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Type 1 diabetes (T1D) results from the progressive de-
struction of pancreatic b-cells in a process mediated
primarily by T lymphocytes. The T1D research commu-
nity has made dramatic progress in understanding the
genetic basis of the disease as well as in the develop-
ment of standardized autoantibody assays that inform
both disease risk and progression. Despite these advan-
ces, there remains a paucity of robust and accepted
biomarkers that can effectively inform on the activity
of T cells during the natural history of the disease or in
response to treatment. In this article, we discuss bio-
marker development and validation efforts for evaluation
of T-cell responses in patients with and at risk for T1D as
well as emerging technologies. It is expected that with
systematic planning and execution of a well-conceived
biomarker development pipeline, T-cell–related bio-
markers would rapidly accelerate disease progression
monitoring efforts and the evaluation of intervention
therapies in T1D.

Type 1 diabetes (T1D) is a T-cell–mediated autoimmune
disease, wherein both CD4+ and CD8+ T cells are believed
to orchestrate the killing of insulin-producing b-cells.
These cellular subsets are dynamic during the disease
process following interactions with host tissues and innate
immune cell subsets and are thought to fluctuate in
number, function, and tissue distribution during the path-
ogenesis of T1D. While multiple immunoregulatory defects
contribute to a collective loss of immune tolerance, there

remains an outstanding need to monitor T cells during
T1D pathogenesis, which thus represents the focus of this
work.

The role of T cells as essential cellular constituents of
disease progression has motivated research consortium
efforts to develop T-cell biomarkers in T1D, with atten-
tion to two broad classes of markers, namely, 1) antigen
specific (i.e., captured by assays that measure the num-
ber and/or function of T cells specific for b-cell auto-
antigens) and 2) antigen agnostic (i.e., involving assays
that measure T-cell attributes without accounting for
the specificity conferred by the T-cell receptor [TCR])
(Fig. 1). In addition, the phenotypes of antigen-specific
or antigen-agnostic T cells are only beginning to be fully
evaluated with newer technologies, including single-cell
approaches that may shed light on the pathophysiolog-
ical mechanisms underlying the disease. For example,
the value of extensive transcriptomic and cellular phe-
notyping is shown in the CD8+ T-cell exhaustion markers
in vasculitis (1), and similar studies are ongoing related
to T1D (JDRF Biomarker Working Group and Core for
Assay Validation, The Environmental Determinants of
Diabetes in the Young [TEDDY], INNODIA, Type 1 Di-
abetes TrialNet).

Despite significant collective efforts to date from inves-
tigators and their funding agencies, there remains a need
within the scientific community to adequately develop and
widely implement validated T-cell biomarkers and fit-for-
purpose assays for numerous applications monitoring T1D
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progression, onset, and response to therapy. The reasons
for this deficiency are multifold. First, the detection of
antigen-specific autoreactive T cells has been technically
challenging because these cells migrate among blood,
secondary lymphoid organs, and insulitic lesions, with
frequencies in peripheral circulation often below 10 per
million T cells (2). Second, autoreactive T cells are often
characterized by low-avidity interactions between the
islet peptide/HLA complex and TCR, making their iso-
lation or enumeration challenging (3–5). Third, T cells
that are reactive to the same b-cell autoantigens may
be found in control subjects without diabetes and, there-
fore, precise definition of their phenotypes becomes
essential for understanding their function in the dynamic
states preceding overt clinical disease (6). Until recently,
the lack of sophisticated technologies had precluded
deep analyses of T-cell subsets to identify pathways,
networks, and TCR repertoire characteristics that are
able to represent meaningful immune alterations for
clinical contexts. Finally, there appears to be significant
heterogeneity among individuals within T1D that may be
driven by complex genetic risk factors, age, and other

variables and may affect the progression through disease
stages as well as responses to therapies. The heterogeneity
is manifest at the tissue level in terms of the frequency and
identity of cellular infiltrates in the islets and other
histopathological findings from human pancreas tissues
from individuals with T1D available through the Network
for Pancreatic Organ Donors with Diabetes (nPOD) pro-
gram and other collections (7).

Successful development of T-cell biomarkers requires
a multifaceted assessment of their purpose, feasibility,
and utility (Fig. 2). T-cell biomarker research is fueled by
the need to address unresolved questions in the T1D
research community. This includes predicting the rate of
disease progression at all stages: from high genetic risk to
single-autoantibody positive (pre-stage 1) to develop-
ment of two or more autoantibodies (stage 1) and then
development of dysglycemia (stage 2) and ultimately to
clinical onset (stage 3) (8). Biomarkers are also needed to
identify subjects for evaluating therapies (stratification
markers for use in clinical trials) and for early assessment
of response(s) to therapy (pharmacodynamic markers).
To achieve feasibility, sample requirement is a serious

Figure 1—Methods for assessing T-cell biomarkers in T1D. Experimental approaches include assays for assessing both antigen-specific (A
and B) and antigen-agnostic features of T cells (C and D). A: Assays for monitoring antigen-specific T-cell activation, proliferation, and
cytokine production. B: HLA class I or II multimers loaded with autoantigenic peptides facilitate the detection, phenotyping, and downstream
molecular analysis of antigen-specific T cells. Shown is a rendering of the 1E6 TCR recognizing a preproinsulin peptide in the HLA-A*0201
binding groove (85). Immunosequencing of the TRA and TRB genes encoding the V (blue), D-J (red/yellow and gray), and C (green) regions of
the TCR-a and TCR-b chains, respectively, facilitates characterization of the TCR reactivity antigen-binding pocket, as determined from the
highly polymorphic TRB complementarity-determining region 3 (CDR3; red/yellow) or by complete a/b-chain pairing. C: Flow cytometric
approaches employing antibodies conjugated to fluorescent molecules or metals (via mass cytometry) can be used to phenotype a large
array of surface and intracellular markers. D: Both bulk- and single-cell technologies facilitate phenotypic, transcriptional, and epigenetic
profiling of T cells. Recent advances now facilitate integration of these methodologies at the single-cell resolution, providing high-parameter
T-cell biomarkers with molecular resolution.
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practical consideration for T-cell biomarkers, particularly in
pediatric cohorts. Blood volumes for routine collection are
inherently limited, which impacts the capacity to detect rare
populations of T cells. While disease processes that directly
mediate T1D presumably occur within the pancreas, frozen
peripheral blood mononuclear cells (PBMC) are the primary
sample type that is available for widespread analysis and
clinical trial monitoring. Established sample processing
protocols must be applicable to cryopreserved PBMC to
accommodate batch processing and analysis in clinical trials
with multiple participating sites. Ultimately, in order
for T-cell biomarkers to achieve broad utility, the assays
by which they are measured must be transitioned from
“boutique” status requiring specialized expertise into op-
timized and validated assays for widespread adoption and
clinical application.

There are some useful roadmaps we can use in this
process. Notably, preceding the era of T-cell assay optimi-
zation, robust immunologic methodologies were success-
fully developed and established for the detection of
autoantibodies (9). This process started with reproducibil-
ity testing of the assay/methodology and transitioned into
multisite validation and implementation. In the sections
that follow, we discuss the current landscape of candidate
T-cell biomarkers and propose a systematic pipeline to
serve as a guide by which such biomarkers may be further
developed.

CANDIDATE T-CELL BIOMARKERS IN T1D

We define a candidate biomarker as a readout of an
optimized assay that has been replicated in more than
one laboratory. A summary of candidate T-cell biomarkers
is presented in Tables 1 and 2. Promising features of
T cells, measured primarily in independent laboratories,

and pending further replication and validation as bio-
markers, are summarized in Supplementary Table 1.

CANDIDATE ANTIGEN-AGNOSTIC T-CELL
BIOMARKERS

Assays that measure features of T cells in an antigen-
agnostic manner generally require fewer cells and have
lower variability when compared with what is typically
observed for antigen-specific assays. These methodologies
commonly include cytometric profiling and in vitro func-
tional assays.

Several candidate antigen-agnostic biomarkers have been
replicated in multiple laboratories or have undergone addi-
tional optimization for use as clinical biomarkers in assay
cores established for biomarker validation testing. Many of
these candidate biomarkers have been shown to discriminate
patients with T1D from healthy control subjects, including
frequencies of a number of T-cell subsets as well as markers of
immunoregulation and IL-2 responsiveness (Table 1). Fewer
antigen-agnostic biomarkers have been demonstrated to be
associated with disease progression or in defining subtypes of
patients, but there have been a number of findings that are
promising and noteworthy. An increased frequency of T
follicular helper cells (Tfh) has been reported in the peripheral
blood of patients with T1D versus healthy control subjects,
and this frequency has been negatively correlated with
C-peptide levels in recent-onset T1D (10). Tfh cells have
a surface marker profile characterized by expression ICOS,
PD-1, and CXCR5 and are involved in B-cell activation and
differentiation within germinal centers. A second functional
biomarker, CD4+ T-cell hyporesponsiveness to IL-2, has been
identified by reduced phosphorylation of STAT5 and is con-
sistent with the association of the CD25 (IL2RA) gene with
T1D (11,12). Deficient IL-2 responses are significant for T1D

Figure 2—Process considerations for developing informative T-cell biomarkers. Biomarker development begins by defining the purpose of
the biomarker and then assessing feasibility and utility. The boxes in blue (left) indicate features of candidate T-cell biomarkers and the
assays used to detect them that are in development, whereas green boxes (right) highlight the key features required of validated T-cell
biomarkers and associated assays. Feasibility includes considerations for sample-sparing assays utilizing cryopreserved biobanked
samples.
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because regulatory T cells (Tregs) are dependent on this
cytokine for survival and metabolic fitness. Although the
frequencies of Tregs overall are not different in patients
and healthy control subjects, the fitness of these immune
regulatory cells may be affected in the diseased state:
individuals with low CD4+ T-cell IL-2 signaling have a re-
duction in frequency of memory and activated Tregs
compared with T1D subjects who have high IL-2 signaling
(13). IL-2 hyporesponsiveness is correlated with FOXP3
instability in thymic and peripheral Tregs in T1D (12,14).
Although this functional abnormality cannot be distin-
guished by the surface phenotype of the cells, it may have
utility in stratifying patients for immune therapies that
target this pathway. Interestingly, Pesenacker et al. (15)
recently reported that Treg gene signatures were signifi-
cantly altered in T1D patients when compared with
healthy control subjects and those with type 2 diabetes.
Treg gene signature–based algorithms accurately predicted
the rate of C-peptide decline in new-onset T1D patients
enrolled in T1DAL (Inducing Remission in New Onset
T1DM With Alefacept) and START (Study of Thymoglob-
ulin to Arrest Type 1 Diabetes) trials (15).

To date, the utility of transcriptional and high-
dimensional cytometric analyses of T-cell subsets as a prog-
nostic biomarker for risk and rate of T1D progression are
largely unknown. Studies to evaluate these technologies
and to confirm discovery-level biomarkers with samples
from large T1D consortia (e.g., including TEDDY, Type
1 Diabetes TrialNet, and the Immune Tolerance Network
[ITN]) are ongoing.

CANDIDATE ANTIGEN-SPECIFIC T-CELL
BIOMARKERS

Islet antigen-specific T cells represent potential T-cell
biomarkers in T1D, but to be useful, features of these
cells need to be differentiated from those found in healthy
control subjects that are reactive with the same epitopes
(6,16). Several distinct assays have been implemented to
quantitate and characterize antigen-specific T cells in
peripheral blood, including proliferation assays, HLA class
I multimers and class II tetramers (peptide–MHC com-
plexes coupled to fluorophores or quantum dots [Qdots]),
activation-based assays, and ELISpot (detection of cyto-
kine responses to defined HLA class I or class II binding
peptides) (Table 1). However, for the reasons described,
detection of antigen-specific T cells is technically challeng-
ing, often limiting their utility. The performance of antigen
specific T-cell assays in T1D is discussed below.

To date, antigen-specific T-cell assays have identified
CD4 and/or CD8 T cells that recognize epitopes derived
from insulin/proinsulin/preproinsulin, GAD65 (glutamic
acid decarboxylase), IA-2 (islet antigen 2), ZnT8 (zinc
transporter 8), IGRP (islet-specific glucose-6-phosphatase
catalytic subunit-related protein), chromogranin A, IAPP
(islet amyloid polypeptide), and GRP78 (glucose-regulated
protein 78) in T1D subjects (2). In general, these peptides
were discovered by their elution off of HLA molecules

associated with genetic risk for T1D (e.g., DR4) as well as
their expression on class I HLA molecules on b-cells. Some
(e.g., ZnT8, preproinsulin) but not all (e.g., GAD65, chro-
mogranin) peptides are uniquely expressed in b-cells. This
concept of antigen distribution among various cell types
and tissues may prove to be important when considering
the relationship between antigen persistence and the
maintenance of immunologic memory within the adaptive
immune system. Recently discovered posttranscriptionally
modified, hybrid, and alternatively spliced/translated islet
epitopes represent a new frontier for the application of
antigen-specific assays in the context of disease monitoring
and interventions (17). The emergence of T cells with
reactivity to these modified epitopes provides a conceptual
basis for how higher-affinity T cells may emerge to promote
b-cell autoreactivity following cellular stress events. How-
ever, given the large number of antigens and epitopes
that have been identified, development of standardized
antigen-specific T-cell biomarkers and assays will re-
quire coordinated developmental work within the com-
munity, as well as novel computational approaches to
prioritize which antigens and epitopes will be inves-
tigated and advanced as biomarkers.

Several candidate antigen-specific T-cell biomarkers
have been replicated in independent laboratories. Multiple
studies have detected increased frequencies of CD8 and
CD4 islet-specific T cells in subjects with T1D compared
with healthy control subjects using HLA class I multimers
and class II tetramers, proliferation, and activation assays
(3,16,18–26). Higher frequencies of antigen-specific T cells
have also been observed in T1D subjects with shorter
disease duration and in children versus adult T1D patients
(5,20,24,27–29). Studies using ELISpot assays have iden-
tified an inflammatory signature characterized by in-
creased frequencies of IFN-g+ T cells in patients with
T1D as compared with healthy control subjects, in
whom IL-10 was the dominant cytokine secreted from
PBMCs (5,28–34).

Pairing flow-based approaches to identify antigen-specific
T cells with platforms such as mass cytometry (35,36) and
single-cell transcript and TCR analyses (26,37), including
newer technologies such as nucleotide-based barcoded
sequences conjugated to antibodies or HLA multimers,
have the potential to provide robust insights into the phe-
notypes and TCR clonotypes of antigen-specific T cells in
cross-sectional or longitudinal sample sets. These types of
combinatorial assessments may also generate the next gen-
eration of refined T-cell biomarkers.

CLINICAL RESPONSE T-CELL CANDIDATE
BIOMARKERS

Candidate T-cell biomarkers indicative of treatment effect
or response to therapy are emerging from integrated
mechanistic studies (Table 2). Even in trials that did not
meet their primary clinical end points, informative assays
continue to reveal information on the underlying biology
of the disease and the alterations that occur upon
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therapeutic intervention. Both antigen-agnostic and antigen-
specific candidate biomarkers have been identified in
trial samples, with the latter primarily utilized in the
context of antigen-specific immunotherapies. Clinical tri-
als in T1D using abatacept (CTLA-4-Ig), teplizumab (anti-
CD3), rituximab (anti-CD20), or therapy with low-dose
antithymocyte globulin (ATG) alone or in combination
with G-CSF have revealed changes in T-cell frequency or
exhaustion that correlate with stabilization of C-peptide
levels or the rate of C-peptide decline (38–42). Whole-
blood transcriptome analysis of abatacept-treated new-
onset T1D patients revealed altered expression of the
T-cell costimulatory molecules ICOSLG, CD40, and
CD58 in responders (i.e., subjects where C-peptide secre-
tion was transiently preserved) versus nonresponders (43).
Similarly, reduced frequencies of proinsulin class I multimer+

CD8 T cells were observed in subjects with preserved
C-peptide levels compared with placebo in clinical trials
targeting proinsulin with a DNA vaccine or intradermal
proinsulin peptide (44,45).

Despite various mechanisms of action for different drugs,
the concept that positive therapeutic outcomes will be asso-
ciated with Treg enhancement and the depletion or disabling
of effector T-cell populations is emerging as a generalized
paradigm. As an example of the latter, signs of CD8+ T-cell
exhaustion were shown to correlate with functional responses
to teplizumab and correlate with long-term preservation of
C-peptide at the end of a 2-year study period (39). Conversely,
in more than one T1D immunotherapy trial, enhancing the
number (absolute or relative) or function of Tregs correlated
with a beneficial effect on disease progression. ATG and
alefacept (LFA-3-Ig), for example, depleted the number of
circulating CD4 and CD8 memory and effector T cells with
relative preservation of Tregs (40,46). However, increased
Treg numbers alone was not sufficient for clinical benefit, as
also shown in the IL-2/rapamycin trial in which a decline in
C-peptide was seen and attributed to increased NK cells and
effector T cells in spite of increased Tregs (47). Given the
known interplay between Treg and NK-cell homeostasis and
the recent identification of NK-cell signatures during T1D
progression in TEDDY cohort participants, examination of
T-cell, and particularly Treg, biomarkers in the context of NK-
cell frequency, activation, and function may prove beneficial
following immunoregulatory interventions (E. McKinney,
"TEDDY transcriptomics: patterns of progression in T1D,"
presented at the Immunology of Diabetes Society Congress,
London, U.K., 2018, unpublished observations).

T-cell analytes that are relatively stable in an indi-
vidual in a longitudinal manner yet variable among
individuals represent desirable biomarkers. As a result,
variability observed within an individual during the
natural history of disease or in response to therapy
can be attributed to the disease process or to the specific
therapeutic agent(s) applied. Achieving a deeper under-
standing of the most relevant T-cell changes for the
ascertainment of treatment and/or therapeutic effect in
response to immunotherapies will require dense data

sampling and analysis of relevant clinical samples in
a harmonized fashion.

COLLABORATIVE WORKSHOPS AND BIOMARKER
VALIDATION

The reproducibility in detection of biomarkers is directly
reliant on the optimization and transferability of the
assays measuring them (i.e., similar results should be
obtained in multiple laboratories using different sample
sets collected in the same harmonized fashion). Toward
this goal, Fig. 3 outlines steps of a proposed comprehensive
pipeline for the development of T1D-relevant biomarkers
in the T1D community, including T-cell biomarkers and
their associated assays. In T1D, candidate T-cell bio-
markers that are antigen agnostic have advanced the
farthest through validation processes using clinical sam-
ples. When establishing a fit-for-purpose assay during
biomarker validation, every effort should be made to
comply with internationally recognized standards, when
they exist, such as the guidance of the International
Council for Harmonisation (https://www.ich.org/products/
guidelines.html), ISO/IEC 17025 (https://www.iso.org/
standard/66912.html), or the European Medicines Agency
reflection paper for laboratories that perform the analy-
sis or evaluation of clinical trial samples (https://www.
ema.europa.eu/documents/regulatory-procedural-guideline/
reflection-paper-laboratories-perform-analysis-evaluation-
clinical-trial-samples_en.pdf) (49). Various workshops
have provided an invaluable assessment of these assays
and are needed on an ongoing basis to maintain the
quality of immune cellular measurements through large-
scale validation.

In previous and ongoing efforts, sharing of blinded
replicate samples between laboratories has been used to
establish the reproducibility of biomarker detection and
the sensitivity and specificity of assays measuring them.
The ITN and Type 1 Diabetes TrialNet have conducted
workshops to evaluate the transferability of various
antigen-specific T-cell–based assays and the reproduc-
ibility of biomarker detection in a blinded fashion. These
workshops showed the highest sensitivity and specificity
for a cellular proliferation (immunoblot) assay and for
ELISpot measurements, although optimization for wide
utility involving small sample volumes or frozen biosam-
ples is yet to be achieved. These challenges have stalled the
progress of these assays through the optimization stage of
the pipeline (Fig. 3 and Table 1) (50,51). The performance
of class II MHC tetramers has been modest in workshop
testing. In formal validation efforts by the Immunology of
Diabetes Society, detection of antigen-specific CD8+ and
CD4+ T cells with HLA class I multimers and class II
tetramers showed good reproducibility in individual lab-
oratories but were somewhat variable for replicate samples
measured in different laboratories (52–54), limiting their
feasibility as easily assayable pharmacodynamic markers
for antigen-specific therapies and challenging their de-
velopment to “fit-for-purpose” status as well. Thus, there
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continues to be a dearth of widely usable, optimized assays
for antigen-specific biomarkers in T1D. In related efforts,
the effects of sample preparation on T-cell assay outcomes
(e.g., fresh versus frozen and time to sample assessment)
has been carefully studied by the Immunology of Diabetes
Society and will continue to be evaluated with new assays
for the detection of novel biomarkers (55,56). Workshop
efforts are being increasingly embraced by the T1D bio-
marker community via centralized facilities (57), which
should significantly help with go/no-go decisions along
a development pipeline, like the one proposed herein (Fig.
3). A summary of key challenges and considerations for
progress in this field is presented in Table 3.

FUTURE PROSPECTS WITH GENOMICS

TCR Immunosequencing as a Biomarker
An area that straddles the antigen-specific and antigen-
agnostic biomarker space is TCR immunosequencing. Each
T-cell clone expresses a unique TCR to recognize an antigen
and thus TCR sequences can be used as a surrogate for
individual T-cell and clonotypic measurements. Advan-
tages of TCR biomarkers include the absence of a require-
ment to have live T cells for assays, minimal intra- and
interassay variations, and the capacity to detect extremely
infrequent T cells. Two strategies have been pursued in the
field thus far to utilize TCR sequences as part of disease-
specific biomarkers. First, TCR repertoire diversity in
the blood has shown differences between T1D patients

and control subjects (Supplementary Table 1) (57,58).
Second, disease-specific TCR clonotypes have been identi-
fied within the target organ (25,59,60) or in islet antigen-
specific T cells (34,37,61–63) that are commonly and/or
exclusively detected in T1D patients. Of importance, prev-
alent TCR clonotypes in the pancreas and pancreatic lymph
nodes are detected in peripheral blood of the same donor
and of other T1D patients (16,59,64), and longitudinal
studies have demonstrated consistent presence of antigen-
specific TCR clonotypes over time in subjects (37,61).

Other Genomics Approaches
A number of exciting technologies are now available to the
T1D community to rapidly advance T-cell biomarker dis-
covery, including the expanding –omics platforms and the
creation of high-dimensional data sets. Notably, these
opportunities emanate from significant advances in single-
cell RNA sequencing, epigenetic assessments (e.g., DNA
methylation; Assay for Transposase-Accessible Chromatin,
ATACseq), molecular profiling of antigen-specific T cells
(26,37), and high-parameter mass cytometry of islet MHC
multimer–stained cells (35,36), among others. These tech-
nologies have not been widely tested in T1D for purposes
of prediction or in clinical trial settings to date, but
increasing numbers of clinical and tissue-based studies
have begun to include these novel technologies as part
of measured parameters. As progress continues and
data assimilates, cross-expertise collaborative efforts will
become vital in the biomarker field, with necessary

Figure 3—Proposed stages of development for T1D biomarkers and assays (consensus view of the authors). Biomarkers and their
associated assays have parallel and independent lines of development, ideally converging at the stage of biomarker validation using fit-for-
purpose assays for reliable use by the scientific community. A: A biomarker must successfully pass through stage 3 to be considered
validated for research purposes. If a biomarker is a candidate for regulatory decision-making, subsequent stages of development (stages 4–5)
must be completed.B: All assays should ideally achieve fit-for-purpose status (stage 4) for widespread use tomeasure a validated biomarker.
In specific instances, where an assay has achieved approval for marketing purposes, it must be cleared by regulatory bodies (stage 5). SOPs,
standard operating procedures.
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Table 3—Challenges impeding progress toward the development of effective T-cell biomarkers in T1D

Challenges Potential solutions and technological advances needed

Biological
High repertoire diversity and low precursor

frequency of autoreactive T cells in peripheral
blood

Develop or improve assays capable of measuring the complex
mixture of autoreactive T cells

Implement new technologies and approaches for identifying
pathogenic signatures, including high-dimensional flow
cytometry, mass cytometry, and barcoded antibodies or
pMHC multimers for use in scRNA-Seq approaches

Develop sensitive molecular biomarkers capable of detecting
signatures of autoreactive T cells, including TCR
immunosequencing

Large numbers of genetic risk variants impacting
cellular function

Create isogenic cellular systems to identify causative SNPs and
elucidate their impact on T-cell function

Employ well-characterized biobanks with genotype-selectable
donor samples

High degree of heterogeneity in T-cell phenotypes
among subjects with T1D

Conduct functional testing on subjects with defined phenotypic
profiles

Define and control for covariates leading to heterogeneity in T-cell
responses

Design and conduct interventional trials using targeted
populations with mechanistic outcomes

Transient or variable autoreactivity
over the natural history of the disease

Build robust longitudinal and interventional cohorts with sufficient
clinical samples

Process
Low sample volumes in peripheral blood of pediatric

samples
Work toward miniaturizing functional assays
Develop surrogate markers of autoreactivity that do not require

large sample volumes
Need for measures that correlate T-cell autoreactivity

with endogenous b-cell mass and/or function
Develop assays capable of detecting signals from autoreactive

T cells in circulation reflective of ongoing pathology within
T1D islets

Characterize the degree of overlap between tissues and
peripheral blood signatures

Need to understand the pathogenic potential of T-cell
subsets or reactivities

Create biomimetic devices to model the islet:immune
microenvironment

Employ new technologies to test the function of antigen-specific
T cells in viable pancreatic tissue sections

Need for assay reproducibility and interoperability Employ independent validation cores and sample resources
capable of repeating assays to test reproducibility and
robustness

Incentivize replication testing

Paradigms
Focus on limited epitopes from known autoantigens Consider nonnative peptides, hybrid peptides, posttranslationally

modified peptides
Implement novel high-throughput unbiased peptide screens
Implement novel computational approaches to model peptides

capable of activating T cells through the TCR:MHC complex
Consider alternate concepts to explain origins of

autoreactivity
Improve understanding of endogenous stress response and host

response to commensal bacteria and viral agents, for
example

Focus on classical T1D pathogenesis Broaden studies to include longitudinal studies of T cells in cancer
subjects receiving immune checkpoint inhibitors

Understand autoreactivity emanating from rare genetic variants
with high penetrance of T1D

T-cell–centric approaches Broaden studies to better understand T cell:B cell and T cell:APC
interactions

Understand exogenous signals that can break T-cell tolerance
Heavy focus on the pathogenic features of

T-cell autoreactivity in subjectswith known genetic
risk

Better understand the principles related to the mechanisms by
which the MHC class II haplotype of DR15-DQ6 influences
the T-cell repertoire and leads to dominant protection from
disease

APC, antigen-presenting cell; pMHC, peptide MHC; scRNA-Seq, single-cell RNA sequencing; SNPs, single nucleotide polymorphisms.
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involvement of systems and computational biology for the
analysis of large multidimensional data sets.

CONCLUSIONS

T cells play a central role in T1D pathogenesis, and
therefore, validated T-cell biomarkers will undoubtedly
expedite the clinical path toward approved immunothera-
pies for T1D. The T1D Biomarker Working Group and the
associated Core for Assay Validation (www.t1dbiomarkers.
org) have been committed in recent years to moving
promising candidate biomarkers out of the discovery realm
into confirmation and validation testing via a collaborative
and coordinated process. Despite years of dedicated
attempts to establish T-cell biomarkers for the prediction
and monitoring of T1D, the identification and acquisition
of sample biobanks from large-scale repositories and/or
longitudinal studies (e.g., TEDDY, Type 1 Diabetes
TrialNet, T1D Exchange) (38–42) coupled with modern
technologies and biostatistical and machine learning
approaches now make success more likely than ever. As
a community, we must now validate the most promising
T-cell biomarkers and assays through large, harmonized
studies and publish standard operating procedures for
widespread use. Once these stages are accomplished,
T-cell biomarkers should also be evaluated in relation to
other immune cell populations, such as NK cells, B cells,
macrophages, and dendritic cells, which may inform the
mechanisms underlying the breach of T-cell tolerance in
T1D. The establishment of clinically validated T-cell bio-
markers for T1D is an achievable reality that will require
ongoing commitment and integrated efforts by key stake-
holders including, scientists, clinicians, industry partners,
regulators, and funding agencies.
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