA, Leach J, Sonnenburg ED, et al. Seasonal cycling
in the gut microbiome of the Hadza hunter—gatherers of
Tanzania. Science 2017;357(6353):802–6.

17. Zuk O, Hechter E, Sunyaev SR, et al. The mystery of missing
heritability: genetic interactions create phantom heritabil-
ity. Proc Natl Acad Sci U S A 2012;109(4):1193–8.

18. Cantor RM, Lange K, Sinsheimer JS. Prioritizing GWAS
results: a review of statistical methods and recommen-
dations for their application. Am J Hum Genet 2010;86(1):
6–22.

19. Yang J, Zaitlen NA, Goddard ME, et al. Advantages and pitfalls
in the application of mixed-model association methods. Nat
Genet 2014;46(2):100.

20. Pasaniuc, Price AL. Dissecting the genetics of complex
traits using summary association statistics. Nat Rev Genet
2017;18(2):117.

21. Porras-Hurtado L, Ruiz Y, Santos C, et al. An overview of
STRUCTURE: applications, parameter settings, and support-
ing software. Front Genet 2013;4:98.

22. S. Purcell, B. Neale, K. Todd-Brown, et al. PLINK: a tool set for
whole-genome association and population-based linkage
analyses. Am J Hum Genet 2007;81(3): 559–75.

23. Zhou X, Stephens M. Genome-wide efficient mixed-model
analysis for association studies. Nat Genet 2012;44(7):821.

24. Chen H, Wang C, Conomos MP, et al. Control for population
structure and relatedness for binary traits in genetic asso-
ciation studies via logistic mixed models. Am J Hum Genet
2016;98(4):653–66.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
https://academic.
oup.com/bfg
https://www.chpc.ac.za/
https://doi.
org/10.1101/210294


Dilemma in risk prediction from DSS 219

25. Yang J, Lee SH, Goddard ME, et al. GCTA: a tool for
genome-wide complex trait analysis. Am J Hum Genet 2011;
88(1):76–82.

26. Price L, Zaitlen NA, Reich NA, et al. New approaches to popu-
lation stratification in genome-wide association studies. Nat
Rev Genet 2010;11(7):459.

27. Golan D, Rosset S. Mixed models for case-control genome-
wide association studies: major challenges and partial
solutions. In: Borgan ∅, Breslow N, Chatterjee N, et al. (1st
edn). Handbook of Statistical Methods for Case-Control Studies.
Boca Raton, FL: Chapman and Hall/CRC 2018:495–514.

28. Yu J, Pressoir G, Briggs WH, Bi IV, et al. A unified mixed-model
method for association mapping that accounts for multiple
levels of relatedness. Nat Genet 2006;38(2):203.

29. Zhou X, Stephens M. Genome-wide efficient mixed-model
analysis for association studies. Nat Genet 2012;44(7):821.

30. Aulchenko YS, De Koning DJ, Haley C. Genomewide rapid
association using mixed model and regression: a fast and
simple method for genomewide pedigree-based quanti-
tative trait loci association analysis. Genetics 2007;177(1):
577–85.

31. Kang HM, Sul JH, Service SK, et al. Variance component
model to account for sample structure in genome-wide
association studies. Nat Genet 2010;42(4):348.

32. Golan ES, Lander, Rosset S. Measuring missing heritability:
inferring the contribution of common variants. Proc Nat Acad
Sci U S A 2014;111(49)E5272–81.

33. Loh P-R, Tucker G, Bulik-Sullivan BK, et al. Efficient Bayesian
mixed-model analysis increases association power in large
cohorts. Nat Genet 2015;47(3):284.

34. Hua X, Song L, Yu G, et al. MicrobiomeGWAS: a tool for iden-
tifying host genetic variants associated with microbiome
composition. 2015 BioRxiv:031187.

35. Lynch J, Tang K, Priya S, et al. HOMINID: a framework
for identifying associations between host genetic variation
and microbiome composition. GigaScience 2017;6(12):1–7.
doi: 10.1093/gigascience/gix107.

36. Zhao N, Chen J, Carroll IM, et al. Testing in microbiome-
profiling studies with MiRKAT, the microbiome regression-
based kernel association test. Am J Hum Genet 2015;96(5):
797–807.

37. Günther F, Wawro N, Bammann K. Neural networks for mod-
eling gene–gene interactions in association studies. BMC
Genet 2009;10(1):87.

38. Koch L. Complex disease: a global view of regulatory net-
works. Nature Rev Genet 2016;17(5):252.

39. Shu L, Chan KHK, Zhang G, et al. Shared genetic regulatory
networks for cardiovascular disease and type 2 diabetes in

multiple populations of diverse ethnicities in the United
States. PLoS Genet 2017;13(9):e1007040.

40. Gao L, Uzun Y, Gao P, et al. Identifying noncoding risk vari-
ants using disease-relevant gene regulatory networks. Nat
Commun, 2018;9(1):702.

41. Goodrich JK, Davenport ER, Clark AG, et al. The relationship
between the human genome and microbiome comes into
view. Annu Rev Genet 2017;51:413–33.

42. Davenport ER, Cusanovich DA, Michelini K, et al. Genome-
wide association studies of the human gut microbiota. PLoS
One 2015;10(11):e0140301.

43. Huttenhower C, Gevers D, Knight R, et al. Structure, function
and diversity of the healthy human microbiome. Nature
2012;486(7402):207.

44. Price AL, Spencer CC, Donnelly P. Progress and promise in
understanding the genetic basis of common diseases. Proc
Biol Sci 2015;282(1821):20151684.

45. Palsson B, Zengler K. The challenges of integrating
multi-omic data sets. Nat Chem Biol 2010;6(11):787.

46. Ritchie MD, Holzinger ER, Li R, et al.. Methods of integrating
data to uncover genotype–phenotype interactions. Nat Rev
Genet 2015;16(2):85.

47. Hasin Y, Seldin M and Lusis A. Multi-omics approaches to
disease. Genome Biol 2017;18(1):83.

48. Huang S, Chaudhary K, Garmire LX. More is better: recent
progress in multi-omics data integration methods. Front
Genet 2017;8:84.

49. Palsson B, Zengler K. The challenges of integrating multi-
omic data sets. Nat Chem Biol 2010;6(11):787.

50. Zhong S, Jiang D, McPeek MS. CERAMIC: case–control asso-
ciation testing in samples with related individuals, based
on retrospective mixed model analysis with adjustment for
covariates. PLoS Genet 2016;12(10):e1006329.

51. Yu G, Gail MH, Consonni D, et al. Characterizing human lung
tissue microbiota and its relationship to epidemiological
and clinical features. Genome Biol 2016;17(1):163.

52. Yoo S, Huang T, Campbell JD, et al. MODMatcher: multi-omics
data matcher for integrative genomic analysis. PLoS Comput
Biology 2014;10(8):e1003790.

53. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, et al. Mixed linear
model approach adapted for genome-wide association stud-
ies. Nat Genet 2010;42(4):355.

54. Lippert C, Listgarten J, Liu, et al. FaST linear mixed models
for genome-wide association studies. Nat Methods 2011;
8(10):833.

55. Bradbury PJ, Zhang Z, Kroon DE, et al. TASSEL: software for
association mapping of complex traits in diverse samples.
Bioinformatics 2007;23(19)2633–5.

10.1093/gigascience/gix107

	Tantalizing dilemma in risk prediction from disease scoring statistics
	Introduction
	Human variation
	Methodologies underpinning host and microbiome DSS
	Limitations in current methods and tools for host and mGWAS
	Dilemma in risk factors: host genetics, gene regulation and microbiome causality
	Omic data integration 
	Role of bioinformatics in the era of multi-omics
	Conclusions and perspectives
	Key Points

	Supplementary Data
	Funding


