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Validation of an apnea and 
hypopnea detection algorithm 
implemented in implantable 
cardioverter defibrillators. The 
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Diagnosis of sleep apnea (SA) using simple tools has the potential to improve the efficacy of cardiac 
implants in the prevention of cardiac arrhythmias. The aim of the present study was to validate a 
transthoracic impedance sensor for SA diagnosis in patients with cardiac implants. We compared 
the apnea-hypopnea index (AHI) obtained from polysomnography (AHIPSG) with the AHI obtained 
from autoscoring algorithms of the ApneaScan implantable impedance respiration sensor (AHIAS) 
three months after implantation of cardioverter-defibrillator (ICD) or cardiac resynchronization 
therapy-defibrillator (CRT-D) devices. Twenty-five patients with indications for implantation of ICD or 
CRT-D (INCEPTA; Boston Scientific) (24 men, 59.9 ± 14.4 years; LVEF 30.3 ± 6.4%; body mass index 
25.9 ± 4.2 kg/m²) were included. Mean AHI-PSG was 21.9 ± 19.1 events/hr. A significant correlation 
was found between AHIPSG and AHIAS especially for the most severe SA (Spearman correlation: 0.71, 
p < 0.001). Intraclass Correlation Coefficient (was in the expected range: 0.67, 95% CI: 0.39–0.84. The 
mean bias was 5.4 events per hour (mean AHI: 23.3 ± 14.6 versus 29.7 ± 13.7 for AHI-PSG and AHI-AS, 
respectively). An optimal cutoff value for the AHIAS at 30 events/h was obtained from the Receiver 
Operator Characteristic (ROC) curve analysis, which yielded a sensitivity of 100%, a specificity of 80%, 
PPV = 67%, NPV = 100%. Using an advanced algorithm for autoscoring of transthoracic impedance 
included in ICDs is reliable to identify SA and has the potential to improve the management of patients 
with cardiac implants.

Sleep-disordered breathing (SDB), most commonly presenting as either obstructive sleep apnea (OSA) or central 
sleep apnea (CSA) with Cheyne–Stokes respiration, has been recognized as a risk factor for cardiovascular dis-
eases such as hypertension, coronary heart disease and heart failure (HF)1. The prevalence of SDB in patients with 
cardiovascular disease is high and might contribute to modulating evolution and prognosis1. The complexity of a 
standard nocturnal polysomnography (PSG) performed in the laboratory for sleep apnea identification imposes a 
large patient burden and a relevant economic cost to the healthcare system and may limit the access to diagnosis1.

New techniques for diagnosing sleep apnea (SA) have been proposed for specific at risk patient popula-
tions. Pacemaker transthoracic impedance sensors were used to facilitate SA diagnosis in chronically implanted 
patients2–4. However, one of the challenges was the low reliability of the systems to identify sleep duration. The 
identification of sleep disorders can now be automatically achieved by algorithms that incorporate physical activ-
ity monitoring, thus allowing to separate daily activity and sleep periods. This might improve the sensitivity of 
SA diagnosis by cardiac implants. Additionally, an apnea-hypopnea detection algorithm has recently been imple-
mented in implantable defibrillators (ICD and CRT-D, model INCEPTA; Boston Scientific) and can be used in 
patients at high risk of sudden death.
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The objective of the current study was to compare the apnea-hypopnea index (AHI) obtained from conven-
tional in-lab PSG (AHI-PSG) with the autoscoring algorithm (the ApneaScan) implemented in ICDs through the 
impedance respiration sensor three months after ICD or CRT-D implantation.

Methods
The present study was a prospective, multi center (Grenoble, Nancy, Montpellier), phase-IV with blinded 
analysis and central reading of polysomnography trial. The target population for the AIRLESS study was the 
general patient population indicated for an ICD. Heart rate and left ventricular ejection fraction (LVEF) were 
monitored at baseline, 6 weeks, and 12 weeks after ICD or CRT-D implantation. The study was conducted in 
accordance with applicable good clinical practice requirements in Europe, French Law, ICH E6 recommenda-
tions, and Ethical Principles of the Helsinki Declaration. It was approved by an independent Ethics Committee 
(Comité de Protection des Personnes, Grenoble, France, IRB0005578) and registered on the ClinicalTrials.gov site 
(NCT02979184). Written informed consent was obtained from all patients.

Inclusion and exclusion criteria.  Patients with a standard CT-D or ICD5 indication were eligible for enrol-
ment in the study. They were implanted with devices implemented with the ApneaScan algorithm. All patients 
were able to manage the Remote Monitoring System procedure (LATITUDE Patient Management System) for 
automatic data transmission.

We excluded patients with obstructive lung disease as defined by a FEV1/FVC less than 70%, body mass index 
greater than 35 kg/m2, patients scheduled for cardiac surgery or who had a strong likelihood of cardiac surgery 4 
months after enrolment.

Polysomnography.  OSA diagnosis was obtained by full polysomnography. Sleep was scored manually 
according to standard criteria6. Polysomnography used continuous acquisition of the following recordings: elec-
troculogram (EOG; 3 channels), electroencephalogram (EEG; 3 channels), electromyogram (EMG; 1 channel) 
and electrocardiogram (ECG; 1 channel). Airflow was measured using nasal pressure associated with the sum of 
oral and nasal thermistor signals. Respiratory effort was monitored with abdominal and thoracic bands. An apnea 
was defined as a complete cessation of airflow ≥ 10 s and a hypopnea as a reduction ≥ 50% in the nasal pressure 
signal or a decrease between 30% and 50% associated with either oxygen desaturation ≥ 4% or EEG arousal. 
Apneas were classified as obstructive, central, or mixed according to the presence or the absence of respiratory 
effort. The criterion for sleep apnea in this study was an apnea-hypopnea index (AHI) ≥ 15 events per hour of 
sleep, as described previously7. PSG was performed in hospital at baseline before implantation and 3 months after 
device implantation.

Sleep Apnea algorithm and data transmission system.  The ApneaScan system is an impedance-based 
respiratory sensor implemented in the INCEPTA devices (ICD and CRT-D). It monitors within the patient’s core 
sleep hours, the SDB, which is expressed as Respiratory Disturbance Index (RDI) (Fig. 1).

The LATITUDE Patient Management System is used to remotely connect clinicians and patients to support 
cardiac care, through a Communicator. The Communicator uses a radio frequency communication system to 

Figure 1.  The Apnea Scan algorithm implemented in the ICD monitors within the patient’s core sleep hours, 
the SDB, expressed as Respiratory Disturbance Index (RDI). The device reports only the severe sleep apnea 
(RDI ≥ 32) as a trend. Material provided courtesy of Boston Scientific. Copyright 2019 © Boston Scientific 
Corporation or its affiliates. All rights reserved.
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send and receive signals from the implanted device and to communicate with optional weight scale and blood 
pressure monitor. The information from the devices is sent to a secure website: LATITUDE. It can only be viewed 
by the healthcare support team.

The system is designed to inform the physician within 24 hours if new pulse generator alert conditions are 
detected by the Communicator.

Statistical analysis.  Normality of the data was tested with Skewness and Kurtosis tests and equality of var-
iance was assessed by Levene’s test. Data were expressed as median and inter-quartile range [25%; 75%] when 
appropriate. Comparisons between AHI-PSG and AHI-AS were expressed as proposed by Bland and Altman8. 
Correlation was assessed by Pearson’s or Spearman’s coefficients depending upon the normality of data distribu-
tion. A receiver operating characteristic (ROC) curve analysis was conducted to assess the performance of the 
AHI-AS as a predictor for SA (determined by the sleep study on the basis of an AHI cutoff of 30 episodes/h). For 
all tests, a level of significance of p < 0.05 was considered. Statistical analysis was performed by a biostatistician. 
with NCSS 97 software (Kaysville, Utah, USA), SAS 9.1.3 software (SAS Institute, Cary, NC, USA) and SPSS 
Statistics 17 (Chicago, USA).

Results
Study population.  The flow of participants is presented in Fig. 2. Twenty-five patients (24 men, mean 
age 59.9 ± 14.4 years; LVEF 30.3 ± 6.4%; body mass index 25.9 ± 4.2 kg/m2) were enrolled in the study. Sixteen 
patients (70%) were implanted for primary prevention of sudden cardiac death. Nine patients (36%) were 
implanted with a CRT-D. Twelve patients out of 25 (48%) were affected by coronary artery disease. Twelve 
patients (48%) had clinical history of atrial fibrillation. Six patients (24%) were in NYHA class III-IV (Table 1).

Figure 2.  Flow diagram of data collection.

Parameter Mean (SD)

Male gender, n(%) 24 (96)

Age (years) 59.9 (14.4)

BMI (kg/m2) 25.9 (4.2)

Apnea hypopnea index (events/hr) 21.9 (19.1)

LVEF (%) 30.3 (6.4)

Coronary artery disease n(%) 25(48)

Atrial fibrillation n(%) 12 (48)

NYHA class III-IV n(%) 6 (24)

Table 1.  Demographics and baseline clinical parameters.
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Sleep study.  The mean AHI on polysomnographic recordings was 21.9 ± 19.1 events/hr. Seven patients 
(28%) had CSA and six had OSA (24%). Severe SA was diagnosed by AHI-PSG in 8/25 (32%) of the studied patient 
population.

Primary outcome.  A statistically significant correlation was found between AHI-PSG and AHI-AS for the 
most severe SA: Spearman Correlation Coefficient = 0.71, p < 0.001) (Fig. 3A,B).

The Intraclass Correlation Coefficient (ICC) was in the expected range: 0.67, CI: 95%, range 0.39–0.84. The 
mean bias on the Bland-Altman analysis was at 5.4 events per hour (mean AHI: 23.3 ± 14.6 versus 29.7 ± 13.7 
for AHIPSG and AHIAS, respectively). An optimal cutoff value for the AHIAS at 30 events/h was obtained from the 
Receiver Operator Characteristic (ROC) curve analysis, which yielded a sensitivity of 100%, a specificity of 80%, 
PPV = 67%, NPV = 100% (Fig. 4, Table 2).

Figure 3.  A statistically significant correlation was found between AHI-PSG and AHI-AS for the most severe 
SA: Spearman Correlation Coefficient = 0.71, p < 0.001. The Intraclass Correlation Coefficient (ICC) was in the 
expected range 0.67, 95% CI: 0.39–0.84. The mean bias on the Bland-Altman analysis was 5.4 events per hour 
(mean AHI: 23.3 ± 14.6 versus 29.7 ± 13.7 for AHI-PSG and AHI-AS, respectively).

Figure 4.  R.O.C. curve corresponding to the data on Table 2. With a threshold of 30 for AHI-AS, the 
corresponding Sensitivity is 100%, Specificity 76.47%, PPV 66.67%, NPV 100%.
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Discussion
The present study demonstrated that an automatic algorithm implemented in ICDs can reliably detect sleep 
apnea. The major finding of the study is the strong correlation we showed between the RDI from ApneaScan 
algorithm and polysomnography, the gold standard diagnostic tool for sleep apnea. In addition, the sensitiv-
ity, specificity, PPV, and NPV, are clinically relevant for the use of this system in standard clinical practice. The 
reliability of our data is reinforced by a core lab central scoring and a clear differentiation between central and 
obstructive events.

Some recent publications have added significant information about the detection of SA in patients with car-
diac implants2,9–13. D’Onofrio et al.9 recently evaluated the ApneaScan algorithm in 265 patients with implantable 
ICDs and assessed the agreement between cardiac implant RDI and the AHI assessed by respiratory polygraphy 
without sleep assessment. They found a 22% prevalence of severe SA. The European DREAM study2 evaluated a 
population of 40 patients newly implanted for symptomatic sinus node dysfunction, permanent atrio-ventricular 
block, or severe heart failure by using another cardiac implant brand algorithm. In this study, the prevalence 
of moderate to severe SA was up to 59%, with 27% of the patients in the severe spectrum of the disease. Take 
together; these studies demonstrate that the strategy of SA diagnosis using cardiac implants is feasible and reliable 
in different cardiac disease populations. One of the strengths of our study is to separate central and obstructive 
apneas/hypopnea and to use recommended definitions for hypopneas which was not the case in previous studies.

Regarding the impact on outcome of SA diagnosis, Mazza et al.12 have recently investigated SA using the 
Apneascan algorithm in 160 patients implanted for symptomatic bradycardia. In this population, SA was inde-
pendently associated with a higher risk of AF (AF Burden ≥ 6 h/day) and new-onset AF. In addition, the existence 
of severe SA allowed to identify patients who were 2-fold more likely to experience an AF episode in the next 3 
months. The clinical impact of SDB on the incidence of appropriate ICD therapy in patients with heart failure 
and reduced ejection fraction has recently been explored in a meta-analysis11. The results show an increased risk 
of appropriate ICD therapy among patients with SDB compared with those without. The results of this analysis 
support the emerging evidence concerning the adverse impact of SDB on HF outcomes by triggering severe 
arrhythmias. A close monitoring of SA in these patients by ApneaScan might help to improve arrhythmias man-
agement and in turn improve prognosis.

Moubarak et al.13 analyzed 58 patients implanted with pacemakers equipped with a transthoracic impedance 
sensor for measuring RDI and found that RDI could be measured on 98% of nights. Mean RDI was 19.9 ± 12.7 
and most patients (90%) had at least 1 night with RDI > 20. This study shows that RDI is subject to a high degree 
of variability as shown by the mean individual patient night-to-night RDI variability (19% ± 21%). This is again 
a relevant point favoring such a night after night monitoring versus an in-lab unique hospital test made just on 
one single night. This night to night and intra night variability is especially prevalent in cardiac failure patients 
with central sleep apnea14. The device used in the present study allowed tracking patients RDI night-to-night over 
the 3- month study period. Figure 5 illustrates a typical recording of a patient with CSA and an AHI-PSG of 49 
events/hr with a RDI on ApneaScan fluctuating from 28–69 events/hr. This type of follow-up has the potential to 
identify exacerbations in chronic cardiac failure patients as acute cardiac failure is nearly systematically associated 
with an increase in CSA burden15.

Our findings have several clinical implications. First of all, patients with an ICD or CRT-D device equipped 
with such an algorithm can be continuously and automatically monitored during their sleeping time. Second, the 
use of this automatic feature does not require any specific work to be planned and done in the hospital for the 
diagnosis, thus positively impacting the use of the available resources. Pulse oximetry data can also be used to 
identify sleep apnea16. However, the undeniable benefit of using the pacemaker is that no additional probe or sen-
sor is needed, patients do not require an additional intervention and there are no waiting lists to be screened for 
sleep apnea. Furthermore, the device can periodically transmit the data about SA, cardiac arrhythmias, and many 
other parameters and trends, so that paramedical staff performing remote follow-up of the implanted patients can 
review the data and share with the cardiologist in case a clinical action is required17. Sleep apnea diagnosis and 
follow-up should certainly be included in the overall telemonitoring strategy of patients with cardiac implants.

AHI as, 
thresholds

TP: AHI psg > 30 and 
AHI as >threshold

FP: AHI psg ≤ 30 and 
AHI as >threshold

FN: AHI psg ≥ 30 and 
AHI as ≤thrshold

TN: AHI psg ≤ 30 and 
AHI as ≤threshold Se Sp PPV NPV

10 8 17 0 0 100,0 0,0 32,0 /

15 8 9 0 8 100,0 47,1 47,1 100,0

20 8 6 0 11 100,0 64,7 57,1 100,0

25 8 6 0 11 100,0 64,7 57,1 100,0

30 8 4 0 13 100,0 76,5 66,7 100,0

35 7 2 1 15 87,5 88,2 77,8 93,8

40 5 2 3 15 62,5 88,2 71,4 83,3

45 0 2 8 15 0,0 88,2 0,0 65,2

50 0 2 8 15 0,0 88,2 0,0 65,2

55 0 0 8 17 0,0 100,0 / 68,0

Table 2.  Detection of AHI psg greater than 30 versus different thresholds of AHIas, at 3 month follow-up. 
Abbreviations: TP: true positive; FP: false positive; FN: false negative; TN: true negative; Se: sensitivity; Sp: 
specificity; PPV: positive predictive value; NPV: negative predictive value.
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Study limitations.  Due to relatively limited patient population enrolled in this study we could not perform 
a clinically meaningful analysis of the SA trend versus the arrhythmic events (atrial fibrillation and appropriate 
therapies from the ICD, Ventricular Tachycardia, Ventricular Fibrillation, and inappropriate therapies) stored by 
the devices during the 3 month follow-up period. Furthermore, the number of patients included in the present 
study did not allow us to achieve a high specificity. However, for a screening method, sensitivity is the key issue 
to avoid false negatives and the results we obtained with the current sample size yielded robust results. We also 
were unable to carry out subgroup analyses based on the type of sleep apnea (OSA versus CSA) and based on sex. 
Additional prospective and large scale studies are needed to clarify these relationships.

Conclusions
The AIRLESS study shows that a transthoracic impedance sensor (ApneaScan algorithm) implemented in the 
ICDs for SA detection through the assessment of transthoracic impedance is a reliable tool to identify patients 
suffering of severe sleep disorders. The availability of this new technology might improve the clinical management 
of this patient population. Larger and long-term prospective studies are needed to collect data on the clinical 
impact.
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