Skip to main content
. 2019 Jul 5;39:14. doi: 10.1186/s41232-019-0103-3

Fig. 3.

Fig. 3

Strategy to identify iPSC-ECs by a deep neural network. iPSCs are differentiated to endothelial cells, and phase contrast microscope images are captured. Input blocks are cropped from phase contrast images and inputted into the neural network. The neural network predicts whether target blocks are “unstained” or “stained.” Target blocks that include the target cells to be examined are cropped from binary images of CD31-immunostaining to generate correct answers, which are determined by the white pixel ratio of target blocks. Predictions are compared with the correct answers, and weights of the network are adjusted automatically to increase the predictive value of the deep neural network