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Original Article

Despite rapid improvements in diabetes technology, physi-
cal activity continues to represent a substantial challenge 
for people living with type 1 diabetes (T1D) as physical 
activity levels have significant effects on glucose dynam-
ics and insulin action. Numerous factors impact the blood 
glucose concentration (BGC) response to physical activity, 
including (1) the type, duration, and intensity of the exer-
cise; (2) physical fitness level; (3) previous insulin deliv-
ery or food ingestion; and (4) the degree of stress involved 
in the activity.1,2 Although guidelines for treatment during 
exercise exist, conventional diabetes management requires 
the individual with T1D to plan physical activities multiple 
hours in advance by consuming sufficient quantities of  
carbohydrates, reducing insulin, or both, and further fre-
quently monitor their BGC dynamics during the activity.3 
The challenge of maintaining euglycemia during exercise 

can be exacerbated in adolescence as endocrine changes 
often lead to increased insulin resistance, and suboptimal 
treatment behaviors can deteriorate metabolic control.4

Recent advances in artificial pancreas (AP) systems have 
improved glucose control in the presence of diurnal vari-
ability.5-12 The traditional AP structure, using a continuous 
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Abstract
Background: Physical activity presents a significant challenge for glycemic control in individuals with type 1 diabetes. As 
accurate glycemic predictions are key to successful automated decision-making systems (eg, artificial pancreas, AP), the 
inclusion of additional physiological variables in the estimation of the metabolic state may improve the glucose prediction 
accuracy during exercise.

Methods: Predictor-based subspace identification is applied to a dynamic glucose prediction model including heart rate 
measurements along with variables representing the carbohydrate consumption and insulin boluses. To demonstrate the 
improvement in prediction ability due to the additional heart rate variable, the performance of the proposed modeling 
technique is evaluated with (SID-HR) and without heart rate (SID-2) as an additional input using experimental data involving 
adolescents at ski camp. Furthermore, the performance of the proposed approach is compared to that of the metabolic state 
observer (MSO) model currently used in the University of Virginia AP algorithm.

Results: The addition of heart rate in the subspace-based model (SID-HR) yields a statistically significant improvement in the 
root-mean-square error compared to the SID-2 model (P < .001) and the standard MSO (P < .001). Furthermore, the SID-
HR model performed favorably in comparison to the SID-2 and MSO models after accounting for its increased complexity.

Conclusions: Directly considering the effects of physical activity levels on glycemic dynamics through the inclusion of heart 
rate as an additional input variable in the glucose dynamics model improves the glucose prediction accuracy. The proposed 
methodology could improve exercise-informed model-based predictive control algorithms in artificial pancreas systems.
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glucose monitor (CGM), a subcutaneous insulin infusion 
pump, and a control algorithm, is not directly informed of 
physical activity. Therefore, such APs are limited to learn-
ing the presence of physical activity and its potential impact 
on glucose concentrations only by detecting interstitial glu-
cose changes due to physical activity. Numerous studies 
have demonstrated that an AP system employing this tradi-
tional structure can be safe and effective in regulating BGC 
using both single hormone (insulin only)13-22 and dual hor-
mone (insulin and glucagon) AP systems.23-27 Nevertheless, 
in these studies some subjects still experienced mild hypo-
glycemia because this reactive feedback mechanism may be 
inadequate to compensate for the rapidly changing BGC 
during aerobic exercise.

Without considering additional information beyond CGM 
measurements, the precipitous decline in BGC during vari-
ous physical activities can be challenging to account for in 
mathematical models, as exercise can increase muscular glu-
cose uptake up to fifty fold through insulin independent 
transport.28 In people without diabetes, plasma insulin con-
centrations decrease with a corresponding increase in gluca-
gon and other counterregulatory hormones during aerobic 
exercise which maintains euglycemia. If the plasma insulin 
concentrations fail to decrease during aerobic exercise, the 
glucose counterregulatory hormone response is less effective 
and, in many cases, is insufficient to increase the hepatic glu-
cose production to prevent hypoglycemia. This phenomenon 
occurs frequently in people with insulin-dependent diabetes 
as the pharmacokinetic and pharmacodynamic profiles of 
insulin analogues do not favor this response. In addition, 
rapid BGC changes may not be immediately reflected in the 
interstitial glucose concentrations measured by CGM sen-
sors, leading to worsened CGM accuracy.29 Finally, the need 
for accurate tracking and prediction of glycemia is height-
ened by the necessary timing of insulin delivery adjustments 
to physical activity: with any such adjustments optimally 
occurring as early into the exercise bout as possible compen-
sating for transient increases in plasma free insulin concen-
trations associated with exercise.30

Using additional physiological signals to inform the AP 
system of physical activity and exercise intensity may 
improve its performance by allowing it to be proactive to 
the BGC changes. In one approach, exogenous physiologi-
cal variables are utilized to passively detect the occurrence 
of exercise but are not directly employed in the predictive 
models. These studies utilize heart rate data,31,32 acceler-
ometer signals,33,34 or both,35-37 as indicators of exercise. 
Another approach, as is used in this work, is to include the 
physiological variables as inputs to the predictive models. 
This has been accomplished through the addition of gal-
vanic skin response and estimates of energy expenditure38 
or accelerometer signals.39 Early studies demonstrated an 
improvement in glucose prediction accuracy with the addi-
tional input variables,40 which provides a foundation for 
this contribution.

As several studies indicate, heart rate is a good indicator of 
the occurrence and intensity of exercise.41 This article extends 
upon the existing work by developing a glucose prediction 
model that explicitly considers the exercise intensity by utiliz-
ing the proportion of the current measured heart rate to the 
age-predicted maximum in addition to variables quantifying 
the carbohydrate consumption and insulin boluses. The pro-
posed approach identifies a state-space model using the pre-
dictor-based subspace identification (PBSID) approach. To 
demonstrate the improvement in prediction ability due to the 
inclusion of the additional variable, the performance of the 
proposed modeling technique is evaluated with and without 
heart rate as an additional input using experimental data col-
lected in T1D adolescents during camp. Furthermore, the per-
formance of the proposed approach is compared to that of the 
metabolic state observer (MSO) model,42 used in the University 
of Virginia AP system.

Methods

Data

The proposed models are identified using data collected over 
two ski and snowboarding camps for adolescents with T1D.43 
Each camp lasted six days with five nights and contained 
about five hours of on-snow activity per day. The daily sched-
ule of activities was consistent between the two sessions. The 
subjects were evenly divided into open and closed-loop 
groups and were coarsely paired based upon age and HbA1c, 
all participants wore a Dexcom G4 sensor (Dexcom, Inc, San, 
Diego, CA), a Fitbit Charge HR activity monitor (Fitbit, San 
Francisco, CA), and used an insulin pump.43 The demo-
graphic information of the participants is given in Table 1.

The AP control system performed well despite the intense 
physical activity. The closed-loop control outperformed the 
remotely monitored sensor-augmented pump therapy in 
terms of time spent in the euglycemic range (71.3 vs 64.7% 
between 70-140 mg/dL, P = .008) with less time spent both 
above and below that target (Table 2). The closed-loop con-
trol group had significant reductions in insulin administered 
during the skiing period (9:30 am–noon, 1:00 pm–4:00 pm) 
and in the daytime (7:00 am–11:00 pm) when compared to the 
remotely monitored sensor-augmented pump group. These 
reductions did not have a significant impact on average gly-
cemia in any of the time periods studied, but the time spent 
in the target range was increased. The hypoglycemia expo-
sure and total insulin use were improved overall (P = .0001 
and P = .0001) and an interaction of ski proficiency and AP 
performance was observed in both criteria as well (P = .002 
and P = .001). Based on numerous safety outcomes and 
quality of control measures, it can be concluded that the 
closed-loop control performs, at a minimum, comparably 
and in many cases, more favorably than remotely monitored 
sensor-augmented pump in adolescents at a ski camp as 
shown by Breton et al.43
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Modeling Approach

The MSO model is a linearized and discretized derivation of 
the “minimal model” developed by Bergman et  al.44 The 
model has two inputs with one representing absorbed carbo-
hydrates and one representing active insulin. The coefficients 
of the model are population-based parameters that are scaled 
by body weight as a step toward personalization. The state 
observer is based upon a steady-state Kalman filter in which 
the meal disturbance process and CGM signal noise repre-
sented as zero-mean white Gaussian processes. Over the pre-
diction horizon, the inputs are held at their operating point 
values. The MSO model has been described in greater detail 
by Hughes et al.42

The PBSID technique is the foundation for the proposed 
approach for modeling glycemic measurements with the 
heart rate measurements utilized to incorporate the effects of 
exercise intensity.45-47 The structure of the identified linear, 
time-invariant state-space model with state feedback is math-
ematically represented as

	 x Ax Bu K y yk k k k k
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where x k n ∈� ,  uk
r∈�  and y k

l ∈�  denote the vectors of 
state, input and output variables, respectively. The system 
matrices A nxn∈� ,  B nxr∈� ,  C lxn∈� ,  D nxr∈�  and 
K nxl∈�  are the state transition, input coefficient, output coef-
ficient, direct feedthrough, and Kalman gain matrices, respec-
tively. In this notation, n  denotes a vector of n elements and 
nxm  denotes a matrix with n rows and m columns.

The PBSID approach first estimates the coefficient matri-
ces of a vector autoregressive with exogenous inputs (VARX) 
model parametrized by Markov parameters. The estimated 
Markov parameters are subsequently used to obtain an esti-
mate of the state sequence and the state-space system matri-
ces. To improve the accuracy of the glucose predictions 
during exercise, the modeling approach is extended to utilize 
heart rate as a representation of physical activity levels.  
To this end, let the vector of input variables to the model at the 

k -th sampling instance be u u u uk k k k

T
=  

CHO IB HR ,  with uk
CHO ,  
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IB  and uk

HR  denoting the carbohydrate consumption, insu-
lin boluses and the ratio of the current heart rate to the age-
predicted maximum, respectively. The age-predicted 
maximum heart rate is calculated as HR age.max = −220  

Therefore, uk
HR

meas,k maxHR HR= / , with HRmeas,k  as the 
heart rate measurement at the k -th sampling instance. 

Considering the CGM measurements yk ,  a one-step ahead 
VARX predictor can be developed as
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y k k p


| −1,  is the predicted output for time instant k  using the 
given inputs u uk k p, ,… −  and the measured outputs 
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predicted state x k  is given by
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where   and   denotes the extended controllability matrices 
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−A K AK Kp 1 . Assuming 

that the state transition matrix is nilpotent with degree p 
( Ap = 0 ), the contribution of the initial state xk p


−  is negligi-

ble for sufficiently large p, and the predicted state can be 
expressed as

Table 1.  Demographic Information of the Participants.

Participant characteristics

Age, years
  Mean ± SD (range) 13 ± 1.7 (10-16)
HbA1c
  Mean ± SD (range) 8.5 ± 1.5 (6.6-13.2)
Gender, n (%)
  Female 15 (46.9)
  Male 17 (53.1)
Weight, kg
  Mean ± SD (range) 54.2 ± 11.4 (40.9-76.8)
Body mass index, kg/m2

  Mean ± SD (range) 20.5 ± 2.9 (16.1-24.9)
Sport, n (%)
  Ski 20 (62.5)
  Snowboard 12 (37.5)
Skill level, n (%)
  First time 14 (43.7)
  Beginner 2 (6.3)
  Intermediate 5 (15.6)
  Advanced 11 (34.4)
DiAs operating mode, n (%)
  Open loop 16 (50)
  Closed loop 16 (50)

Table 2.  Percentage of Time in Range.

Percentage of CGM samples in range

CGM range (mg/dL) <55 55-70 70-180 180-250 >250
Open-loop data 0.50 2.47 66.07 21.24 9.72
Closed-loop data 0.29 2.02 74.16 17.61 5.92
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Table 3.  Comparison of Glucose Prediction Models.

RMSE MAE ISE AIC BIC R2 P value

MSO 28.87 20.67 1 32 106. × 1 05 104. × 1 07 104. × .7185 —
SID-2 28.64 20.47 1 30 106. × 1 05 104. × 1 06 104. × .7241 .359
SID-HR 26.33 19.61 1 06 104. × 1 03 104. × 1 03 104. × .7643 7 85 10 11. × −

	 x u yk k p p k p p
 = +− −L� K, , 	 (5)

The product between the predicted state and the observabil-
ity matrix Γ  is given by
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The product of the matrices Γ  and Γ  can be constructed 
from the VARX model coefficient matrices θ u( )  and θ y( ) .45,46 
Therefore, after estimating the VARX coefficient matrices, all 
quantities on the right-hand side of Eq. 5 are known and a 
singular value decomposition can be used to readily obtain a 
low-rank approximation of the state sequence. The estimated 
state sequence is then employed along with the inputs and 
measured outputs to estimate the system matrices A,  B,  C,  
D  and K  by solving linear least squares problems.45,46 In the 
batch-wise approach, the system matrices are determined to 
effectively characterize the relationship between the input 
and output training data. To minimize computational com-
plexity, these parameters are consistent among the subjects 
and are time-invariant.

To evaluate the predictive performance of the proposed 
technique compared to the MSO model, we first focus on the 
same two inputs: the rate of appearance of ingested glucose 
and the rate of appearance of insulin. This two-input model 
developed using the PBSID technique is referred to as SID-
2. Next, an additional input, the ratio of measured heart rate 
to the age-predicted maximum heart rate, is added and a new 
model incorporating exercise intensity information is devel-
oped (termed SID-HR).

The camp data are divided into two sets for training and 
testing the proposed models. The second and third day of the 
camp (samples 300-800 at a five-minute sampling rate) of the 
open-loop (control group) participants is used for training the 
models. Many of the camp participants were learning to ski or 
snowboard on the first day with it being their first exposure to 
the sport, and presumably, the stress of learning a new skill 
influences both the glycemic response to the activity and the 
heart rates. For that reason, we opted to use data from the 
second day onward to train the model. The open-loop data are 
selected for training because these individuals spent a greater 

percentage of time in hypo- and hyperglycemia compared to 
the closed-loop subjects (Table 2). Data that span a greater 
range are valuable for training the model as they capture the 
BGC dynamics at the extremes and, thus, prevents a model 
bias toward the euglycemic range. For assessing the model 
performance, the data collected from all participants in the 
camp were utilized. The performance of the open- and closed-
loop arms of the study were evaluated together and separately 
to identify the model’s performance on individuals outside of 
the training group and within it. For the open loop subjects, 
the performance for testing was calculated on days 1, 4, 5, and 
6 (samples 1-300 and 800-end of experiment). For the closed 
loop subjects, the performance of the model was assessed for 
the entire duration of the study period.

Statistical Analysis

To evaluate the predictive performance of the proposed 
SID-HR model in comparative analysis with the SID-2 and 
MSO models, several performance criteria are considered. 
The root-mean-square error (RMSE), mean absolute error 
(MAE), integral square error (ISE), Akaike information cri-
terion (AIC),48 Bayesian information criterion (BIC),49 and 
coefficient of determination (R2) are computed. Furthermore, 
two sample t-tests are employed in order to determine the 
statistical significance of the difference between the models.

Results

The comparison of the prediction ability of the models 
through various performance criteria is given in Table 3. 
The primary concern of this study is improving the 30-min-
ute-ahead glucose predictions, which translates to a six-
step-ahead prediction with a five-minute sampling time. A 
modest improvement is observed in the SID-2 model in 
comparison to the MSO model across the performance crite-
ria, but the change was insufficient to be statistically signifi-
cant. The inclusion of the additional heart rate variable in 
the SID-HR model yields a statistically significant improve-
ment in the RMSE in comparison to the SID-2 model (P = 
5.34×10–10). Moreover, the SID-HR model is more accurate 
than the SID-2 and MSO models across all the considered 
performance criteria. In Table 3, the P values are computed 
in relation to the RMSE values of the entire testing data set 
between the SID models and the MSO model. The ISE, AIC 
and BIC were reduced, on average, for the SID-HR model 
when compared to the SID-2 and MSO. The R2 values of the 
30-minute predictions relative to the CGM are greater for 
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the SID models as compared to the MSO, with the SID-HR 
model obtaining the highest value.

The performance of the models on the open loop and closed 
loop groups is then considered. This is significant for more 
than their experimental group, as the SID models were trained 
using a portion of the data from each open loop subject 
whereas the data from the closed loop subjects was only used 
for model assessment. The RMSE and MAE for these groups 
under each model is shown in Table 4. There is no statistically 
significant difference between the open- and closed-loop data 
in the SID-2 model prediction accuracy (P = .961) or the 
SID-HR model prediction accuracy (P = .753). Using a subset 
of the open loop data as the training data was valuable, as the 
same technique trained with the closed-loop data led to the 
RMSE of SID-HR increasing by 0.77.

The prediction accuracy is reduced in periods of activity 
for all three models. As shown in Table 4, the RMSE and 
MAE were above average during the time periods the adoles-
cents were actively skiing and snowboarding (9 am–noon 
and 1:00 pm–4:00 pm). Yet, the errors were lower on average 
in the SID-HR model when compared to the SID-2 and MSO 
models during that period.

The Clarke error grid analysis in Figure 1 shows that the 
majority of samples occur in regions A and B. This indicates 

the 30-minute-ahead predicted values are either within 20%  
of the actual CGM readings (region A) or the samples with 
prediction discrepancies greater than 20% (region B) would 
not lead to erroneous treatment decisions.

A small number of samples occur in the regions C and D, 
which indicates a potentially undesirable treatment outcome 
or a failure to predict hypo- or hyperglycemia. The samples 
appearing in C and D are present in both the sedentary and 
active time periods when the rate of glucose change is high. 
A very small percentage of samples occur in region E, which 
would indicate a misclassification of hypoglycemia as hyper-
glycemia or vice versa. The average percentage of samples 
within each region of the Clarke error grid for each model is 
shown in Table 5.

In Figure 2, the distributions of the residuals using the 
SID-HR, SID-2, and MSO models are plotted. The mean of 
the residuals across all subjects for the SID-HR, SID-2, and 
MSO models is 3.9, 0.12, and 0.050 mg/dL, respectively. 

Table 4.  Comparison of Glucose Prediction Models.

RMSE MAE

  All OL CL Hypo Camp All OL CL Hypo Camp

MSO 28.87 28.71 29.04 31.58 48.82 20.67 20.28 21.09 26.50 38.26
SID-2 28.64 28.68 28.61 28.63 48.21 20.47 20.22 20.74 23.68 37.81
SID-HR 26.33 26.62 26.02 36.98 46.16 19.61 19.71 19.50 33.13 36.33

Figure 1.  Clarke error grid of a representative subject.

Figure 2.  Residuals of the three models.

Table 5.  Percentage of Samples in Each Region of the Clarke 
Error Grid.

Model % Zone A % Zone B % Zone C % Zone D % Zone E

MSO 74.66 22.88 0.18 2.26 0.020
SID-2 74.69 23.01 0.14 2.12 0.03
SID-HR 74.81 22.26 0.11 2.81 0.006
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Figure 3.  Glucose predictions and model inputs for an open-loop subject.

Despite the improved prediction ability of proposed SID-HR 
model, the residuals are biased, whereas the mean of the 
residuals of the comparative methods are closer to zero. In 
addition, the residuals for the proposed SID-HR model are 
more widely distributed as compared to the residuals of the 
SID-2 and MSO models with standard deviations of 34.0, 
33.5, and 28.8 mg/dL for the respective models. Thus, the 
introduction of heart rate into the model improves the pre-
diction performance, but in some cases introduces errors. 
The SID-HR model has a positive skew over the entire 
residual set; however, all three models have a slight positive 
skew when considering the 30-minutes prior to the CGM 
detecting hypoglycemia (<70 mg/dL). The mean absolute 
error over the hypoglycemic region for each model are 
26.50, 23.68, and 33.13 for the MSO, SID-2, and SID-HR 
models, respectively.

Representative model predictions and inputs for one sub-
ject are presented in Figures 3 and 4. The CGM values, the 
glucose predictions for both the MSO and SID-HR models, 
the basal and bolus insulin, and the heart rate are presented 
for direct comparison.

Analyzing the model predictions raises a few qualitative 
observations. The prediction delay is generally smaller in the 
SID-HR model (red line) than the MSO model (blue dashed 
line) or the SID-2 model (purple dotted line). In comparing 
the two predictive models, the MSO model is highly corre-
lated with the current CGM measurement value (R2 = .9975). 
In addition, the RMSE between the current CGM measure-
ment and the predicted value is very small, indicating a 
potential delay in predicting a change in glucose. The SID-2 
and SID-HR have larger RMSE compared to the current 

sample of the CGM which indicates that the predicted values 
are further from the current values and the smaller errors at 
the 30-minute prediction horizon may be indicative of less 
delay as shown in Table 6. In considering delay from the per-
spective of correlation using the MATLAB finddelay func-
tion, the delay between the 30-minute prediction and CGM 
values are 5.8, 5.1, and 4.6 samples for the MSO, SID-2, and 
SID-HR models, respectively. Therefore, the MSO model’s 
high dependence on the current value of CGM may hinder its 
performance, whereas the SID-HR model provides a 30-min-
ute-ahead prediction that more closely coincides with the 
actual CGM.

Overall, the proposed SID-HR model is more accurate in 
prediction ability when compared to the MSO model. Across 
all the performance criteria, the SID-HR model outperforms 
the SID-2 model, while the SID-2 model outperforms the 
MSO model. In addition, no significant difference is seen in 
the predictions for the open- and closed-loop data using 
either the SID-HR and SID-2 models despite training the 
models exclusively on the open-loop data.

Discussion

The SID-HR model outperformed the SID-2 and MSO mod-
els across several performance metrics. The prediction error, 
as calculated by RMSE and MAE, is reduced overall and in 
the active skiing time for the SID-HR model. Thus, the inclu-
sion of heart rate from a commercially available wrist-worn 
heart rate monitor is sufficient to see modest improvements in 
prediction performance in physically active adolescents. The 
reduction in RMSE and MAE is observed in the open loop 
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group, where a portion of each subject’s data were used for 
training, and in the closed loop group where the subjects were 
only used for testing the model. This indicates that the model 
can generalize to new subjects without loss of performance. 
This comparison may be more directly applicable to the MSO 
model as its parameters were also not trained on this data set.

In considering measures other than prediction error directly, 
the SID-HR model continues to perform well. The ISE is 
reduced for the SID-HR model which indicates a reduction in 
prediction error over time. As AIC and BIC are metrics which 
represent the trade-off of model fitting and model simplicity, 
the reduction in those values in the SID-HR given the addi-
tional input is promising. The predictions of the SID-HR model 
are highly correlated to the CGM values as shown by it having 
the highest R2 of the models. This indicates it can represent the 
variance of the CGM values most adeptly.

The percentage of samples falling into each Clarke error 
grid region was similar for each of the three models with the 
overwhelming majority falling into regions A and B. Only a 
small percentage fall into C, D, and E which could lead to 
unnecessary or undesirable treatment outcomes. As the Clarke 
error grid analysis was developed to quantify blood glucose 
meter accuracy (an instantaneous measurement), achieving an 

acceptable error grid performance with the 30-minute-ahead 
glucose predictions demonstrates a high degree of accuracy 
and safety in the proposed SID-HR model.

The improved prediction ability of the proposed SID-HR 
model notwithstanding, a sustained bias is observed in the 
mean of the residuals across all subjects for the proposed 
model in contrast to the SID-2 and MSO models. As this bias 
is observed despite the lower RMSE and MAE values, it sug-
gests that the glycemic measurements may not be linearly 
dependent on the heart rate. The bias in the residuals may 
also be due to the fact that including heart rate may only 
capture some of the effects of physical activity on glycemic 
dynamics, while characterizing all the effects may require 
more physiological variables. This bias may have an undesir-
able effect on the ability to predict hypoglycemia accurately, 
as the prediction error when the CGM was indicating hypo-
glycemia (BG < 70 mg/dL) was greatest in the SID-HR as 
compared to the SID-2 or MSO.

As prediction accuracy is a primary focus of this work, the 
delay between the predicted values and the CGM is an impor-
tant factor to assess. In this work, the observed delay was 
reduced with the introduction of the heart rate input (SID-HR) 
as compared with the other two models. The heart rate signal 
used in this work was obtained through a commercially avail-
able wrist-worn fitness-tracker. As such, the heart rate mea-
surement accuracy is impacted by noise and artifacts because 
of the movement of the arms and of movement of the wristband 
on the arm. The accuracy of HR data is highly affected during 
the physical activity periods. Despite this limitation, the inclu-
sion of heart rate in the model reduced the prediction error and 
delay between the predictions and future CGM values.

Figure 4.  Glucose predictions and model inputs for a closed-loop subject.

Table 6.  Prediction Accuracy as a Degree of Predicted Change.

RMSE Current value [k] 6-step-ahead prediction [k + 6]

MSO 2 62. 29 18.
SID-2 9 44. 28 42.
SID-HR 9 78. 26 25.
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As the data considered in this work consisted exclusively 
of adolescent subjects, the improved prediction performance 
of the SID models compared to the MSO model may be a 
result of the limited diversity in the data. Greater diversity in 
the population involved in the experiments may lead to 
divergent results where the improvement in prediction accu-
racy of the SID-HR model is less conclusive. This scenario 
may be evident if the SID-HR model is evaluated using 
adults, particularly the adults with a long duration of diabetes 
whose reported heart rates may be influenced by diabetic 
neuropathy. In addition, the models considered in this work 
are identified using subject data with a significant amount of 
physical activity (~5 h/day). Finally, heart rate can be greatly 
influenced by many factors, including stress, medication and 
body position. Therefore, the predictive performance of the 
proposed model may not extend to situations where subjects 
are prone to such disturbances.

For an AP system to be adopted in an ambulatory set-
ting, the computational tractability of the control algorithm 
is of concern. As the control algorithms need to be imple-
mented on computationally constrained hardware settings, 
such as insulin pumps or smartphones, the proposed model 
should be relatively computationally tractable and effi-
cient, yet be able to provide reliable predictions. For rea-
sons related to the computational complexity of the model, 
a linear, time-invariant model is favored over a nonlinear 
model or a model with time-varying parameters even 
though nonlinear or recursively updated model may pro-
vide better predictions.

Conclusion

In active adolescents at skiing and snowboarding camp, the 
inclusion of heart rate as an additional input in the glucose 
prediction model significantly improved the prediction per-
formance as measured by several performance indices. Since 
exercise has a significant effect on blood glucose concentra-
tion, a model that can accurately predict the variations in the 
glycemic dynamics due to physical activity may allow artifi-
cial pancreas systems to proactively make the appropriate 
treatment decisions and improve glycemic control.
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